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Abstract: Medical imaging, especially cancer and retinal fundus analysis, is often compromised by artifacts and heavy 
noise and artifact, which can hinder accurate diagnosis. Existing low-rank sparse component methods, such as RPCA 
with the conventional nuclear norm, assume uniform singular value weights, which may not hold true due to noise 
variations in images. We recently developed RPCA with the log-weighted nuclear norm, which addresses some of these 
issues but still relies on weight selection, potentially introducing bias. To overcome these limitations, we propose a novel 
method that integrates RPCA with Log-Schatten Norm (LSN) and Adaptive Histogram Equalization (AHE) for medical 
imaging and clinical purposes. The Log-Schatten Norm improves singular value penalization and structure preservation, 
while AHE enhances contrast and reduces noise. The method is formulated as an optimization problem and solved using 
the Alternating Direction Method for Multipliers (ADMM). Experimental results on publicly available retinal and cancer 
image datasets demonstrate that our method outperforms existing methods in enhancing overall image quality, making it 
a promising tool for medical imaging applications. 
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1. INTRODUCTION 

Medical image processing is crucial for detecting 
various anomalies, helping medical experts use to 
conduct successful clinical experiments, improving 
cancer detection, and enhancing the quality of retinal 
fundus images [1]. Developing a new method to 
enhance the true underlying structure medical imaging 
is essential for early screening and treatment planning. 
One of the most challenging issues is analyzing high-
dimensional medical image data that is impaired by 
artifacts and noise [2-4]. This phenomenon arises in 
various scenarios, such as medical image 
enhancement, surveillance, and healthcare [5]. 
Therefore, it is vital to develop a new method that can 
recover degraded medical images from corrupted ones, 
and is robust against adverse effects like artifacts, 
errors, and noise.  

Several methods have been developed to enhance 
the quality of medical images [6-10], particularly for 
neuroimaging data analysis [11-13]. For example, [14-
18] proposed hybrid methods for retinal image 
enhancement. However, these approaches did not 
specifically address the detailed features of retinal 
images. To tackle these challenges, [19] introduced a 
unified framework method, which combines retinal 
image enhancement with vessel segmentation. Another 
innovative technique by [20] uses a three channel eye 
fundus image as input and outputs the severity  
of diabetic retinopathy, though it fails to provide 
detailed characteristics of the images. Recently, 
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Habte et al. [21] developed a RPCA method that 
improves the quality of retinal fundus images by 
incorporating the log-weighted nuclear norm instead of 
the classical nuclear norm, denoted by L. However, this 
method heavily depends on the weights in singular 
value decomposition. A key limitation of the RPCA 
method is that it is purely global-based for image 
enhancement. Despite its improvements, this method 
lacks detailed retinal image characterization, limiting its 
ability to fully capture the complexity of the data for 
clinical use. Moreover, clinical fundus images often 
face issues such as uneven illumination, blur, and 
artifacts caused by equipment or environmental factors 
[19]. Additionally, [22] proposed sparse and low-rank 
matrix decompositions for image recovery, and novel 
methods [23,24] have been introduced to enhance the 
quality of retinal fundus images. However, their 
performance remains suboptimal, as they fail to 
capture the detailed retinal features and do not 
effectively address noise and degradation in diabetic 
retinal images. Furthermore, [25] proposed a 
multimodal method that uses self-supervised learning 
for multimodal representation to enhance retinal 
imaging. To further improve retinal image quality, we 
recently developed a robust PCA method [26] that 
incorporates contrast-limited adaptive histogram 
equalization (CLAHE). This method demonstrated 
superior image enhancement compared to baseline 
approaches, offering a promising solution for 
enhancement. Additionally, [11] proposed a Robust 
PCA method based on adaptive weighted least squares 
and low-rank matrix factorization (AWLSLR) for image 
reconstruction. Recently, low-rank sparse 
decomposition has been proposed for medical image 
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processing [26,27], though their performance has yet to 
show significant improvement.  

