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Abstract: Tuberculosis (TB) is still a serious public health issue in Sudan, especially in Gedaref State, because of limited 
medical facilities and inadequate disease reporting. This experiment develops a forecasting model by employing 
Seasonal Trend decomposition using LOESS (STL) and linear regression in combination, relying on the weekly tests to 
improve TB prediction. The model improves the accuracy of its forecasts by combining time series information with the 
details of the daily operations of the health system. Weekly data from Gedaref showed that the STL + regression 
approach performed better than ARIMA, reducing the root mean squared error (RMSE) from 2986.85 to 540.95, an 
improvement of about 81.9%. The model also remained flexible to fluctuations in testing volume. The findings illustrated 
that hybrid statistical methods have been proved to be reliable and practical in forecasting TB cases in situations where 
limited resources exist, providing a strong base for overseeing TB and other communicable diseases. 
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1. INTRODUCTION 

Tuberculosis (TB) is a serious health problem 
worldwide that claims the lives of about 1.3 million 
people each year, mostly in low- and middle-income 
countries. TB cases are getting worse in Sudan’s 
Gedaref State due to poor treatment centers, a lack of 
frequent checks and unreliable diagnosis [1]. It has 
become essential to use forecasting models for making 
health system interventions in such challenging 
situations.  

Autoregressive Integrated Moving Average (ARIMA) 
models have shortly described the behavior of 
diseases such as influenza, malaria and TB for a long 
time [2,3]. Prophet and artificial neural networks (ANN) 
are among the modern techniques to address nonlinear 
trends and seasonality [4,5]. Prophet and ANN are not 
practical in Gedaref since they use much data and 
require more computing power than is available. 
Alternatively, with Seasonal-Trend decomposition using 
LOESS (STL) decomposition it is easy to build a 
simpler, easy-to-understand hybrid model that remains 
effective for analyzing insufficient and faulty 
surveillance data [6,7].  

Therefore, this study used STL with linear 
regression as it provides good accuracy and remains 
relatively simple which is crucial when data and  
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resources are scarce in Gedaref. Most of these 
models do not address operational elements, making it 
less useful to use them when there are limitations in 
testing, lab space or government decisions over time 
[8]. The study suggests a combination of STL 
decomposition and linear regression to address this 
challenge. STL decomposes TB case data into trend, 
seasonality, and residuals, modeled via linear 
regression with weekly testing volume as the primary 
predictor. This approach enhances TB forecasting 
accuracy and practicality in Sudan, delivering a 
context-sensitive model for resource-limited settings 
[6,7,9,10]. 

2. LITERATURE REVIEW 

2.1. ARIMA Models in Public Health 

Autoregressive Integrated Moving Average (ARIMA) 
models have been widely used in public health 
forecasting, mainly for diseases such as malaria, 
influenza, and tuberculosis (TB) [10,11,12]. Although 
ARIMA models can predict well based on historical 
data, e.g., malaria forecasting in Sudan achieved R² ≈ 
0.75 [13], they do not respond well to changes in 
operational conditions. For example, variations in TB 
testing, different surveillance plans, or limited 
resources can strongly impact reported cases, but this 
is not considered in simple ARIMA patterns [14,15]. 
Rigorous research in limited resource settings has 
demonstrated that excluding external factors results in 
reduced forecasts and less effective use of these 
models in public health actions [16,17]. 
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2.2. Advantages of Hybrid Models 

To overcome the limitations of purely temporal 
models, hybrid forecasting approaches have gained 
traction by integrating time series decomposition 
techniques such as Seasonal-Trend decomposition 
using LOESS (STL) with statistical methods like linear 
regression or machine learning models, including 
artificial neural networks (ANN) [17,18]. STL effectively 
separates the underlying trend, seasonal patterns, and 
residual noise in disease incidence data, providing a 
more transparent structure for subsequent modeling 
[19]. The exogenous predictors, such as the weekly 
number of TB tests, on inclusion in linear regression, 
reflect both major trends and everyday factors, helping 
enhance the reliability and accuracy of forecasts [20].  

The combination of STL and linear regression 
models is suitable for areas such as Gedaref, Sudan, 
as they make computation fast and the models easy to 
explain, even if the data is inconsistent [19,21]. Unlike 
other models like ANN or Prophet, STL-based hybrids 
make it easier for health officials to trust and use the 
results because they can see the model drivers and 
change the parameters according to their needs. 
[19,22]. 

2.3. Empirical Evidence in Africa and Low-
Resource Settings 

Various investigations in Africa confirm that hybrid 
models help make disease forecasting results more 
accurate. For instance, a model using the ARIMA 
method performed well when predicting TB incidence in 
Sudan (R² of 0.80), though its predictions lacked 
accuracy because of poor data and infrastructure 
conditions [23,24]. Adding diagnostic testing volume 
increased the ability to predict epidemics by 15–25% in 
East Africa, supporting prompt and effective public 

health actions [25]. These models have proved 
beneficial in practice, providing more careful use of 
resources and smart intervention strategies which are 
essential for health systems under consistent stress in 
low-resource environments [26,27]. 

