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Abstract: Survival data is a type of data that measures the time from a defined starting point until the occurrence of a 
particular event, such as time to death from small cell lung cancer after diagnosis, Length of time in remission for 
leukemia patients, Length of stay (i.e., time until discharge) in hospital after surgery. The accelerated failure time (AFT) 
models are popular linear models for analyzing survival data. It provides a linear relationship between the log of the 
failure time and covariates that affect the expected failure time by contracting or expanding the time scale. This paper 
examines the performance of the Rank Set Sampling (RSS) on the AFT models for Progressive Type-II censoring-
survival data. The Ranked Set Sampling (RSS) is a sampling scheme that selects a sample based on a baseline 
auxiliary variable for assessing survival time. Simulation studies show that this approach provides a more robust testing 
procedure, and a more efficient hazard ratio estimate than simple random sampling (SRS). The lung cancer survival data 
are used to demonstrate the method. 

Keywords: Accelerated failure time model, Hazard ratio, Progressive Type-II censoring, Survival analysis. 

INTRODUCTION 

Survival analysis is a statistical tool used to study 
the time until a subject experiences an event of 
interest. This statistical method is widely used in 
various fields, including medicine, social science, 
engineering, and finance. Survival data are time-to-
event data consisting of distinct start and end times. 
Survival data include the time between surgery and 
death, the time between treatment and the appearance 
of another disease (e.g., a tumor), and the time 
between response and recurrence. In real-world 
scenarios, survival data often follows a Weibull 
distribution, commonly used to model the time to failure 
of various systems or components. However, life-
testing experiments are challenging due to the difficulty 
of getting complete information on all failed units. As a 
time-saving measure and to reduce costs, the sampling 
process is truncated according to a predetermined 
censoring scheme.  

Censoring refers to incomplete or partial information 
about the event. It happens when the event does not 
occur or is not observed during the study period. There 
are several reasons why censoring is common in 
survival analyses, such as the study having a fixed 
endpoint, some participants not being followed up, or 
the event not occurring for all participants. A relatively 
effective censoring scheme design can simultaneously 
achieve cost savings and efficient statistical inference. 
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The most conventional censoring schemes are 
Type-I and Type-II censoring. In type I, the experiment 
is terminated at a predetermined time, whereas in type 
II, the experiment is terminated at a predetermined 
number of failures. However, removing active units 
during the experiment is prohibited in both types.  

In some cases, it may be desirable to remove items 
being tested before their predetermined termination 
points, intentionally or unintentionally, to reduce the 
cost of the experiment and the time consumed. An 
example is the study of the weariness of units that must 
be worn entirely or disintegrated at different experiment 
stages during their aging process, which is quite time-
consuming. Another example is the early removal of 
some surviving units in the experiment so they can be 
used in other experiments to minimize the cost of the 
experiment. 

This leads to the practice of Progressively Type II 
censoring, which many researchers consider a 
practical approach to minimizing the cost and the time 
consumed. It incorporates ordinary order statistics (OS) 
and type II censoring, making it highly desirable and 
used in experimental design. 

There have been a vast number of discussions on 
progressive censoring and its applications; interested 
readers may refer to the books by Balakrishnan & 
Aggarwala and Balakrishnan & Cramer [1] for recent 
reviews and discussions of the need for this type of 
censoring.  

Progressive censoring can be conducted as follows. 
Suppose n identical subjects are put through a lifetime 
test, and m failures are observed (n > m). After the first 
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failure, R₁ surviving items are immediately removed, 
leaving (! − 1 − !!) items still in the test. After the 
second failure, R₂ more surviving items are randomly 
selected and removed. The process continues until we 
observe m failures. At this point, all the remaining 
! −! − !! −⋯− !!!! (= !! ) surviving subjects are 
removed from the experiment. We assume that these 
subjects' lifetimes are independent and identically 
distributed. The values of n, m, and the number of 
removals at each stage R₁, {i=1,2, . . . , m} all have 
predetermined values[2]. 

If !! = !! = ⋯ = !!!! =  0, so !!   = ! −!, which 
corresponds to Type-II censoring. If !! = !! = ⋯ =
!! =  0 so, then (m = n) represents the complete data 
set. Check Balakrishnan and Cramer [3] for a 
comprehensive literature review on progressive 
censoring.  

The progressive Type-II censoring scheme has 
several advantages over other types of censoring. One 
of the main advantages is that it can provide more 
information about the distribution of failure times than 
other censoring schemes. It can also reduce the 
number of test units required to obtain a given 
precision level in estimating the distribution 
parameters.  

In survival analysis, selecting an efficient sampling 
method is crucial for obtaining estimates while 
minimizing resource use. One promising approach that 
enhances efficiency compared to simple random 
sampling (SRS) is ranked set sampling (RSS). This 
method involves ranking the units within a population 
using an auxiliary variable and selecting the sample for 
analysis.  

Rank Set Sampling (RSS) is a data collection 
technique that preserves the fundamental properties of 
Simple Random Samples (SRS) while leveraging 
additional information available in the population[3]. By 
creating an "artificially stratified" sample with enhanced 
structure, RSS ensures a more structured selection 
process, leading to measurements that better represent 
the full range of values within the population.  