A variety of algorithms have been reported to 
address cancer-related issues in medical images [28-
30]. For example, [31] proposed an advanced machine 
learning technique for prostate cancer imaging, while 
[32] introduced a novel method for time-dependent 
ROC curve analysis in medical research to detect 
cancer in related datasets. However, these approaches 
lack robustness when handling noisy multi-array data. 
Therefore, it is crucial to develop a novel method that 
addresses these challenges and enhances the quality 
of medical images, particularly cancer-related images, 
to improve clinical applications and diagnostic 
accuracy.  

In this paper, we propose a novel method that 
significantly enhances the quality of medical images, 
particularly retinal and cancer images. Developing 
robust image enhancement techniques capable of 
recovering degraded images is crucial, especially when 
faced with challenges such as occlusions and 
variations in illumination. To make the method more 
resilient to artifacts and noise, we introduce a new 
method by integrating RPCA with LSN and AHE. RPCA 
with LSN greatly improves image quality by effectively 
denoising and capturing key features, while AHE 
enhances contrast, especially in degraded images, 
ensuring clearer and more accurate detection. In this 
work, we incorporate LSN into the RPCA framework to 
better recover the true underlying structure, 
overcoming the limitations of the classical nuclear norm 
(which assigns equal weights to singular values) and 
the log-weighted nuclear norm (which is heavily 
dependent on weight selection). Furthermore, existing 
RPCA methods fail to capture the detailed 
characteristics of medical images required for clinical 
applications. To address this limitation and make the 
new method more robust, we integrate AHE into the 
RPCA framework. To the best of our knowledge, this is 
the first method to combine a low-rank sparse 
component technique with LSN and AHE for medical 

image processing within the RPCA framework. Thus, 
this problem is formulated as an optimization problem, 
with parameters solved using ADMM in a round-robin 
manner. The key contributions of this paper based on 
the integration of LSN and AHE within the RPCA 
framework are outlined as follows:  

• In this paper, we propose the Log-Schatten 
norm, which offers a significant advantage over 
existing nuclear and log-weighted nuclear 
norms by better preserving structural details 
and reducing noise in medical images. This 
norm enhances retinal and cancer detection 
images, maintains critical features for early 
disease detection, and improves accuracy in 
identifying malignancies, all while effectively 
handling distortions like poor contrast and 
artifacts.  

• Then, the AHE is integrated within the RPCA 
framework to enhance fine details and improve 
the visibility of key anatomical features.  

• By combining these two novel tools—Log-
Schatten Norm and AHE within the RPCA 
framework, our method achieves superior 
image recovery compared to the state-of-the-art 
methods based on the cancer and retinal image 
databases.  

To facilitate understanding, a comparison between 
the proposed method and the baseline methods is 
summarized in Table 1.  

The remainder of this article is organized as follows: 
Section 2 presents the proposed method, while Section 
3 describes the nature of the data. Section 4 presents 
the simulation results, and finally, Section 5 provides 
the conclusions and discussions.  

2. PROPOSED METHOD  

Consider n medical images, {I0i	
  } ∈ ℜw×h×c,	
  i	
  =	
  1,…, n, 
where w and h denote the width and height of the 

Table 1: Summary Table of the Methods  

Methods  Objective  Constraints  Norm Definition  

RPCA [26, 27] min	
  L,E	
  	
  (∥L∥Llogw,∗	
  +	
  λ∥ ε	
  ∥2,1)	
   M	
  =	
  LCLAHE	
  +	
  ε	
   ∥L∥Lw,∗	
  =	
  Σi	
  log(σi	
  )(L)	
  

AWLS-LR [11] minU,V,S	
  ∥M	
  −	
  UV	
  −	
  ε	
  ∥2F	
  +	
  λ∥W	
  ◦	
  ε	
  ∥2F	
   M	
  =	
  L	
  +	
  E	
   ∥M∥F	
  =	
     !!"
!!