3. METHODOLOGY 

3.1. Justification for the Hybrid Approach 

The use of Autoregressive Integrated Moving 
Average (ARIMA) in resource-limited settings for time 
series analysis in Gedaref State is hampered by a lack 
of consideration for practical aspects and changing 
seasonal trends [28]. Despite being effective, Artificial 
Neural Networks (ANN) and Prophet need lots of 
computer work and are not always understood, making 
their applicability difficult in developing policies [29]. 
Therefore, the Seasonal-Trend decomposition using 
LOESS (STL) was proposed to be combined with linear 
regression to manage these challenges. This technique 
ensures interpretability and computational efficiency for 
constrained environments by accounting changes over 
time, seasonal aspects and operational drivers (for 
example, the volume of tests performed) [30]. 

3.2. Data Preprocessing and Feature Engineering 

This model was built using TB surveillance data 
from Gedaref State for the past four years ranging from 
2018 to 2022 [31]. 

3.2.1. Missing Data Imputation 

To address missing values in the dataset - where !! 
represents the observed TB case count at week t, and 
!! denotes the weekly testing volume. Two imputation 
strategies were applied: 

Table 1: Comparison of Forecasting Models in Low-Resource Settings 

Model Strengths Weaknesses Suitability for Low-Resource 
Contexts 

ARIMA Captures temporal trends; simple 
implementation; moderate accuracy [23] 

Ignores exogenous factors (e.g., 
testing volume); sensitive to noisy 

data [12] 

Limited; requires high data 
quality 

Prophet Handles nonlinearity and seasonality; 
flexible trend adjustments [14] 

High computational demand; 
extensive preprocessing [19] Low; resource-intensive 

ANN Models complex nonlinear patterns; high 
accuracy with extensive data [17] 

Requires significant computational 
resources and training data [19] 

Low; impractical for small, noisy 
datasets 

Hybrid (STL + 
Regression) 

Integrates temporal and operational factors; 
computationally efficient; robust to noisy 

data [12,19] 

Less effective with highly nonlinear 
trends; requires parameter tuning 

[17] 

High; balances accuracy and 
practicality 
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3.2.1.1. Forward Fill Imputation 

For consecutive missing weeks, the previous 
week’s value was used: 

!! = !!!!                (1) 

where !!  Represents the observed TB case count at 
week t. 

3.2.1.2. Mean Imputation 

For isolated missing values, the mean of all 
observed data points was used: 

!! =   
!
!

!!!
!!!                    (2) 

where n is the number of non-missing observations. 

3.2.2. Feature Engineering 

To capture temporal patterns: 

1. 3-Week Moving Average: To smooth short-term 
fluctuations: 

!"! =   
!!!!!!!!!!!!

!
            (3) 

where !"! is the moving average at week t. 

2. Seasonal Dummy Variables: To encode weekly 
seasonality across 52 weeks: 

!!,! =   
1                                  !"  !""#  !    corresponds  to  week  w  
0                            !"ℎ!"#$%!                                                                                            

                (4) 

Where !!,! is the dummy variable indicating the 
presence of week w in the time series 

3.3. STL Decomposition 

The STL method [32] decomposes observed TB 
counts !! Into additive components: 

!! =   !! + !! + !!              (5) 

T is the trend component, !! is the seasonal 
component, and !! is the residual (irregular) 
component. STL’s flexibility accommodates evolving 
seasonality, which is crucial for infectious disease 
modeling [33]. 

Figure 1 shows the decomposition of the STL 
analysis for TB cases, including trends, seasonal 
patterns, and residuals. This supports the model's 
structure and shows temporal characteristics derived 
from the preprocessing phase. 

In contrast to the traditional approaches to 
decomposition, STL enables a correct identification of 
non-stationarity in seasonal components in irregular 
and developing health indicators. 

3.4. Hybrid Model: STL with Linear Regression 

The residuals Rt from STL decomposition were 
modeled using linear regression with weekly TB testing 
volume. !! as an exogenous variable: 

 
Figure 1: Decomposition of the STL. 
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!! = !! + !!!! + !!                  !!   ∼   ! 0,!! ,            (6) 

where !! and !! are the regression coefficients, !! is 
the error term. The final forecast is reconstructed by 
summing the predicted components: 

!! = !! + !! + !! = !! + !! + (!! + !!!! + !!)          (7) 

3.5. Benchmark Model: ARIMA (1,1,1) 

An ARIMA (1,1,1) model without exogenous 
variables was used as a benchmark: 

1 − !!! 1 − ! !! = (1 + !!!)!!           (8) 

where B is the backshift operator, !!. The 
autoregressive coefficient, !! is the moving average 
coefficient, and !! is the error term [34]. 

