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Abstract: This paper introduces a novel methodology for multiple mean comparison of clusters identified in gene 
expression data through the t-distributed Stochastic Neighbor Embedding (t-SNE) plot, which is a powerful 
dimensionality re- duction technique for visualizing high-dimensional gene expression data. Our approach integrates the 
t-SNE visualization with rigorous statistical testing to validate the differences between identified clusters, bridging the gap 
between exploratory and confirmatory data analysis. We applied our methodology to two real-world gene expression 
datasets for which the t-SNE plots provided clear separation of clusters corresponding to different expression levels. Our 
findings underscore the value of combining the t-SNE visualization with multiple mean comparison in gene expression 
analysis. This integrated approach enhances the interpretability of complex data and provides a robust statistical 
framework for validating observed patterns. While the classical MANOVA method can be applied to the same multiple 
mean comparison, it requires a larger total sample size than the data dimension and mostly relies on an asymptotic null 
distribution. The proposed approach in this paper has broad applicability in the case of high dimension with small sample 
sizes and an exact null distribution of the test statistic. 

Objective: Propose a two-step approach to analysis of gene expression data. 

Gene expression data usually possess a complicated nonlinear structure that cannot be visualized under simple linear 
dimension reduction like the principal component analysis (PCA) method. We propose to employ the existing t-SNE 
approach to dimension reduction first so that clusters among data can be clearly visualized and then multiple mean 
comparison methods can be further employed to carry out statistical inference. We propose the PCA-type projected 
exact F-test for multiple mean comparison among the clusters. It is superior to the classical MANOVA method in the case 
of high dimension and relatively large number of clusters. 

Results: Based on a simple Monte Carlo study on a comparison between the projected F-test and the classical MANOVA 
Wilks’ Lambda-test and an illustration of two real datasets, we show that the projected F-test has better empirical power 
performance than the classical Wilks’ Lambda-test. After applying the t-SNE plot to real gene expression data, one can 
visualize the clear cluster structure. The projected F-test further enhances the interpretability of the t-SNE plot, validating 
the significant differences among the visualized clusters. 

Conclusion: Our findings suggest that the combination of the t-SNE visualization and multiple mean comparison through 
the PCA-projected exact F-test is a valuable tool for gene expression analysis. It not only enhances the interpretability of 
high-dimensional data but also provides a rigorous statistical framework for validating the observed patterns. 
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INTRODUCTION 

Gene expression data measures the activity of 
thousands of genes simultaneously, providing insights 
into the functional elements of the genome and the 
under- lying biological processes. These data sets, 
often generated by technologies such as microarrays 
or RNA sequencing (RNA-seq), have revolutionized the 
fields of genomics and molecular biology. By examining 
gene expression patterns, researchers can identify 
differentially expressed genes, understand cellular 
responses to various conditions, and uncover 
molecular mechanisms of diseases. The analysis of  
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gene expression data has led to significant 
breakthroughs in understanding the molecular basis of 
diseases. For example, cancer research has greatly 
benefited from gene expression profiling. By comparing 
the gene expression patterns of cancerous and normal 
tissues, researchers can identify genes that are 
upregulated or downregulated in tumors, shedding light 
on the molecular mechanisms driving cancer 
progression. These differentially expressed genes can 
serve as potential biomarkers for diagnosis, prognosis, 
and therapeutic targets. 

The high dimensionality of gene expression data 
poses significant challenges for analysis and 
interpretation. Each sample is characterized by the 
expression levels of thousands of genes, leading to 
complex data structures that are difficult to visualize 
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and analyze using traditional methods. Dimensionality 
reduction techniques are essential tools that help 
simplify these complex datasets while preserving their 
most informative aspects [1-2]. One commonly used 
dimensionality reduction method is Principal 
Component Analysis (PCA [3]). But it is well known that 
PCA is more suitable for linear dimension reduction. It 
is not desirable for nonlinear dimension reduction as is 
the case for high-dimensional gene expression data, 
which usually displays non-linear structure of manifold. 
Another popular method is the t-distributed stochastic 
neighbor embedding (t-SNE [4]), which is particularly 
effective for visualizing high-dimensional data in two or 
three dimensions [5]. 