!!!
!
!!! 	
  

Proposed Method minL,E	
  (∥L∥Log−S	
  +	
  λ∥ ε	
  ∥1)	
   M	
  =	
  LAHE	
  +	
  ε	
   ∥L∥∥Log	
  -­S	
  =	
  Σi	
  log	
  (!!
!)(L)	
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images, respectively, and c represents the number of 
channels (e.g., c = 3 for an RGB image). These images 
are distorted due to outliers, noises, and artifacts.  

Each of these retinal images indicates and exhibits 
high correlation with each other. Often, these images  
are corrupted by issues such as image blurring due  
to noises and uneven illuminations. Then, we can  
stack these images into a matrix: M = [vec(I01	
  ) | vec(I02	
  ) 
|…| vec(I0n	
   )] ∈ ℜm×n, where vec(·) denotes the vector 
stacking operator. We can decompose M into a 
summation of a low-rank component and a sparse error 
matrix [33]: M	
  =	
  L	
  +	
  E [34], where L ∈ ℜm×n is denoting 
the enhanced images, and Em×n is the matrix incurred 
by noises and uneven illumination. Classical low-rank 
sparse component methods, such as RPCA [34] with 
an existing nuclear norm, assume uniform singular 
value weights, which may not hold due to the variation 
of the image noise and quality. Additionally, existing 
RPCA methods focus on global enhancement, but miss 
fine details in the retina.  

To begin with, the RPCA [34] is formulated as 
follows:  

min!,!,! ! L * + ! E !  s. t.    M = L + E        (1) 

Where L * is the nuclear norm of !, which is the 
sum of the singular values of the low rank component. 
! ! is the !! norm of !. ! is the regularization 

parameter that control the relative weight of the low-
rank and sparse components. To address these 
drawbacks, we propose a novel method incorporating 
the CLAHE [26]. Since the log-weighted nuclear norm 
depends on weight selection, which may introduce bias 
and require careful tuning, we consider the log-
Schatten norm as a better alternative, offering more 
balanced singular value penalization, improved low-
rank approximation, and greater robustness to noise. 
Ultimately, the RPCA with the Log-Schatten norm for 
the low-rank component is given by:  

min!,!,! ! L Log!! + ! E !  s. t.    M = L + E              (2) 

Where ! !"#!! is the Log-Schatten norm of !, 
which regularizes the low-rank component using a 
logarithmic shrinkage technique, ! and ! are updated 
regularization parameters, optimized to balance the 
low-rank and sparse components after the initial RPCA 
framework. Once the low-rank component ! has been 
obtained from the optimization above, we apply AHE to 
enhance the low-rank component: !!"# = !"#(!) 
where !!"# is the enhanced low-rank component after 
AHE has been applied, AHE enhances contrast, 

making fine details in the retinal image clearer and 
improving the overall visibility of structures in the 
image. For a given matrix !, let !! be its singular values 
(from Singular Value Decomposition, SVD: ! = !"!!, 
the Log-Schatten norm is defined as: 

L !"#!! = !"#( !!
!)(L)!          (3) 

where !! are the singular values of !, ! is the rank of !, 
the function L !"#!! = !"#( !!

!)(!)! , ! controls the 
weight effect of the singular values in defining the 
norm, which also helps to penalize large singular 
values less aggressively than the traditional nuclear 
norm !!! , leading to better low-rank approximations. 
This problem is solved using the ADMM approach 
similar to [27, 35].  

2.1. Parameter Estimation 

To solve problem 2, we used the Lagrangian 
multiplier, and we obtained the following result:  

L(L, E, Z) = ! L Log!! + ! E ! + ⟨Z,M − L − E⟩ +
!
!
M − L − E !

!           (4) 

where ! is the Lagrange multiplier and ! is a penalty 
parameter. To obtain the optimal updated parameter for 
the low-rank component !, we first keep the other 
parameters ! and ! constant. We used the ADMM 
approach [36] to update the parameters sequentially, 
one at a time. 