Stepwise Process for RSS 

1. Define k (set size) and m (number of cycles). 

2. Identify an auxiliary variable (e.g., expert 
judgment, visual assessment, or another 
measurable characteristic) for ranking. 

3. Draw a Simple Random Sample (SRS) of size k 
from the population. 

4. Rank the k units based on the auxiliary variable 
(without measurement). 

5. Select and Measure One Unit: 

v Choose the smallest ranked unit from the 
first sample → Denote as X[1]. 

v The remaining k - 1 unmeasured units are 
discarded. 

6. Repeat for Subsequent Samples: 

v Draw another random sample of k units. 

v Rank the units again. 

v Select the second smallest unit as the next 
measured observation X[2]. 

7. Continue this process until the largest unit from 
the k-th sample is selected, denoted as X[k]. 

8. One RSS cycle results in k measured 
observations: X[1], X[2], …, X[k]. 

Repeat Steps 3-8 for m independent cycles to 
achieve the desired total sample size ! = !". The final 
Ranked Set Sample consists of n measured units, 
ensuring an evenly distributed selection across rank 
positions, capturing a broader and more structured 
representation of the population compared to Simple 
Random Sampling (SRS). 

While RSS is effective in increasing the 
representativeness of a sample, there has been no 
research on how the Weibull survival model behaves 
under Progressive Type-II censoring with RSS. This 
study aims to fill this gap by giving a complete 
framework for simulating progressive Type-II censored 
survival times with different censoring schemes and 
rates using a Ranked Set Sampling scheme. 

2. PRELIMINARIES 

Let T be a random variable representing the failure 
time of an event. Three key functions typically 
characterize the distribution of T:  

1. Survival Function S(t): Represents the 
probability that the event has not yet occurred 
by time t. 

2. Hazard Rate Function h(t): The risk function 
describes the instantaneous rate at which the 
event occurs, given that it has not happened 
before time t.  

3. Probability Density Function (PDF) f(t) or 
Probability Mass Function (PMF) for discrete 
cases: Represents the likelihood of the event 
occurring at a specific time t.  

In survival analysis, censoring occurs when the 
exact time of the event is not fully observed. We restrict 
to the setting of Progressive Type-II Censoring (PTII), 
which is a scheme where some of the units are  
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removed from the observation while they have not yet 
experienced the event (often referred to as failure or 
death), allowing for better usage of an experimental 
study, while maintaining statistical reliability. 

Under the PTII censoring for life-testing, suppose 
that !!:!:! < !!:!:! <. . .< !!:!:! are the lifetimes of the 
completely observed unit to fail and ! =  (!!,!!, . . . ,!!) 
represent the number of units withdrawn from the 
experiment at these failure times. If the failure times 
are from an absolute continuous population with 
cumulative distribution function F(t) and probability 
density function f(t), the joint probability density function 
for the progressive censored times !!:!:! < !!:!:! <
. . .< !!:!:! is given by: 

!!!:!::!., …, !!:!:! !!. . . !!,… , !! = ! !!
!!! !! [1 −

! !! ]!! ,        −∞ < !! <. . . !! < ∞ 

!(!) = ! !!
!!! !! !(!!)!!          (1) 

where 

! = ! ! − 1 − !! ! − 2 − !! − !! … (! − !! + 1!
!!! ) 

and ! is the set of parameters [4]. 

2.1. Accelerated Failure Time Models (AFT) 

The Accelerated Failure Time (AFT) model is an 
approach in survival analysis that examines the 
relationship between survival time and explanatory 
variables. In this model, the logarithm of survival time 
serves as the response variable, capturing how 
covariates influence the time until an event occurs. The 
model also includes an error term, which is assumed to 
follow a specific probability distribution. The key 
assumption in the AFT model is that covariates affect 
survival time in a multiplicative (proportional) manner, 
meaning that changes in predictor variables either 
accelerate or decelerate the time to failure. 

Alternatively, the AFT model can be expressed as a 
linear relationship between the logarithm of survival 
time and an error term, where the error term follows a 
specific distribution, such as exponential, Weibull, log-
normal, or log-logistic. This formulation allows for 
flexibility in modeling different types of survival data 
and is particularly useful when proportional hazard 
assumptions are unsuitable. 

The general log-linear representation of the AFT 
model for the i-th individual, according to Liu [2,5] and 
Samawi et al. [5], is given as 

!"#!! = !! + !!!!! +⋯+ !!!!" + !!!,   ! = 1,2, . . . ,!   (2) 

!!(!) = ! !! ≥ !!  

!!(!) = ! !"#!! ≥ !"#!!            (3) 

!!(!) = ! !! ≥
!"#!!!!!!!!

!!
!

,  0 < !! < ∞   

where !! = (!!!,… , !!")′, represents the vector of the 
observed covariates for the i-th individual, and 
! = (!!,!!,… ,!!) denote the coefficients of the 
regression coefficient.  

The hazard function for !! at time t is given by: 

ℎ! !|!! ,! = !
!!!
ℎ!

!"#!!!!!!!!
!!

!
, ! = 1,2, . . .!       (4) 

Here ℎ!(!) is the baseline hazard function at 
survival time t. The effect of the covariates 
{!!,!!, . . . ,!!}on the hazard rate is assumed to have a 
multiplicative effect. Consequently, the predicted 
hazard function, given the covariate values 

{!!!, !!!, . . . , !!"}, is denoted as  ℎ
∧
{!!!, !!!, . . . , !!"} 

In this study, we examine the performance of the 
AFT model under Progressive Type-II censoring. 