The t-SNE minimizes the divergence between two 
distributions: a distribution that measures pairwise 
similarities of the input objects in the high-dimensional 
space and a distribution that measures pairwise 
similarities of the corresponding low-dimensional 
points. The t-SNE aims to map high-dimensional data 
points into a lower-dimensional space (usually two or 
three dimensions) while preserving the local structure 
of the data. This technique is well-suited for identifying 
complex structures in gene expression data, such as 
clusters or outliers, and has been widely used in single-
cell RNA sequencing studies to reveal the 
heterogeneity of cell populations [6]. 

When applied to gene expression data, the t-SNE 
can reveal natural groupings or clusters of samples 
based on their gene expression profiles. These clusters 
often correspond to distinct biological states or cell 
types, making the t-SNE a valuable tool for exploratory 
data analysis in genomics. For instance, t-SNE plots 
have been used to identify and visualize different 
subpopulations of cells in single-cell RNA-seq data [7], 
aiding in the discovery of novel cell types and states. 
Once the t-SNE has been used to reduce the 
dimensionality of the gene expression data and 
visualize clusters, the next step is often to analyze 
these clusters further. One common approach is to 
perform clustering on the t-SNE reduced data to 
formally define groups of samples. Methods such as k-
means clustering, hierarchical clustering, or density-
based clustering can be employed to partition the data 
into distinct clusters. 

After identifying clusters, researchers are typically 
interested in comparing the means of gene expression 
levels across these clusters to identify differentially 
expressed genes. This process involves statistical tests 

to determine whether the mean expression levels of 
specific genes differ significantly between clusters. The 
identification of differentially expressed genes can 
provide insights into the underlying mechanisms driving 
the observed clustering. For instance, certain genes 
might be upregulated in one cluster but downregulated 
in another, indicating their role in specific biological 
processes or disease states. By comparing mean 
expression levels, researchers can prioritize genes for 
further investigation, such as functional validation 
studies or therapeutic target identification [8-9]. 

To effectively compare gene expression levels 
across clusters, a variety of statistical methods can be 
employed. Commonly used techniques include 
Student’s t-tests, ANOVA (analysis of variance), and 
more sophisticated methods like generalized linear 
models and mixed-effects models. These methods 
account for variability within and between clusters, 
ensuring that the detected differences are statistically 
robust and biologically meaningful. However, the 
application of these methods requires careful 
consideration of multiple testing issues, as the large 
number of genes analyzed simultaneously can lead to 
increased false discovery rates. Adjustments such as 
the Bonferroni correction or the False Discovery Rate 
(FDR) control are often applied to mitigate this problem 
[10-12]. 

Visualization of clusters and their corresponding 
gene expression profiles can greatly aid in the 
interpretation of the results. t-SNE plots are a popular 
tool for visualizing high-dimensional gene expression 
data in a two-dimensional space. By projecting 
complex data into a more interpretable format, t-SNE 
plots facilitate the identification of clusters and the 
exploration of their characteristics. When combined 
with mean comparison techniques, t-SNE plots can 
highlight which genes contribute most to the 
differences between clusters, providing a powerful 
approach for data-driven discovery. 

In conclusion, comparing the means of gene 
expression levels across clusters is a fundamental step 
in the analysis of gene expression data. This process 
not only identifies differentially expressed genes but 
also enhances our understanding of the biological 
significance of the clusters. By leveraging statistical 
methods and visualization tools like the t-SNE plots, 
researchers can gain deeper insights into the molecular 
underpinnings of the data, paving the way for new 
discoveries in genomics and beyond. 
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This paper is organized as follows. Section 2 gives 
a simple illustration for the t-SNE plot by using two real 
high-dimensional datasets from publicly accessible 
sources. In section 3, we propose the projection-type 
exact F -test for multiple mean comparison for the case 
of high dimension with a possible small sample size. 
Section 4 gives a simple Monte Carlo study on the 
performance of the projection-type exact F-test. 
Section 5 illustrates the application of the projection-
type F -test for comparing clusters of gene expression 
data from their t-SNE plots. Some concluding remarks 
are given in the last section. 