First, we need to get the optimal updated parameter 
corresponding to the low rank component !, then we 
keep all other parameters as a constant, from which 
the ! is updated by: 

L!!! = arg min! ! L Log!! +
!
!
M − L − E! + Z!/! !

!          (5) 

To solve this problem, let us first denote the term 

X! = M − E! + !!

!
          (6) 

Then, Equation 4 can be rewritten in the following 
form: 

L!!! = arg min! ! L Log!! +
!
!
X! − L !

!          (7) 

Compute the Singular Value Decomposition of !!: 

X! = !Σ!!           (8) 

where in !! = !"!!, !! represents the original matrix 
being decomposed. ! contains the left singular vectors, 
with its columns representing directions in the row 
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space. ! is a diagonal matrix of singular values, which 
indicate the magnitude of each component. !! is the 
transpose of the right singular vectors, with its columns 
representing directions in the column space. Apply the 
log-Schatten thresholding operator similar to the 
[37,38 ] from which we can get: 

Σ = T!!/!(Σ)           (9) 

where the log-Schatten shrinkage function is defined 
as: 

T!(!!(L)) =
!!(!)

!!!/(!!(!)!!)
             (10) 

for each singular value !!, where ! is a small positive 
constant to avoid division by zero. Then, we 
reconstruct !!!! using the modified singular values: 

L!!! = !Σ!!         (11) 

Thus, the final update equation for ! is: 

L!!! = ! !
!!!/(!(!!!))

!!       (12) 

Second to update !, we keep the other variables as 
constant, then ! is updated by  

E!!! = arg min! ! L 1 +
!
!
M − L!!! − E + Z!/! !

!        (13) 

Using the soft-thresholding operator: 

E!!! = S!/!(M − L!!! + Z!/!)       (14) 

where the soft-thresholding operator [39] is defined as: 

S!(!) = sign(!)!"#( |!| − !, 0)       (15) 

Similarly, the Lagrangian multiplier can be updated 
using ! and the regularization parameter !, 
respectively.  

Z!!! = Z! + !(M − L!!! − E!!!)         (16) 

!!!! = ! ⋅ !!         (17) 

where ! is a properly chosen constant and ! is a 
tunable parameter that adjusts the convergence of the 
proposed method. 

3. DATASET 

In this section, we use a publicly available dataset 
to evaluate the performance of the proposed method 
through visualization and numerical simulations based 
on the public availabel datasets. A detailed description 
of the data is provided in Subsection 1.1.  

3.1. Data Description 

In our study, we initially used the EyeQ dataset 
(available at https://github.com/HzFu/EyeQ) to evaluate 
retinal image data analysis. Next, we expanded our 
dataset by incorporating a broader set of images from 
the Kaggle dataset to enhance the diversity and 
generalizability of our model. We further broadened our 
analysis by including the STARE dataset (available at 
https://paperswithcode.com/dataset/stare) and the 
DRIVE dataset (available at https://paperswithcode. 
com/dataset/drive), both of which are widely 
recognized in the field of retinal image analysis and 
provide high-quality annotated images. We also 
included the Breast Cancer Image dataset 
(https://www.kaggle.com/datasets/awsaf49/cbis-ddsm-
breast-cancer-image-dataset) to diversify our data and 
explore the potential of our approach in other medical 
image domains, enabling us to assess the robustness 
of our method across different health-related datasets. 

We conducted extensive simulations based on the 
available public databases. First, we considered the 
Kaggle Database (available at https://www.kaggle. 
com/datasets/mmazizi/neh-retinal-oct-images), which 
includes classifications of retinal images based on the 
severity of diabetes: normal retinal images (without 
diabetes), mild diabetes, and moderate diabetes. 
Specifically, there are 305 retinal fundus images 
representing mild diabetes and 999 retinal fundus 
images representing moderate diabetes. 