2.2. Weibull AFT Regression Model 

The Weibull distribution is commonly used to model 
the lifetimes or failure times of specific devices, 
systems, or biological entities. This distribution is 
practical because of its flexible shape parameters that 
allow it to model different failure behaviors, including 
increasing failure rates that account for fatigue failures 
over time. Weibull plotting is a graphical method that 
helps verify the Weibull assumption and estimate the 
two key distribution parameters. This method is useful 
for analyzing complete failure time data, and Type-II 
censored data, where only the lowest or failure times 
from a sample of size n are observed.  

In Type-II censoring, n items are simultaneously put 
on a common test until the first r failures occur 
2 ≤ ! ≤ !. The requirement ! ≥ 2 is needed to ensure 
sufficient spread in the failure time data, allowing for a 
meaningful Weibull probability plot. If all n items are 
observed until failure ! = !, the dataset is considered 
complete rather than censored.  

The two-parameter Weibull distribution provides a 
reasonable model for describing the variability in the 
failure time data. If T represents the generic failure 
time, then the Weibull distribution function of T is given 
by 

!! ! = ! ! ≤ ! = 1 − !!
!
!
!

,    !"# ! ≥ 0       (5) 

The parameter λ is called the scale parameter or 
characteristic life, while δ is the shape parameter.  

The Weibull distribution function (W (λ, δ)) follows 
an extreme value distribution when !"#(!(!)) is 
expressed as a function of the parameters. Let's 
assume T is distributed as W (λ, δ), where λ is the 
scale parameter, and δ is the shape parameter. 
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According to Samawi et al. [5], the hazard function is 
given by 

ℎ! !|!! ,! = (!∗)!!!
!"#!!!!!

!!
!∗ ,   ! = 1,2, . . . ,!        (6) 

where !∗ = !
!
 and ! is the regression coefficient vector. 

The survival function of T is 

!! ! = ! −!
!"#!!!!!

!!
!∗ ,   −∞ < !"# !! < ∞        (7) 

and the pdf  

! !! = (!∗)!!!"# !"#!!!!!
!!

!∗
− !

!"#!!!!!
!!

!∗ , −∞ <

 !"#!! < ∞           (8) 

base on  

!!!:!:!., …, !!:!:! !!. . . !!,… , !! = ! !
!

!!!

!! [1 − ! !! ]!! 

!(!) = ! !!
!!! !! !(!!)!!  . 

The likelihood function based on progressive type II 
can be written as 

! ! = !"#[ ! ! ] ∝ (− !"# !∗) + !"# !!!!!
!!

!∗
−!

!!!

(!! + 1) !"#
!"# !!!!!

!!
!∗

  `        (9) 

2.3. Maximum Likelihood Estimates of the 
Parameters 

The Maximum Likelihood Estimate (MLE) of the jth 
covariate parameter can be obtained by solving  

!" !
!!!

=
!!"
!∗

1 − !! + 1 !
!"#!!!!!

!!
!∗!

!!! = 0     (10) 

to derive the !
∧

!
′  and the Fisher information matrix 

can be obtained by using the partial second derivative 

−! !!! !
!!!!!!! !!! × !!!

= !
!!"!!!!!

!∗
!! +!

!!!

1 !
!"#!!!!!

!!
!∗          (11) 

3. STRUCTURE OF A RANKED SET SAMPLE 

In statistical sampling, efficiency is crucial to 
obtaining precise estimates while minimizing costs. 
While Simple Random Sampling (SRS) remains a 

widely used method, it does not always yield the most 
representative sample, especially when additional 
information about the population is available. Ranked 
Set Sampling (RSS) offers an improved alternative by 
incorporating a ranking mechanism before selection, 
enhancing the sample's representativeness and 
reducing estimation errors. 

To better understand the advantages of RSS, we 
compare it with SRS of the same size by looking at a 
single cycle with perfect ranking and set size k. Here, 
the ranked set sample observations are also the 
respective order statistics. Let X1, …, Xk denote an 
SRS of size k from a continuous population with 
probability density function (p.d.f.) !(!) and cumulative 
distribution function (c.d.f.) !(!) [6]. Let !!∗,… ,!!∗ be an 
RSS of size k obtained from k independent random 
samples of k units each. 

In a Simple Random Sample (SRS), the k-selected 
observations are independent, and each of them 
represents a typical value from the population. 
However, there is no additional structure imposed on 
their relationship to one another. Letting !(!) ≤   !(!) ≤
⋯ ≤ !(!) be the order statistics associated with these 
SRS observations. The joint probability distribution 
function (p.d.f.) is given by  

ℎ!"!(! ! ,… , ! ! ) =
!! !(!

!!! ! ! )!{!!!! ! !! ! !⋯!! ! !!}(! ! ,… , ! ! )     (12) 

However, in Ranked Set Sampling (RSS), additional 
information and structure are incorporated by the 
ranking process before sample selection. Unlike in 
Simple Random Sampling (SRS), where the order 
statistics are dependent, the k-ranked observations in 
RSS, denoted as!!∗,… ,!!∗  are independent variables, 
each providing information about a different aspect of 
the population. The joint p.d.f is given by  

ℎ!""(! !
∗ ,… , ! !