3.6. Performance Evaluation Metrics 

Model performance was evaluated using: 

1. Root Mean Squared Error (RMSE): 

RMSE   = !
!

(ŷ! − y!)!!
!!!              (9) 

2. Mean Absolute Error (MAE): 

MAE   = !
!

ŷ! − y!!
!!!            (10) 

3. Mean Absolute Percentage Error: 

MAPE   = !""%
!

!!!ŷ!
!!

!
!!!              (11) 

4. Coefficient of Determination: 

!! = 1 − (!!!!!)!!
!!!

(!!!!)!!
!!!

            (12) 

where R¯ is the mean of the residuals. 

3.7. Model Diagnostics and Validation 

Model assumptions were validated using: 

1. Ljung-Box Test: To check for residual 
autocorrelation: 

! =   !(! + 2) !!
!

!!!
!
!!!       ∽ !!(ℎ)        (13) 

!! is the autocorrelation at lag k, and h is the number 
of lags tested [3]. 

2. Shapiro-Wilk Test: To assess residual normality: 

W = ( !!!!
!
!!! )!

(!!!!)!!
!!!

           (14) 

where !! is the ordered residual, and !! , are constants 
derived from the covariance matrix of residuals [33]. 

3.8. Forecast Uncertainty and Confidence Intervals 

We compute confidence intervals (CIs) for predicted 
values to quantify the uncertainty of forecasts. 

1. Prediction Intervals were Computed 

For a forecast !! at time t, the 100(1−α)% confidence 
interval is: 

!! ± !!!! !
⋅ !"(!!)               (15) 

where: 

• !! t = predicted value at time t, 

• !!!! !
 = critical value from the standard normal 

distribution (e.g., 1.96 for 95% CIs), 

• !"(!!)= standard error of the forecast. 

2. Standard Error for Regression-Based Forecast 
(Equation 16) 

For models with trend (T!), seasonality (S!) , and 
exogenous variables (x!), the standard error 
incorporates: 

1. Variance of trend and seasonal components, 

2. Model residual variance (!!), 

3. Leverage from the design matrix X. !"(!!) =

var(T!) +   Var  (S!) + !!(1 + x!!(X!X)!!x!    (16)  

where: 

• !"#(T!) +   Var(S!) = variances of trend and 
seasonal estimates, 

• X = design matrix of exogenous features, 

• x! = feature vector at time t. 

Corrections 

Fixed matrix notation: 

x!!(X!X)!!x! (Previously misaligned as x!!(X!X)!!x! . 

Clarified the decomposition of variance terms.  
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4. RESULTS 

4.1. Performance of the Hybrid Model 

The proposed hybrid model—combining STL 
decomposition with linear regression using the weekly 
number of tested specimens—demonstrated strong 
forecasting performance throughout the evaluation 
period. After isolating the trend and seasonal 
components, the residuals were regressed against 
testing volume. The regression revealed a statistically 
significant relationship, confirming that fluctuations in 
testing rates accounted for much of the unexplained 
variation in TB case reporting. 

The final reconstructed forecast closely matched the 
observed values, capturing long-term trends and 
anomalies in weekly TB case counts. 

• Root Mean Squared Error (RMSE): 540.95 

• Mean Absolute Error (MAE): 411.38 

These results indicate a high level of predictive 
accuracy, particularly given the irregularities inherent in 
real-world surveillance data. 

Figure 2 presents the overall trend of enrolled TB 
cases alongside the number of tested specimens 
across the study period. This helps to contextualize 
weekly fluctuations and supports the inclusion of 
testing volume as an explanatory variable in the hybrid 
model. 

4.2. Comparison with the ARIMA Baseline 

A traditional ARIMA (1,1,1) model was applied to the 
same dataset to benchmark the hybrid model's 
performance. While ARIMA could model the general 

direction of the series, it failed to capture sharp 
deviations caused by changes in testing volume. 
ARIMA’s underperformance stems from its reliance on 
historical temporal patterns, ignoring exogenous factors 
like testing volume fluctuations and irregular seasonal 
shifts driven by logistical constraints and healthcare 
access variability. 

Table 2: Forecast Accuracy Comparison Between 
ARIMA and Hybrid Model 

Model RMSE MAE 

ARIMA 2986.85 2441.52 

Hybrid STL + Regression 540.95 411.38 

 

The hybrid model outperformed ARIMA by a large 
margin, highlighting the advantage of including 
operational data in forecasting. 

4.3. Visualization of Forecasts 

Forecast plots showed that the hybrid model 
tracked the observed TB case counts with significantly 
higher fidelity than the ARIMA model. The hybrid model 
was especially effective during abrupt changes in case 
numbers, where ARIMA tended to overestimate or 
underestimate. 