The primary purpose of these datasets (retinal and 
cancer) is to develop and evaluate new methods for the 
early detection and diagnosis of breast cancer from 
mammogram images. A detailed summary of the 
characteristics of the retinal images is provided in Table 
2. 

4. SIMULATION RESULTS 

In this section, we present the results achieved by 
the proposed method in comparison to the baseline 
approaches, RPCA [26] and AWLS-LR [11]. The 
experimental findings demonstrate the superior 
performance of our method in terms of noise reduction, 
feature preservation, and overall image quality, 
highlighting its effectiveness over existing techniques. 
The results are presented using two approaches: 
image quality visualization and numerical evaluation 
through Peak Signal-to-Noise Ratio (PSNR), Structural 
Similarity Index Measure (SSIM) and Relative Absolute 
Error (RAE). In these experimental simulations, we 
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used ! = 0.005 and ! = 1.5, at which better results 
were attained. In the following subsection, we first 
present the ablation results, then conduct image 
recovery using the proposed method alongside the 
baseline methods based on the STARE and DRIVE 
dataset, and finally, we apply the method to cancer 
data to verify its effectiveness compared to the 
baseline methods. 

4.1. Ablation Studies 

4.1.1. STARE Dataset 

In this study, we performed an ablation medical 
image data analysis to evaluate the performance of the 
proposed method based on the STARE dataset taken 
from (https://paperswithcode.com/dataset/stare) with 
each image having a size of 700×605 pixels. First, we 
applied RPCA with Log-Schatten Norm alone, followed 
by RPCA with both Log-Schatten Norm and AHE, as 
illustrated in Figure 1. The results demonstrate that the 
combination of both techniques significantly enhances 
the details in retinal fundus images, leading to better 
noise reduction and improved feature preservation 
compared to using Log-Schatten Norm alone. The 
image quality for visualization is more consistent based 
on the statistical measures mainly PSNR and SSIM, as 
shown in Table 3. 

4.1.2. DRIVE Dataset 

Similarly, we also tried to further conduct the 
ablation study based on the DRIVE (available at https:// 
paperswithcode.com/dataset/drive) retinal images with 
each 584×565 pixels, from which the recovered 
images by the combination of the Log-Schatten Norm 
and AHE is more detailed the retinal fundus images as 
compared with the Log-Schatten Norm alone. This 
result is given in Figure 2. This results are more 
consistent based on the statistical measures mainly 
PSNR and SSIM, as shown in Table 3. 

4.1.3. Mild and Moderate Retinal Image Data 
Analysis 

Similarly, we also tried to carry out the ablation 
study based on the mild retinal fundus images with 

each 224×224 pixels, from which the images 
recovered by the combination of LSN and AHE are 
more detailed the retinal fundus images compared to 
LSN alone. This result is given in Figure 3. The AHE is 
more essential in describing the detail characteristics of 
retinal iamges compared to LSN alone.  

Similarly, we also tried to further conduct the 
ablation study based on moderate retinal fundus 
images with each 224×224 pixels, from which the 
images recovered by the combination of LSN and AHE 
are more detailed than the retinal fundus images 
compared to LSN alone. This result is shown in Figure 
4, where the enhanced image is clearer in detailing the 
blood vessels as compared to the RPCA with LSN 
alone 

4.2. Comparison of Methods 

4.2.1. STARE and DRIVE Retinal Image Data 
Analysis 

After conducting the ablation studies, we compared 
the proposed method with the baseline methods RPCA 
[26] and AWLS-LR [11] based on the STARE dataset. 
The results show that the proposed method 
outperforms the baseline methods in recovering retinal 
fundus images as given in Figure 5. This finding is 
consistent with the results presented in Table 4. This 
indicates that the proposed method is more resilient to 
artifacts and better at recovering high-dimensional 
retinal images. 