2. AN ILLUSTRATION OF THE T-SNE PLOT 

Because the t-SNE plot depends on a careful 
choice of its parameters such as the perplexity, which 
typically ranges between 5 and 50, smaller values of 
perplexity emphasize local data structure, while larger 
values focus more on global data structure, implement 
a t-SNE plot for a high-dimensional gene expression 
dataset needs some practical considerations as 
follows. 

1) Data preprocessing: normalize or standardize data, 
as the t-SNE is sensitive to the scale of input 
features; and remove or handle outliers to prevent 
them from dominating the visualization. 

2) Dimensionality reduction: consider reducing 
dimensions with techniques like PCA before 
applying the t-SNE, especially for very high-
dimensional data. 

3) Interpretation and validation: use multiple runs to 
ensure the stability of the results; visualize the 
results with other techniques (e.g., clustering) to 
validate the insights gained. 

4) Computation resources: the t-SNE can be 
computationally intensive, especially for large 
datasets; utilize efficient implementations and 
appropriate hardware resources like the “Rtsne” 
package. 

By carefully tuning these parameters and 
considering the practical aspects, one can effectively 
use the t-SNE to visualize high-dimensional data in a 
lower-dimensional space. 

After applying the t-SNE plot, the interpretation of 
the plot includes: 

1) Cluster analysis: examine the plot to identify 
distinct clusters of samples. Clusters in the t-SNE 

plot suggest groups of samples with similar gene 
expression profiles; 

2) Biological insight: relate the clusters to biological 
or experimental conditions. For example, clusters 
might correspond to different cell types, treatment 
conditions, or disease status; 

3) Outliers: identify outliers or anomalies that may 
warrant further investigation. Outliers in the plot 
could indicate unique or rare samples with distinct 
gene expression patterns. 

The t-SNE plots in the following two examples are 
direct implementations of the R-package “Rtsne” 
available from the R-website https://cran.r-project.org/ 
by running install.package(“Rtsne”) and then running 
library(Rtsne) under the R command window. 

Example 1. The gene expression dataset consists 
of gene mapping data of 50 genes with 1097 gene 
expression levels. Dimension p = 50 and sample size n 
= 1097. The dataset has ID TCGA-BRCA.htseq fpkm-
uq.tsv downloaded from https://ucsc-public-main-xena-
hub.s3.us-east1.amazonaws.com/download/chin2006_ 
public%2Fchin2006Exp_genomicMatrix.gz  

We first employ the elbow method [13] to guess 
how many clusters are suitable for data clustering. The 
elbow plot below in Figure 1 suggests five clusters may 
be enough to classify the gene expression data, where 
each elbow indicates a sharp change in WCSS=within-
cluster sum of squares. Although classification of more 
than five clusters still seems feasible, the t-SNE plots of 
more than five clusters will show too many overlapped 
observations across clusters as shown in Figure 3.  

The t-SNE plots for the dataset in example 1 with 
different choices of the hyper- parameter perplexity are 
given as follows. It is suggested that the hyper-
parameter perplexity is usually taken between 5 and 50 
[14]. For small datasets, perplexity can be taken 
between 5 and 40. There are 50 genes with 1097 
observations for the dataset in example 1. Figure 2 
shows that datasets can be classified into five relatively 
clear clusters for different choices of the perplexity 
parameter. Figure 3 shows that classification of six 
clusters for the same dataset under different choices of 
the perplexity parameter results in too many 
overlapped observations, which may be classified into 
more than one cluster. Classification of more than six 
clusters for the same dataset under different choices of 
the perplexity parameter also results in too many 
overlapped observations, which may be classified into 
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more than one cluster. Therefore, we choose 
classification of five clusters as a better option. 

Example 2. The gene expression dataset consists 
of breast cancer gene expression data of 1217 genes 
with more than 65,000 gene expression levels. We only 

choose 1931 gene expression levels for illustration 
purpose. Dimension p = 1217 and sample size n = 
1931. The dataset has ID TCGA-BRCA.htseq fpkm-
uq.tsv downloaded from https://gdc-hub.s3.us-east-
1.amazonaws.com/download/TCGA-BRCA.htseq_ 
fpkm-uq.tsv.gz  

 

Figure 1: Elbow plot for example 1 dataset. 