∗ ) = !!(!
!!! ! !

∗ )       (13) 

where 

!! ! !
∗ = !!

!!! ! !!! !
! ! !

∗ !!!
1 − ! ! !

∗ !!!
!(! !

∗ )
           (14) 

is the p.d.f. for the i-th order statistic for an SRS of size 
k from the population with p.d.f. f(x) and c.d.f. F(x). This 
additional structure introduced by the judgment-based 
ranking and the independence of the resulting order 
statistics makes RSS-based estimation procedures 
more efficient than those based on SRS, even when 
the number of measured observations is the same. 

4. SIMULATION STUDIES 

In this section, we conduct a series of simulation 
experiments to evaluate the performance of the 
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Accelerate Failure Time (AFT) model under 
progressive type II censoring, comparing Rank Set 
sampling (RSS) when the available ranked auxiliary 
covariate is positively associated with our variable of 
interest with Simple Random Sampling (SRS). For the 
simulation, the primary objective is to assess the 
efficiency of RSS in parameter estimation by analyzing 
its bias, mean squared error (MSE), confidence interval 
coverage, and statistical power.  

4.1. Simulation Setup 

We investigate the efficiency of the AFT model 
under different sampling and censoring schemes, and 
we generate progressively Type-II censored survival 
data from a Weibull distribution. The Weibull AFT 
model generates a large replicate of progressive Type-
II censoring samples. We considered  ! = 1, and the 
covariates  !! at 0, 0.05, and 0.1. We study the 
performance of testing the hypothesis of no factor 
effect after controlling the auxiliary covariate. The 
process was repeated 1000 times. 

In our simulations, we evaluated the performance of 
the model by calculating the Bias, MSE, test power 
!!:!! = 0 !". !!: !! ≠ 0 , and 95% confidence interval 
coverage. To assess the effect of censoring intensity, 
we considered a n = 300 to examine nine different 
failure rates, ranging from 60% to 96.7%. 

The failure rates were defined as: 

!
!
×100% =

{60,  66.7,  73.3,  76.7,  80,  83.3,  86.7,  93.3,  96.7}. 

Where the number of observed failures (!) 
corresponds to m = {180, 200, 220, 230, 240, 250, 260, 
280, 290}, these failure rates allow us to analyze the 
impact of varying censoring levels on some of the 
efficiency of Rank Set Sampling (RSS) compared to 
Simple Random Samling (SRS). 

4.2. Censoring Scheme Considered 

We examine three different Progressive Type -II 
censoring schemes to examine how RSS performs 
under various conditions:  

1. Left Censoring: The first (n - m) subjects are 
removed after the first failure. 

2. Right Censoring: The last (n - m) subjects are 
removed after the mth failure. 

3. Uniform Censoring: Censored subjects are 
removed evenly across all failure events. 

Table 1 summarizes the censoring percentages 
used in the simulation. 

4.3. Simulation Results 

Due to space limitations, we presented only a 
subset of the simulation results. Table 2 illustrates the 
statistical power of testing the hypothesis: 

!!: !! = 0 !". !!: !! ≠ 0 

when controlling for the ranked auxiliary covariate. The 
Ranked Set Sampling (RSS) results yield a more 
powerful test than Simple Random Sampling (SRS). 
Furthermore, we observe that the power of the test 
increases as the set size m grows, demonstrating the 
efficiency of RSS in detecting true effects. 

Similarly, Table 3 presents a comparison of Mean 
Squared Errors (MSEs) and confidence interval widths 
for hazard ratio estimates. The findings confirm that 
RSS consistently produces smaller MSE values and 
narrower confidence intervals than SRS, highlighting its 
superiority in estimation accuracy. 

We used the Ranked Set Sampling (RSS) method 
to estimate conditional hazard ratios from simulated 
data and plotted the Root Mean Squared Error (RMSE) 
and Bias in Figure 1 and Figure 2, respectively. In 

Table 1: Censoring Schemes and Percentages 

% of Censored Data (n, m) Censoring Left Censoring Right Censoring Uniformly 

40% (300, 180) (120, 0, . . . , 0) (0, 0, . . . , 120) (0,1,1,0,…,0,1,1) 

33.3% (300, 200) (100, 0, . . . , 0) (0, 0, . . . , 100) (1,0,1,0,…,1,0) 

26.7% (300, 220) (80, 0, . . . , 0) (0, 0, . . . , 80) (0,1,1,0,…,0,1,1) 

23.3% (300, 230) (70, 0, . . . , 0) (0, 0, . . . , 70) (7,0*22,…,7,0*22) 

20% (300, 240) (60, 0, . . . , 0) (0, 0, . . . , 60) (0,1,1,0,…,0,1,1) 

16.7% (300, 250) (50, 0, . . . , 0) (0, 0, . . . , 50) (1,0*4,…,1,0*4) 

13.3% (300, 260) (40, 0, . . . , 0) (0, 0, . . . , 40) (0,1,1,0,…,0,1,1) 

6.7% (300, 280) (20, 0, . . . , 0) (0, 0, . . . , 20) (1,0*13,…,1,0*13) 

3.3% (300, 290) (10, 0, . . . , 0) (0, 0, . . . , 10) (0,1,1,0,…,0,1,1) 