Similarly, we compared the proposed method with the 
baseline methods RPCA [26] and AWLS-LR [11] based 
on the DRIVE dataset. The results show that the 
proposed method outperforms the baseline methods in 
recovering retinal fundus images, as shown in Figure 6. 
The images recovered by the proposed method 
demonstrate better enhancement of the degraded 
images compared to the baseline methods [11,26]. This 
is due to the incorporation of the LSN along with AHE, 
which makes the new method more resilient to 
artifacts. This finding is consistent with the results 
presented in Table 4. 

Table 2: Classification and Count of Retinal Fundus Images 

Classification  Description  Count  

Without diabetes  Healthy retinal fundus images  1805  

Mild diabetes  Mild retinal diabetic cases  305 

Moderate diabetes  Moderate retinal diabetic cases  999  

Total   3,109 
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Figure 1: Retinal Image Enhancement based on the STARE dataset (a) Degraded; (b) RPCA Log-Schatten Norm; (c) RPCA 
Log-Schatten Norm and AHE. 

 

Table 3: Comparison of PSNR, SSIM, and RAE for STARE and DRIVE Datasets 

Methods 
STARE Data  DRIVE Data  

PSNR  SSIM  RAE  PSNR  SSIM  RAE  

Proposed method  15.89  0.60  0.46  17.18  0.5357  0.3890  

RPCA [26]  17.26  0.69  0.43  18.52  0.5571  0.3651  

AWLS-LR [11]  23.32  0.86  0.16  19.33  0.7779  0.2623  
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Figure 2: Retinal Image Enhancement based on the DRIVE dataset (a) Degraded; (b) RPCA Log-Schatten Norm; (c) RPCA 
Log-Schatten Norm and AHE. 



RPCA with Log-Schatten Norm and Adaptive Histogram Equalization International Journal of Statistics in Medical Research, 2025, Vol. 14      281 

 
Figure 3: Mild Retinal Image Enhancement based on the Kaggle dataset (a) Degraded; (b) RPCA Log-Schatten Norm; (c) RPCA 
Log-Schatten Norm and AHE. 
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Figure 4: Moderate Retinal Image Enhancement based on the Kaggle dataset (a) Degraded; (b) RPCA Log-Schatten Norm; (c) 
RPCA Log-Schatten Norm and AHE. 
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Figure 5: Retinal Image Enhancement based on the STARE dataset (a) Degraded; (b) Proposed Method; (c) RPCA [26] and 
AWLS-LR [11]. 

 

Table 4: PSNR, SSIM and RAE for Cancer Data 

2*Methods 
Malignant  Benign  

PSNR  SSIM  RAE  PSNR  SSIM  RAE  

Proposed method  12.67  0.5829  0.4151  13.90  0.5995  0.3275  

RPCA [26]  13.49  0.6183  0.4045  14.48  0.6192  0.3173  

AWLS-LR [11]  19.21  0.5272  0.1923  18.86  0.4692  0.1631 
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Figure 6: Retinal Image Enhancement based on the DRIVE dataset (a) Degraded; (b) Proposed Method; (c) RPCA [26] and 
AWLS-LR [11].  
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Figure 7: Malignant Cancer Image enhancement based on the Kaggle dataset (a) Degraded; (b) Proposed Method; (c) RPCA 
[26] and AWLS-LR [11].  

4.2.2. Malignant Cancer Image Data Analysis 

The proposed RPCA with LSN demonstrates 
superior performance in enhancing malignant cancer 
images compared to existing methods such as RPCA 
[26] and AWLS-LR [11]. While the degraded image 
suffers from severe noise, low contrast, and structural 
distortions that obscure critical diagnostic features, the 
proposed method effectively suppresses noise while 
preserving fine tumor details. Unlike RPCA [26], which 

over-smooths the image and removes essential tumor 
features, or AWLS-LR [11], which leaves residual noise, 
the LSN adaptively retains significant singular values, 
ensuring better contrast, sharper tumor boundaries, 
and improved morphological structure visibility. This 
leads to more precise differentiation between malignant 
tissues and surrounding regions, ultimately enhancing 
diagnostic accuracy in medical imaging. This result is 
given in Figure 7 and this result is more consistent with 
the numerical simulations given in Table 4. 
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4.2.3. Benign Cancer Image Data Analysis 