 
Figure 2: t-SNE plots with five clusters for example 1 dataset. 
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We first employ the elbow method to guess how 
many clusters are suitable for data clustering. The 
elbow plot below suggests three to six clusters may be 
suitable to classify the gene expression data, where 
each elbow indicates a sharp change in WCSS=within-
cluster sum of squares. The best classification for the 

number of clusters may be re-evaluated by its 
associated t-SNE plots as follows. 

For median datasets, perplexity can be taken 
between 20 and 50. There are 1217 genes with 1931 
observations for the dataset in example 2. The t-SNE 

 
Figure 3: t-SNE plots with six clusters for example 1 dataset. 

 

Figure 4: Elbow plot for example 2 dataset. 
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plots for the dataset in example 2 with different choices 
of the hyper-parameter perplexity and different number 
of clusters are given in Figures 5-8. It seems that a 
better option is to classify the data in to three clusters 
as shown in Figure 5. In Figure 6 with four clusters, the 
cluster with the smallest size can be combined into the 
cluster that is next to it. This results in three clusters. In 
Figure 7 with five clusters, the three clusters with the 
smaller sizes can be combined into one cluster. This 
also results in three clusters. In Figure 8 with six 
clusters, the four clusters with the smaller sizes can be 
combined into one cluster. This still results in three 
clusters. Based on the elbow plot in Figure 4 and re-
evaluated by Figures 5-8, it is feasible to classify the 
data in example 2 into three major clusters. 

3. MULTIPLE MEAN COMPARISON THROUGH PCA 
DIMENSION REDUCTION 

The t-SNE plot provides a visual observation on the 
clustering structure high- dimensional gene expression 
data. A quantitative comparison among the clusters 
from the t-SNE plot may help further understanding in 
the complex biological processes and diseases. With 
the advent of high-throughput sequencing 

technologies, researchers can now measure the 
expression levels of thousands of genes 
simultaneously. However, the sheer volume and 
complexity of this data necessitate sophisticated 
analytical techniques to extract meaningful insights. 
One crucial approach is the multiple mean comparison 
among clusters of gene expression data, which aids in 
identifying significant differences and similarities across 
different gene clusters. 

The necessity of multiple mean comparison for 
analysis of gene expression data can be summarized 
in the following points: 

1) Understanding biological variability: gene 
expression data often exhibit high variability due 
to biological differences, technical noise, and 
experimental conditions. By clustering genes with 
similar expression patterns, researchers can 
reduce this complexity. Multiple mean comparison 
among these clusters helps in discerning whether 
the observed differences in gene expression are 
statistically significant or merely due to random 
variation. 

 

Figure 5: t-SNE plot with three clusters for example 2 dataset. 
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Figure 6: t-SNE plot with four clusters for example 2 dataset. 

 

Figure 7: t-SNE plot with five clusters for example 2 dataset. 
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Figure 8: t-SNE plot with six clusters for example 2 dataset. 

2) Identifying differentially expressed genes: in many 
studies, the goal is to identify genes that are 
differentially expressed under different conditions 
(e.g., diseased vs. healthy states). By comparing 
the means of gene expression levels across 
clusters, researchers can pinpoint specific genes 
or groups of genes that show significant changes, 
which might be indicative of underlying biological 
processes or disease mechanisms. 

3) Enhancing data interpretation: high-dimensional 
data are often difficult to interpret directly. Clus- 
tering simplifies the data into more manageable 
subsets. Multiple mean comparisons among these 
clusters provide a clearer picture of the overall 
gene expression landscape, highlighting key 
differences and trends that can guide further 
biological investigation. 