Rank Set Sampling for Progressive Type-II Censoring International Journal of Statistics in Medical Research, 2025, Vol. 14      91 

Table 2: Estimating the Power of Testing HR = 1 when ! = 0.05 

β₁ m 
Left Right Uniform 

SRS RSS SRS RSS SRS RSS 

0 180 0.055 0.0195 0.104 0.068 0.062 0.0265 

200 0.0565 0.0155 0.104 0.0405 0.065 0.014 

220 0.0555 0.016 0.0955 0.0415 0.0685 0.0185 

230 0.0555 0.0145 0.0875 0.0355 0.056 0.0125 

240 0.056 0.009 0.0925 0.0365 0.0625 0.014 

250 0.057 0.013 0.0905 0.031 0.0615 0.013 

260 0.06 0.0085 0.092 0.024 0.0675 0.011 

280 0.06 0.0115 0.074 0.0185 0.06 0.0075 

290 0.0535 0.0095 0.068 0.0155 0.054 0.0105 

0.05 180 0.2495 0.172 0.5885 0.509 0.4135 0.3095 

200 0.283 0.2155 0.5755 0.531 0.4235 0.347 

220 0.293 0.2295 0.5625 0.511 0.4245 0.3585 

230 0.2975 0.254 0.5465 0.504 0.381 0.319 

240 0.3345 0.216 0.5355 0.439 0.406 0.2705 

250 0.333 0.2715 0.5135 0.4675 0.3985 0.336 

260 0.361 0.283 0.504 0.4415 0.4055 0.3255 

280 0.3765 0.2845 0.472 0.3915 0.398 0.335 

290 0.3965 0.3175 0.444 0.37 0.404 0.3205 

0.1 180 0.7485 0.7435 0.978 0.9835 0.9325 0.943 

200 0.794 0.837 0.9765 0.992 0.9295 0.964 

220 0.822 0.87 0.9765 0.9875 0.931 0.9635 

230 0.8345 0.8915 0.972 0.988 0.9055 0.9465 

240 0.855 0.8835 0.9675 0.984 0.9265 0.9525 

250 0.8655 0.923 0.961 0.99 0.924 0.9585 

260 0.886 0.933 0.955 0.987 0.9275 0.9595 

280 0.907 0.941 0.955 0.9815 0.921 0.957 

290 0.9175 0.964 0.943 0.9785 0.924 0.967 

 

Table 3: Estimating a 95% Confidence Interval of the Hazard Ratio (HR)  

β₁ m 
Left Right Uniform 

SRS RSS SRS RSS SRS RSS 

0 180 0.945 0.9805 0.896 0.932 0.938 0.9735 

200 0.9435 0.9845 0.896 0.9595 0.935 0.986 

220 0.9445 0.984 0.9045 0.9585 0.9315 0.9815 

230 0.9445 0.9855 0.9125 0.9645 0.944 0.9875 

240 0.944 0.991 0.9075 0.9635 0.9375 0.986 

250 0.943 0.987 0.9095 0.969 0.9385 0.987 

260 0.94 0.9915 0.908 0.976 0.9325 0.989 

280 0.94 0.9885 0.926 0.9815 0.94 0.9925 

290 0.9465 0.9905 0.932 0.9845 0.946 0.9895 
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(Table 3). Continued. 

β₁ m 
Left Right Uniform 

SRS RSS SRS RSS SRS RSS 

0.05 180 0.945 0.9835 0.896 0.937 0.938 0.973 

200 0.9435 0.9875 0.896 0.953 0.935 0.9785 

220 0.9445 0.983 0.9045 0.9625 0.9315 0.9835 

230 0.9445 0.991 0.9125 0.9635 0.944 0.9815 

240 0.944 0.988 0.9075 0.963 0.9375 0.9825 

250 0.943 0.987 0.9095 0.975 0.9385 0.9865 

260 0.94 0.989 0.908 0.9785 0.9325 0.988 

280 0.94 0.9891 0.926 0.9825 0.94 0.986 

290 0.9465 0.9905 0.932 0.99 0.946 0.992 

0.1 180 0.945 0.9825 0.896 0.9355 0.938 0.976 

200 0.9435 0.99 0.896 0.9525 0.935 0.9815 

220 0.9445 0.9875 0.9045 0.955 0.9315 0.9785 

230 0.9445 0.9845 0.9125 0.9605 0.944 0.98 

240 0.944 0.9855 0.9075 0.969 0.9375 0.9855 

250 0.943 0.9905 0.9095 0.978 0.9385 0.987 

260 0.94 0.991 0.908 0.9825 0.932 0.9815 

280 0.94 0.985 0.926 0.9845 0.94 0.989 

290 0.9465 0.9925 0.932 0.9865 0.946 0.9935 

 

Figure 1, it is evident that the Mean Squared Error 
(MSE) values for RSS are consistently lower compared 
to those obtained using Simple Random Sampling 
(SRS). Additionally, MSE values decrease as the failure 
rate increases, indicating improved estimation accuracy 
with more observed failures. When data are simulated 
from the Weibull Accelerated Failure Time (AFT) 
model, we observe that right censoring outperforms 
other censoring schemes based on RMSE values, 
producing the most efficient parameter estimates.  