The proposed RPCA with Log-Schatten Norm 
significantly enhances benign cancer images, 
outperforming existing methods such as RPCA [26] and 
AWLS-LR [11]. In the degraded image (a), severe 
noise, low contrast, and structural distortions obscure 
critical diagnostic features, making accurate 
identification of benign tumors challenging. The 
proposed method (b) RPCA with Log-Schatten Norm 
effectively suppresses noise while preserving fine 
tumor structures and enhancing local contrast, resulting 
in clearer visualization of benign regions. In contrast, 
(c) RPCA [26] tends to over-smooth the image, leading 
to loss of important diagnostic details, while AWLS-LR 
[11] struggles to fully eliminate residual noise, leaving 

unwanted artifacts that can affect clinical interpretation. 
By adaptively retaining significant singular values, the 
Log-Schatten Norm ensures sharper tumor boundaries, 
improved morphological structure visibility, and 
enhanced contrast, facilitating more precise 
differentiation between benign tumors and surrounding 
healthy tissue. The effectiveness of the proposed 
approach is visually demonstrated in Figure 7, while 
numerical simulations in Table 4 further validate its 
robustness and superior performance. 

5. CONCLUSION AND FUTURE WORK 

The pioneering RPCA method [34] was originally 
developed for image recovery, providing a powerful tool 

 
Figure 8: Benign Cancer Image Enhancement based on the Kaggle dataset (a) Degraded; (b) Proposed Method; (c) RPCA [26] 
and AWLS-LR [11].  



RPCA with Log-Schatten Norm and Adaptive Histogram Equalization International Journal of Statistics in Medical Research, 2025, Vol. 14      287 

for separating low-rank and sparse components in 
images. Since its introduction, various scholars [21,26, 
40,41] have continuously enhanced the method to 
improve its performance. For example, several 
modifications have been proposed [26] to address 
challenges such as noise, outliers, and computational 
efficiency, resulting in more robust and accurate 
techniques for medical image recovery. These 
advancements have significantly broadened the 
applicability of RPCA in fields such as medical imaging, 
video surveillance, and remote sensing, where high-
quality image recovery is essential. 

Despite its potential, however, there is a lack of 
literature connecting RPCA to medical image research, 
presenting an opportunity for further exploration and 
integration of RPCA techniques in medical imaging, 
particularly for early diagnosis and disease detection. 
In this paper, we propose a novel RPCA framework that 
incorporates the LSN and AHE for medical image data 
analysis. The LSN effectively addresses the limitations 
of traditional low-rank regularization techniques, such 
as the nuclear norm and log-weighted nuclear norm, by 
adaptively preserving significant singular values while 
reducing noise and artifacts. This leads to superior low-
rank approximation and enhanced robustness in image 
recovery. Additionally, AHE improves local contrast, 
further enhancing image quality for diagnostic 
applications. 

The entire problem is formulated as an optimization 
task, and the optimization process is efficiently handled 
using ADMM, ensuring computational stability and 
convergence. Experimental results demonstrate that 
the proposed method outperforms state-of-the-art 
techniques in medical image analysis, making it a 
promising tool for improving disease detection, 
including diabetic retinopathy and cancer diagnosis. 

6. ETHICAL CONSIDERATIONS 

This study utilizes publicly available datasets from 
reputable sources, including the DRIVE, STARE, 
Kaggle, and EyeQ databases. These datasets provide 
a valuable foundation for the development and 
evaluation of our methods. We confirm that all data 
used in this research are publicly accessible and do not 
involve any personally identifiable information, ensuring 
compliance with ethical standards. The use of these 
datasets adheres to the terms and conditions set by 
their respective providers, and no additional ethical 
approval is required for their utilization in this study. 
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