4.4. Residual Analysis 

Residual plots further confirmed the hybrid model’s 
superior fit. The residuals were more tightly clustered 
around zero, indicating reduced bias and improved 
accuracy. A linear relationship was also observed 
between testing volume and residuals, validating the 
model’s structure. 

 
Figure 2: Trend enrolled cases and tested specimens over time. 



304     International Journal of Statistics in Medical Research, 2025, Vol. 14 Alshaikh A. Shokeralla 

 
Figure 3: Hybrid model predictions closely follow actual cases. 

 

 
Figure 4: The ARIMA model diverges during spikes and dips. 

 

 
Figure 5: Residual distribution—Hybrid model shows minimal deviation. 

 

 
Figure 6: Residuals vs. predicted values—low variance. 
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Figure 7: Clear positive correlation between tested specimens and enrolled TB cases. 

4.5. Practical Implications 

From a public health perspective, the hybrid model 
offers tangible benefits. It supports: 

• Early warning systems for TB outbreaks 

• Improved allocation of diagnostic and treatment 
resources 

• Weekly planning based on real-time testing data 

• Greater adaptability to operational constraints 

The hybrid approach enhances accuracy and policy 
relevance by grounding statistical predictions in real-
world dynamics. 

5. DISCUSSION (ENHANCED FOCUS) 

This study proves that the hybrid model including 
combination of Seasonal Trend decomposition using 
LOESS (STL) and liner regression outperforms the 
conventional Autoregressive Integrated Moving 
Average (ARIMA) model when forecasting TB in 
Gedaref State, Sudan. Mainly, the ARIMA model 
underperforms due to its reliance solely on previously 
observed temporal patterns. The model does not 
account for key variables such as unexpected changes 
in testing numbers due to reagent shortages and 
cannot adjust for uneven seasonal changes related to 
unequal availability of healthcare. These shortfalls 
decrease the forecasting accuracy of ARIMA model in 
limited resources settings [10]. 

Alternatively, the hybrid model brings these 
operational elements together, leading to greatly 
enhanced predictive results. The regression coefficient 
(!!) quantifies the impact of testing volume on TB 
notifications, estimating that each additional weekly test 
corresponds to an increase of approximately 0.05 

expected cases. This exact amount of information 
gives officials a clear basis to better allocate diagnostic 
resources which may help find more cases on time and 
respond appropriately to variances in testing availability 
[25]. 

Findings are further supported by studies carried 
out in adjacent areas of Africa. The use of hybrid model 
was shown to significantly improve the accuracy of 
malaria forecasts in East Africa by decreasing the 
RMSE by 15–25%, indicating the practical advantage 
of incorporating exogenous operational data in disease 
prediction. The ability of this model to handle 
incomplete and poor-quality data shows its suitability in 
limited resource environment with surveillance 
infrastructure, like Gedaref [23,25]. 

By providing interpretable regression parameters, 
the hybrid approach empowers decision-makers to 
understand and anticipate how changes in testing 
policies and long-term trends influence TB case counts. 
This transparency is essential for adaptive forecasting 
and effective resource distribution, especially in 
settings with constrained healthcare access [12]. 

6. CONCLUSION 

This paper presents a novel modelling approach for 
TB forecasting based on a weekly combination of time 
series decomposition and regression with tested 
specimen data. Based on real surveillance data from 
Gedaref State, Sudan, the proposed hybrid model's 
performance is significantly better than the classical 
ARIMA model in terms of RMSE and MAE and better in 
identifying short-term fluctuations of cases. 

The study's main contribution is demonstrating that 
technologies exist that bridge highly sophisticated 
statistical models and real-world applications. Thus, 
including operational context, usually disregarded in 
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epidemiological forecasting, improves the model's 
efficiency and interpretability, which is more useful for 
practical applications in public health. 

This approach is practicable in situations with low 
case definition, laboratory testing, and monitoring 
capacities. Integrating these operational features into 
the forecasting model translates into significantly better 
information for public health authorities regarding early 
warning systems. Such context integration makes the 
model statistically sound and practical in its application 
in real practices, which makes the concept not only 
theoretically relevant but also practically useful. 

Expanding this model into geographical, clinical 
capability, or environmental factors may also increase 
its accuracy. In addition, combining spatial modelling or 
ensemble learning approaches would enhance the 
model's scalability to different locations and various 
diseases, thus enhancing its flexibility concerning 
different healthcare systems and outbreak 
characteristics. 

Ultimately, this study reinforces that effective 
forecasting requires technical precision and contextual 
awareness in complex public health environments. 
Hybrid models represent a promising path forward—
grounded in data, informed by field realities, and 
aligned with public health priorities. 
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