The coverage probabilities are summarized in Table 
3. Notably, left censoring performs competitively across 
all censoring schemes, achieving coverage 
probabilities that are consistently close to the desired 
0.95 level, even when the failure rate is as low as 60%. 

From Table 2, we analyze the statistical power of 
the test as !/! increases for both sampling methods. 
While SRS exhibits higher power than RSS when 
!! = 0 and 0.05, the situation reverses when !! = 1. In 
this case, RSS outperforms SRS, achieving test power 
greater than 0.9 for both methods. These findings 
confirm that RSS provides more efficient parameter 
estimation than SRS, particularly when dealing with 
higher effect sizes and increasing failure rates. 

Figures 1a, 1b, and 1c illustrate the graphical 
representation of the Room Mean Square Error 
(RMSE) estimates of the Hazard Ratio (HR) under 

progressive type-II censoring from the Weibull AFT 
model. These figures are based on a sample of n = 300 
with varying values of m and β!. 

Figures 2a, 2b, and 2c present the bias plots for the 
Hazard Ratio (HR) estimates under progressive Type-II 
censoring from the Weibull Accelerated Failure Time 
(AFT) model. These plots are based on a sample size 
of n = 300, with varying values of m and β!. 

5. ILLUSTRATION BASED ON ADVANCED LUNG 
CANCER DATA FROM NORTH CENTRAL CANCER 
TREATMENT GROUP 

To demonstrate the effectiveness of our proposed 
method, we applied it to real-world survival data from 
the North Central Cancer Treatment Group (NCCTG). 
This data set consists of patients diagnosed with 
advanced lung cancer, including a performance score 
rating. Our goal is to obtain precise survival time 
estimates and better understand the relationship 
between survival time and patient characteristics.  

5.1. Data Description and Preprocessing 

The dataset contains 228 individuals (138 men and 
90 women) aged 35 to 82 years, with recorded survival 
times and associated covariates. The primary variables 
included in the analysis are: 
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Figure 1a: RMSE plot against m (events) when beta = 0 with Different Sampling Schemes. 

b: RMSE plot against m when beta = 0.05 with Different Sampling Schemes. 

c: RMSE plot against m (events) when beta = 0.1 with Different Sampling Schemes. 

• Age: Patient's age in years 

• Sex: Male or Female 

• Survival time: Time (in days) from diagnosis 
to death or censoring 

• Censoring status: Indicates whether 
survival time is observed (event) or 
censored. 

The dataset is considered the population, and we 
drew a sample of 150 patients using Ranked Set 
Sampling (RSS) and Simple Random Sampling (SRS). 
The RSS selection was based on ranking individuals by 
age. Among the 150 sampled patients, 100 cases were 
observed as failures, while 50 were right-censored. 

The dataset consists of patients diagnosed with 
advanced lung cancer and includes key characteristics 
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such as age, gender, survival time, and censoring 
status. The mean age of patients at diagnosis is 63.4 
years, with a standard deviation of 9.2 years. 
Regarding gender distribution, 138 patients (60.5%) 
are male, while 90 patients (39.5%) are female. The 
median survival time from diagnosis to either death or 
censoring is 270 days. Additionally, 33.3% (50 cases) 
of the dataset are right-censored, indicating that 
survival times for these patients were not fully observed 
within the study period. 

5.2. Model Selection and Weibull Distribution 
Validation 

Before applying the Accelerated Failure Time (AFT) 
model, we tested whether the data follows a Weibull 
distribution, which is widely used in survival analysis. 

5.2.1. Weibull Plot for Model Validation 

To assess the Weibull fit, we utilized Weibull 
probability plotting, a graphical method to determine 

 
a 

 
b 

 
c 

Figure 2a: Bias Plot for Beta = 0 with Different Sampling Schemes. 

b: Bias Plot for Beta = 0.05 with Different Sampling Schemes. 

c: Bias Plot for Beta = 0.1 with Different Sampling Schemes. 
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whether survival times follow a two-parameter Weibull 
distribution. The empirical cumulative distribution 
function ! is estimated using: 

! = ! !!.!
!!!.!

         (15) 

where ! is the rank of the data point, and n being the 
sample size. 

For a complete samples, the Weibull plot consists of 
a Q-Q plot, where 

! = !"#[− !"# 1 − ! ! ] 

is plotted against !"#(!(!)) on the x-axis. A linear 
pattern in this plot indicates a good Weibull model fit. 

For Type II censored samples, we only plot the first 
r observed failure times and exclude censored values 
while accounting for their presence in the total sample 
size. 

Figure 3. contains the Weibull plot (Q-Q plot) and 
some other plots for the data set to check which model 
best fits the data set. 

5.2.2. Model Selection Using Information Criteria 

To quantitatively confirm the best survival model, we 
computed the Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) for different 
survival distributions. 

Table 4: Comparison of Model Fits using AIC and BIC 

Model AIC BIC 

Weibull 2311.702 2318.561 

Log-Logistic 2325.861 2332.720 

Log-normal 2342.538 2349.397 

Exponential 2326.676 2330.106 

 

The Weibull model has the lowest AIC and BIC, 
confirming that it provides the best fit for the survival 
data. 

5.3. Applying the AFT Weibull Model: RSS vs. SRS 

After confirming the Weibull model, we applied the 
AFT model under Progressive Type-II censoring, 
comparing results for both Ranked Set Sampling (RSS) 
and Simple Random Sampling (SRS). 