Gene expression studies typically involve testing 
thousands of genes simultaneously, leading to the 
problem of multiple mean comparisons. Once clusters 
are established, statistical methods such as ANOVA or 
Student’s t-tests are used to compare the mean 
expression levels between clusters. Multivariate 
analysis of variance (MANOVA) is an extension to 

univariate ANOVA, it requires the total sample size (the 
number of expression levels) must be greater than the 
dimension (the number of genes). This limits the 
multiple mean comparison based on MANOVA. Some 
nonparametric methods like the permutation test [15] 
may be applied to multiple mean comparison. But 
nonparametric methods usually result in statistics 
whose finite-sample null distributions are unknown or 
difficult to obtain their critical values 

In this section, we employ the idea of PCA to 
construct the Läuter-type F-test [16] for multiple mean 
comparison across clusters of gene expression data 
which are determined by the t-SNE plot. Let 

µl = the mean vector of cluster l, l = 1, . . . , k       (1) 

and 

xlj = (xlj1, . . . , xljp)t : p × 1, j = 1, . . . , nl; l = 1, . . . , k     (2) 

be the observations from cluster l with sample size nl, 
where the superscript “t” stands for the transpose of a 
row vector or a matrix. We assume normal samples 
{xlj : j=1, . . . , nl}  are i.i.d. p-dimensional normal Np(µl, 
Σ) with equal covariance matrices. We want to test the 
hypothesis 
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H0 : µ1 = . . . = µk           (3) 

against the alternative that at least two means are not 
equal. 

Theorem 1. Under the notations in (1)-(3), let 

!! =
!!!!
⋮

!!!!
!

, !!×!,… ,!! =
!!!!
⋮

!!!!
!

, !!×!,      

! =
!!
⋮
!!

, !×!, ! = !!!
!!! .         (4) 

Under the null hypothesis (3), we define the 
Helmert’s transformation [17]: 

! = !":       ! − 1 ×!            (5) 

with the constant matrix A defined by 

! = !!" : ! − 1 ×!, !!" =

!
!(!!!)

, ! = 1,… , !
!!
!(!!!)

, ! = ! + 1

0, otherwise

         (6) 

Define eigenvalue-eigenvector problem 

!
!!!

!!! = !Λ          (7) 

where D =(d1, . . . , dq), p×q, q=min(n −1, p)−1. D 
consists of q eigenvectors {d1, . . . , dq}  associated with 
q positive eigenvalues of the non-negative definite 
matrix Y tY . Λ=diag(λ1, . . . , λq) consists of the 
eigenvalues λ1≥ . . . ≥λq>0. Let 

Dr = (d1, . . . , dr) : p×r, r = 1, . . . , q. Zr = Y Dr, 

! = !!!
!

!!!
!!!!!!!!! !! ,

! = !!! !!!! −
!

!!!
!!!!!!!!! !!,          (8) 

where 1n−1 stands for the vector of ones with dimension 
(n−1)×1, In−1 for the identity matrix with dimension 
(n−1)×(n−1), r = 1, . . . , min(n−1,q)−1. Define the 
statistic 

!! =
!!!!!

!
trace !!!! = !!!!!

!!! !
!!!!! !!!!!!!!!!!!        (9) 

Then under the null hypothesis (3), Fr has an F -
distribution F (r, n − 1 − r). Proof. Under the 
assumption of equal covariance matrices and the null 
hypothesis (3), the row vectors in the matrix X in (4) are 
i.i.d. with a p-dimensional normal distribution Np(µ, Σ) 
(µ=µ1= . . .=µk). The Helmert’s transformation Y = AX in 

(5) with A given by (6) being a row-orthogonal matrix 
AAt = In−1 and A1n = 0. Using the notation of matrix 
normal distribution and the Kronecker product “⊗” and 
“= d ” meaning the two sides of the equality have the 
same probability distribution, we can write the 
distribution of X and Y as 

! =! !"# !! ~!!×! 1!⨂!, !!⨂Σ . 

! =! !"# !! = !"# !" !

= !⨂!! !"# !! ~!!×! 1!⨂!, !!⨂Σ . 

! !"#!! = !⨂!! ! !"# !! = !⨂!! (1!⨂!)
= (!1!)⨂(!!!) = 0⨂! = 0. 

!"# !"#!! = !⨂!! !"# !"# !! !⨂!!
!
 

= !⨂!! !!⨂Σ !!⨂!! = !!! ⨂Σ = !!!!⨂Σ. 