5.3.1. Model Fit Statistics for RSS and SRS 

5.3.1.1. Maximum Likelihood Parameter Estimates 

The Ranked Set Sampling (RSS) method provides 
more precise estimates of survival time compared to 
Simple Random Sampling (SRS). Additionally, RSS 
demonstrates a better model fit, as indicated by its 
lower AIC and BIC values, and successfully identifies 

 
Figure 3: Diagnostics Fit for NCCTG Data. 
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age as a significant predictor of survival, whereas SRS 
fails to establish this relationship. These findings 
highlight the clinical utility of RSS, underscoring its 
potential to enhance efficiency and accuracy in survival 
analysis, making it a valuable tool in medical research 
and decision-making. 

6. SENSITIVITY ANALYSIS 

In this section, we perform a robust sensitivity 
analysis to assess the impact of varying sample sizes 
and censoring rates on the performance of two 
sampling techniques. The study employs three distinct 
sample sizes (100, 150, and 200) taken from the 
overall population of size 228 and three levels of 
censoring (20%, 40%, and 60%). Two sampling 
strategies are considered: 

1. Simple Random Sampling (SRS) – A 
conventional approach where observations are 
randomly selected without ranking. 

2. Ranked Set Sampling (RSS) – A method in which 
samples are pre-ranked based on an auxiliary 
variable (age) before selection. 

To account for missing data, a proportion of 
observations (20%, 40%, and 60%) were randomly 
censored. The survival time was modeled as a function 
of age and sex using a Weibull Accelerated Failure 
Time (AFT) model. The performance of each sampling 
strategy was evaluated by computing MSE, Bias, AIC, 
and BIC across all experimental conditions. 

6.1. Performance Comparison of RSS and SRS 

A summary of the sensitivity analysis results is 
presented in Table 8. The findings reveal that RSS 
consistently has lower MSE compared to SRS, 
indicating superior predictive accuracy. However, MSE 
increases with higher censoring rates, demonstrating 
the adverse impact of missing data on prediction 
reliability. Additionally, increasing the sample size 
reduces MSE, reinforcing the importance of adequate 
data collection for reliable estimation. 

Missing data contributes to an increase in bias as 
censoring levels increase. While RSS displays slightly 
higher bias than SRS for smaller sample sizes, SRS 
exhibits significant deterioration in bias when censoring 
is more than 60%, highlighting its instability. 

Table 5: Model Fit Statistics - RSS vs. SRS 

Methods -2Log Likelihood AIC AICC BIC 

RSS 1397.839 1405.839 1406.114 1417.881 

SRS 1410.463 1418.463 1418.739 1430.506 

 
Table 6: Estimated Parameters for the AFT Weibull Model (RSS) 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter df. Estimate Standard Error 95% Confidence Limits Chi-Square p-Value 

Intercept 1 4.9931 0.5198 3.9743 6.0118 92.27 <.0001 

age 1 0.0165 0.0083 0.0002 0.0327 3.92 0.0477 

sex 1 0.1660 0.1255 -0.0799 0.4119 1.75 0.1858 

Scale 1 0.6056 0.0452 0.5231 0.7010     

 

Table 7: Estimated Parameters for the AFT Weibull Model (SRS) 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter df. Estimate Standard Error 95% Confidence Limits Chi-Square p-Value 

Intercept 1 6.2987 0.5662 5.1889 7.4085 123.74 <.0001 

age 1 -0.0067 0.0086 -0.0236 0.0102 0.60 0.4376 

sex 1 0.1549 0.1515 -0.1421 0.4519 1.04 0.3067 

Scale parameter 1 0.7247 0.0574 0.6205 0.8463     
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AIC and BIC values consistently favor RSS across 
all sample sizes and censoring rates. Notably, SRS 
shows a substantial increase in AIC and BIC at the 
60% censoring rate, further confirming its instability in 
datasets with high censoring. 

The findings from this sensitivity analysis provide 
evidence that Ranked Set Sampling (RSS) consistently 
outperforms Simple Random Sampling (SRS) in 
survival analysis. RSS demonstrates superior 
predictive accuracy, evidenced by lower MSE values 
across all sample sizes and censoring rates. The 
method also exhibits more stable performance in the 
presence of censoring, as indicated by lower AIC and 
BIC values. Although bias increases with censoring, 
RSS remains more reliable, particularly at higher 
sample sizes. 

7. DISCUSSION 

The results demonstrate that the Akaike Information 
Criterion (AIC) and Bayesian Information Criterion 
(BIC) values for the Ranked Set Sampling (RSS) 
method in the AFT Weibull model with Progressive 
Type-II (PII) censoring are lower than those obtained 
using Simple Random Sampling (SRS). This suggests 
that RSS provides a better model fit, making it a more 
efficient sampling strategy for estimating survival times. 

Moreover, the analysis presented in Table 5 
highlights a significant relationship between age and 
survival time when using RSS, whereas Table 6 
indicates that in the SRS model, the intercept remains 
significant, but the effect of age is not statistically 
significant. This suggests that RSS offers a more 
precise estimation of the impact of age on survival 
compared to SRS. 