This means that the row vectors in Y are i.i.d. with a 
normal distribution Np(0, Σ). Y satisfies the conditions in 
Theorem 1 of Läuter (1996) [16]. The random matrix Zr 
in (8) has a left-spherical matrix distribution with P (Zr = 
0) = 0 [18]. According to Theorem 1 of Läuter (1996), 
the statistic Fr in (9) has an F -distribution F (r, n −1−r). 
This completes the proof. 

Theorem 1 provides an F -test for hypothesis (3). 
Reject hypothesis (3) at a given level 0 < α < 1 if Fr > F 
(1−α; r, n−1−r), here F (1−α; r, n−1−r) stands for the 
100(1 − α)%-percentile of the F -distribution F (r, 
n−1−r). Here r = 1, . . . , min(n−1, q)−1 with q=the 
number positive eigenvalues in the matrix Y tY (p ×p). r 
can be considered as the projection dimension when 
projecting the Helmert-transformed data in Y onto the 
PCA directions determined by Zr in (8). A test for (3) 
based on the Fr in (9) is called the projected F -test, 
which is an exact F -test under the null hypothesis (3). 

4. A SIMPLE MONTE CARLO STUDY 

The performance of the Fr-statistic (9) can be 
partially viewed by a simple Monte Carlo study through 
choosing different projection dimensions and 
comparing the Fr-test with the classical Wilks’ Λ-test in 
MANOVA. The Λ-statistic is defined by 

Λ = |!|
|!+!|   ~Λ !, ! − !, ! − 1       (10) 

under the null hypothesis (3), where 

! = (!!" − !!)(!!" − !!)!
!!
!!!

!
!!!     and    ! =

!!(!
!!! !! − !) !! − ! !       (11) 
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are respectively the “within-samples” and “between-
samples”. W characterizes the total variation from the 
samples, B characterizes the total variation from the 
differences between the populations (treatments), and 

!! =
1

!!
!!"

!!
!= , ! =

1

!
   !!"

!!
!=1

!
!=1 ,        ! = !!

!
!=1 .     (12) 

Here !! stands for the i-th sample mean for the 
sample from the i-th treatment and ! for the overall 
sample mean from all samples. The distribution Λ(p, n 
− k, k − 1) in (10) is called the Wilks’ Λ-distribution 
[19]. Hypothesis (3) is rejected for small values of Λ. 

The exact distribution of the Wilks’ Λ-statistic (10) is 
available only for the special cases of k =2 and k =3 
(two or three treatments, or two or three populations 
[19] (page 83): 

! = 2:    
! − ! − 1

!
∙
1 − Λ !, ! − 2,1
Λ !, ! − 2,1

  ~! !, ! − ! − 1 ,   

! = 3:     !!!!!
!

∙ !!!
!
! !,!!!,!

!
!
! !,!!!,!

  ~! 2!, 2 ! − ! − 2 .       (13) 

For the general case of k, the asymptotic 
 !2-distribution is employed when using the Wilks’  
Λ-statistic (10): 

− ! − ! − !
!
! − ! + 2 logΛ !, ! − !, ! − 1 →

  !! ! − 1 ! , ! → ∞        (14) 

under the null hypothesis (3). Therefore, the classical 
method for MANOVA based on the Wilks’ Λ-statistic 
(10) is mainly for the case of large total sample size n. 

Because the null distributions of the Fr-statistic (9) 
and the Wilks’Λ-statistic (10) do not depend on the 
normal means and the covariance matrix under the null 
hypothesis (3), we choose the following sample 
designs for the mean vectors and covariance matrices 
from the populations for multiple mean comparison in 
our Monte Carlo study. 

Design 1: k =2 groups and dimension p = 10, 20, 30 
with sample sizes n1 = n2 = 20 

with 

!1 = 1!, !2 = !1!, Σ = !!" , !×!,      (15) 

where the constant d controls the difference between 
the two mean vectors, and 

!!" =
1, ! = !
0.5, ! ≠ !              (16) 

for !, ! = 1,… , !.  

Design 2: k =3 groups and dimension p = 10, 20, 30 
with sample sizes n1 = n2 = n3 = 20 with 

µ1 = 1p, µ2 = d1p, µ3 = 2d1p      (17) 

with the same covariance ρij as given in (16). 

Design 3: k =5 groups and dimension p =10, 20, 30 
with sample sizes n1 = . . . = n5 =20 with 

µi = (i − 1)d1p, i = 1, . . . , 10.      (18) 

and the same covariance ρij as given in (16). 

Design 4: k =10 groups and dimension p =10, 20, 
30 with sample sizes n1 = . . . = n10 = 20 with the same 
mean and covariance structure as in Design 3. 

The multivariate normal samples are generated from 
each of the above designs for 2,000 replications. The 
empirical power for each design is computed by 
counting the relative frequency using the significance 
level α =0.05. The null distribution for the Wilks-test is 
an exact F -distribution for k =2 and k =3 as given by 
(13), it is an asymptotic chi-square distribution for k =5 
and k =10 as given by (14). Large values of the 
statistics in (13) or (14) imply rejection of hypothesis 
(3). The power comparison for the above four designs 
is illustrated by Figures 9-10, where the exact F -tests 
are from the PCA projected F -test given by (9) with 
different projection dimensions r1=[r/4], r2 =[r/3], r3 
=[r/2], and r4 =[3r/4], here [·] stands for the integer part 
of a real number. Figures 9-10 show that the classical 
Wilks’ Λ-test for multiple mean comparison may 
perform equally well or even better than the PCA- 
projection tests in low dimensional cases with small 
number of groups. It is obvious that Wilks’ Λ-test 
begins losing power with the increase of data 
dimension or the number of groups. The PCA-
projection tests seem to perform better for projection 
dimension between r1 =[r/4] and r2=[r/3] with 
r=min(n−1,p)−1, here n stands for the total sample 
size from all groups and p=data dimension. 

5. ILLUSTRATIVE EXAMPLES 

Example 3. (Example 1 continued) The clusters are 
displayed by the t-SNE plot in Figure 2. We carry out 
the projected F-test for multiple mean comparison 
among the five clusters in Figure 2. This is to test the 
hypothesis (3) with k=5. we carry out the projection F-
test Fr in (9) by choosing four projection dimensions as 
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Figure 9: Power comparison among five tests: F1=Fr1 , F2=Fr2 , F3=Fr3 , F4=Fr4 , and Λ=Wilks’ Λ. 

 

Figure 10: Power comparison among five tests: F1=Fr1 , F2=Fr2 , F3=Fr3 , F4=Fr4 , and Λ=Wilks’ Λ. 
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Table 1: Projected F-tests for the dataset in Example 1 

 

Projection dimension r r1=12 r2=16 r3=24 r4=36 

Projected F-distribution F (12, 1084) F (16, 1080) F (36, 1072) F(36,1060) 

Projected F-value 97.1724 78.9793 54.7047 37.9098 

p-value 1.9e-162 7.6e-169 1.6e-163 1.62e-163 

 Wilks’ approx. !!(200)=101068.4, p-value=0.0000 

Note: In Table 1, numbers like 1.9e-162 means = 1.9 × 10−162. 

the same as in Figures 9-10 and the Wilks’ Λ-test (14). 
The test results are summarized in Table 1 below. The 
p-values show that there exists highly significant 
differences among the mean expression levels across 
the five clusters in Figure 2. 

Example 4. (Example 2 continued) The clusters are 
displayed by the t-SNE plot in Figure 4. We carry out 
the projected F -test for multiple mean comparison 
among the three clusters in Figure 4. This is to test the 
hypothesis (3) with k=3. We choose the first few PCA 
directions that can explain at least 80% of the variation 
in the PCA equation (8). It turns out that the first PCA 
direction already contributes more than 99.96% of the 
variation. Therefore, we only choose the first PCA 
direction for the projected F-test, which is F(1,1929), it 
has a p-value=2.38888e-63≈0. It shows that there 
exists highly significant differences among the mean 
expression levels across the three clusters in Figure 4. 
In this example, the data dimension (the number of 
genes) p=1217 is relatively close to the total sample 
size n=1931. The Wilks’ Λ-test can be still applied but 
may be much less powerful than the one-dimensional 
PCA projected F(1,1929)-test. Actually, Λ=0 in this 
example, which implies no within-group variation. So 
the Wilks’ Λ-test doesn’t make much sense. 