These findings emphasize the advantages of 
Ranked Set Sampling (RSS) over Simple Random 
Sampling (SRS) in survival analysis. The improved 
efficiency of RSS allows for a more accurate estimation 
of covariate effects, particularly in cases where survival 
data is subject to censoring. Consequently, RSS 
proves to be a valuable alternative for enhancing 
parameter estimation in survival models, ultimately 
leading to better-informed clinical decisions. 

8. PRACTICAL IMPLICATIONS AND LIMITATIONS 

Ranked Set Sampling is not just a theoretical 
improvement over Simple Random Sampling; it has 
practical applications for real-world survival analysis 
and clinical research. One key advantage of RSS is its 
ability to optimize data collection in clinical trials when 
resources are limited. By ranking patients based on 

Table 8: Sensitivity Analysis of RSS and SRS 

Method Sample Size Censoring Rate Mean MSE Mean Bias Mean AIC Mean BIC Count 

RSS 100 0.2 794.17 667.39 341.25 351.67 1000 

RSS 100 0.4 7188.65 1516.12 251.89 262.31 1000 

RSS 100 0.6 29096.81 6588.27 195.31 205.73 1000 

RSS 150 0.2 537.19 611.90 545.89 557.93 1000 

RSS 150 0.4 2278.42 1084.27 446.10 458.15 1000 

RSS 150 0.6 50697.40 3597.77 307.02 319.06 1000 

RSS 200 0.2 421.80 585.79 660.86 674.05 1000 

RSS 200 0.4 1103.79 889.61 514.32 527.51 1000 

RSS 200 0.6 15332.93 2571.48 313.34 326.54 1000 

SRS 100 0.2 1342.78 204.97 41.65 42.88 1000 

SRS 100 0.4 8772.95 1339.19 272.13 280.20 1000 

SRS 100 0.6 44064.34 6726.42 1366.87 1407.39 1000 

SRS 150 0.2 2677.43 408.71 83.05 85.51 1000 

SRS 150 0.4 5630 859.42 174.64 179.81 1000 

SRS 150 0.6 50425.36 7697.43 1564.19 1610.56 1000 

SRS 200 0.2 433.75 66.21 13.45 13.85 1000 

SRS 200 0.4 1110.88 169.45 540.90 554.09 1000 

SRS 200 0.6 15401.33 2351.01 381.66 394.85 1000 
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auxiliary variables such as performance scores or 
baseline health status, researchers can ensure that 
measured observations represent a broad spectrum of 
survival times. This sampling approach reduces the 
need for excessive recruitment. It allows for more 
targeted data collection, particularly useful in trials with 
long follow-up periods or high censoring rates. 

Traditional survival models, such as the Accelerated 
Failure Time (AFT) model and the Cox Proportional 
Hazards model, can be adapted to account for the 
structure of RSS data. The sensitivity analyses 
conducted in this study demonstrate that RSS 
consistently yields lower Mean Squared Errors (MSE) 
and less bias compared to SRS. As a result, RSS can 
be a valuable tool for clinical trial design, post-market 
surveillance, and real-world data studies where efficient 
resource utilization is critical. 

The effectiveness of Ranked Set Sampling (RSS) 
depends heavily on the choice of an appropriate 
auxiliary variable for ranking. If the selected auxiliary 
variable is poorly correlated with the variable of 
interest, the resulting sample may fail to be 
representative or informative, limiting the efficiency of 
the method. Additionally, because RSS involves a 
judgment-based ranking process, it is susceptible to 
subjectivity and potential bias, especially if rankings are 
inconsistent or influenced by individual raters' 
perspectives. Another practical limitation is that RSS 
requires additional information or auxiliary variables for 
ranking, which may not always be readily available. In 
cases where resources are limited, implementing RSS 
may be less feasible compared to simpler sampling 
methods. 

9. CONCLUSION 

Efficient sampling methods are crucial in statistics to 
reduce time and costs while maintaining reliable 
estimations. Progressive censoring is a valuable 
technique that improves estimator efficiency while 
minimizing resource use. In this study, we proposed 
using Ranked Set Sampling (RSS) for Progressive 
Type-II censored survival data to enhance estimation 
accuracy. The method was evaluated under the right, 
left, and uniform censoring schemes. 

After confirming that the dataset follows a Weibull 
distribution, we applied the Accelerated Failure Time 
(AFT) model using maximum likelihood estimation for 
parameter estimation. The results showed that RSS 
consistently outperformed Simple Random Sampling 

(SRS), yielding better parameter estimates across 
different values of and under all censoring schemes. 
Additionally, coverage probabilities increased as the 
failure rate increased, demonstrating the robustness of 
the method. However, the simulation study revealed 
that as the failure rate increased, the test's statistical 
power tended to decrease. The sensitivity analysis 
highlights the limitations of SRS, especially at 60% 
censoring, where it shows a substantial increase in 
both MSE and bias, along with a significant rise in AIC 
and BIC, confirming model instability. These findings 
suggest that RSS should be the preferred sampling 
method in biostatistical survival analysis studies, mainly 
when auxiliary ranking information is available. 

These findings highlight the advantages of using 
RSS in survival analysis, particularly for Progressive 
Type-II censoring scenarios. The method enhances 
estimation accuracy and efficiency, making it a 
promising alternative for future medical and reliability 
studies applications. 
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