6. CONCLUDING REMARKS 

In this paper, we presented a methodology for 
multiple mean comparison of clusters derived from 
gene expression data using the t-SNE plots. The 
application of t-SNE in visualizing high-dimensional 
gene expression data has proven to be a powerful tool 
for uncovering inherent structures and patterns that 
traditional methods might overlook. By leveraging t-
SNE, we effectively reduce the dimensionality of the 
data while preserving the local and global data 
structure, facilitating more intuitive and informative 
visualizations. 

Through our analysis, we aimed to address the 
challenge of interpreting gene ex- pression clusters by 
applying multiple mean comparison techniques. This 
approach allows us to statistically validate the 
differences between clusters, providing a robust 
framework for identifying biologically significant 
patterns. The integration of the t-SNE visualization with 
statistical testing bridges the gap between exploratory 
data analysis and confirmatory analysis, ensuring that 
the observed patterns are not merely artifacts of the 
visualization process. 

The two real gene expression data examples 
demonstrated the practical application of our 
methodology. In both real-data examples, the t-SNE 
plots revealed distinct clusters corresponding to 
different expression levels. Multiple mean comparison 
tests further confirmed the significant differences 
between these clusters. The real-data examples 3-4 
show that it is very common that the sample size may 
be less than the data dimension. This makes the 
classical Wilks’ Λ-test inapplicable for testing high-
dimensional mean under the multivariate normal 
assumption. Other available nonparametric tests in the 
literature for this purpose require large- sample theory 
to obtain the null distributions of the test statistics. 
Therefore, our proposed projected F-test shows some 
superiority to some existing approaches to high-
dimensional multiple mean comparison. 

Our findings suggest that the combination of the t-
SNE visualization and multiple mean comparison is a 
valuable tool for gene expression analysis. It not only 
enhances the interpretability of high-dimensional data 
but also provides a rigorous statistical framework for 
validating the observed patterns. This approach can be 
extended to various types of genomics data, offering a 
versatile solution for complex biological data analysis. 

However, it is essential to acknowledge certain 
limitations of our methodology. The performance of t-
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SNE can be sensitive to the choice of parameters, such 
as perplexity and learning rate. Careful parameter 
tuning is necessary to achieve meaningful visualiza-
tions. Additionally, the multiple mean comparison tests 
assume equal covariance matrices across all clusters, 
which may not be the case in some applications. The 
multiple mean comparison tests also assume that the 
data within each cluster follows a normal distribution, 
which may not always be the case. Future work could 
explore robust statistical methods that relax these 
assumptions and improve the reliability of the results. 

It should be pointed out that t-SNE plot for 
clustering high-dimensional gene expression data and 
PCA for dimension reduction are established methods 
in the literature. Our contribution in this paper is to 
double validate the t-SNE plot by the generalized F-test 
derived from PCA, which makes it possible to compare 
the mean difference for the situation of high dimension 
with a possible small total sample size. This kind of 
multiple mean comparison cannot be tested by the 
traditional MANOVA approach. There are established 
methods for identifying differentially expressed genes 
from single-cell gene expression datasets, see, for 
example, references [20-22]. Gene expression data 
can be also analyzed by examining differential 
expression of replicated count data, and some R 
packages are available [23]. It will be a big project to 
compare different methods for analysis of different 
types of gene expression data. 

In conclusion, our study highlights the effectiveness 
of combining t-SNE plots with multiple mean 
comparison for analyzing gene expression data. This 
integrated approach may facilitate the discovery of 
biologically meaningful patterns and pro- vides a solid 
statistical foundation for validating these findings. We 
anticipate that our methodology will be beneficial for 
researchers in genomics and other fields where high-
dimensional data analysis is crucial. Future research 
could focus on optimizing parameter selection for the t-
SNE plots and exploring alternative statistical methods 
to further enhance the robustness and applicability of 
our approach. 
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