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Abstract: Accurate and prompt diagnosis of Alzheimer's disease (AD) remains a challenge, with only a small 
percentage of patients receiving timely confirmation. Manual interpretation of MRI scans, the primary diagnostic tool, is 
time-consuming, subjective, and prone to error, particularly in differentiating between disease stages. This study aimed 
to develop a computer-aided diagnosis system (CAD) for AD classification using deep learning models. MobileNetV1 
and Xception architectures were employed to classify AD into four stages: mild, normal, moderate, and severe. Transfer 
learning and layer freezing techniques were applied for feature extraction and classification. Model performance was 
evaluated using precision, recall score, and accuracy metrics. The Xception model achieved a higher accuracy (79%) 
compared to MobileNetV1 (73%) in classifying AD stages. Compared to MobileNetV1, this study shows that Xception-
based CAD systems have the potential to diagnose AD more accurately, providing a promising path for future research 
and clinical application. 
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1. INTRODUCTION 

The growing population is making problems worse. 
The high death rate has gotten worse because there 
aren’t enough medical professionals. It can be hard for 
doctors to figure out if a patient has a certain disease 
[1]. Many neurological diseases and delineating 
pathological regions have been analyzed, and the 
brain's anatomical structure has been researched with 
magnetic resonance imaging (MRI). The most 
prevalent form of dementia [2], is a progressive 
neurodegenerative condition that affects older 
populations [3]. Alzheimer's disease was first 
discovered in 1907 by a German scientist, Dr. Alois 
Alzheimer termed it a “neurodegenerative disease” [4]. 
continuous degeneration of the neural system, such as 
restlessness, irritability, disorientation, depression, and 
anxiety [5]. Neurodegenerative diseases are caused 
by the progressive degeneration of nerve cells [6]. 
Almost 50 million individuals worldwide are suffering 
from AD, and if no treatment or prevention measures 
are found soon, the number will rise significantly to 150  
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million by 2050. It is important to identify patients with 
Alzheimer's disease (AD) early so that preventative 
measures can be taken [7]. Alzheimer's Disease leads 
to mental disorders [8]. Mental disorders are neural 
issues that influence brain cognition and social 
connectivity. 

Abundant medical image data is generated daily. 
The information available in such data is used for 
education, diagnosis and research. Automatic 
classification methods are commonly used for the 
analysis of neuroimaging studies. Several multiple-
resolution methods have been proposed to use 
neighborhood information to detect significant changes 
in brain volume. Various computer-aided methods [9] 
have been projected to categorize brain images. Many 
computer-aided diagnoses [10] systems were 
developed using image processing & computational 
intelligence techniques. These systems usually have 
some steps, such as preprocessing, segmentation, 
feature extraction, and classification. Feature 
extraction and classification are the steps that best 
define the diagnosis performed by computer-aided 
diagnosis systems [11]. Several primary AI-aided 
applications, including healthcare, manufacturing, 
smart cities, and gaming, are being studied to be 
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promising deployment in virtual worlds [12]. AI has 
been presented as a technology that could 
revolutionize medical practices by improving decision-
making in intricate and unpredictable systems [13]. 
The development of artificial intelligence enables the 
evaluation and detection process using computer 
vision now faster and more stable than the human eye. 
The disadvantages and limitations of human experts 
make it attractive to use technologies such as artificial 
intelligence [14], which learns very quickly and 
provides consistent responses to complex situations 
[15]. Innovative deep-learning techniques are used to 
compute the detection of brain disease [16]. To end 
the promise of early diagnosis of Alzheimer’s Disease, 
we propose a novel model based on deep learning 
[17], which is a subset of machine learning that tries to 
mimic the human brain to provide a cheap, fast, yet 
accurate solution [18]. In order to validate further the 
advantages of deep learning, future extensions of this 
work could incorporate non-deep-learning baselines 
such as SVMs using handcrafted radiomic features. 
Figure 1 shows the sample images of various stages 
of Alzheimer's disease. 

In more cases, the human eye becomes less 
sensitive when interpreting many images, especially 
when only a few slices are impacted. Through 
automated processes, a large number of cases can be 
processed with the same precision as, that is, results 
will not be affected by fatigue, data overload, or lack of 

manual steps [19]. Therefore, an automated system is 
needed to investigate and classify such medical 
images. Brain MRI is widely used to diagnose brain 
diseases [20]. Programmed classification of brain 
disorders using brain MRI images [21], how to 
evaluate clinical prognosis, and query image 
repositories using content-based queries could instruct 
radiologists  

The literature review of some research articles is 
listed below with objectives, methods, limitations, and 
accuracy. 

While previous studies utilized standard CNNs, our 
study contributes by evaluating the impact of layer 
freezing strategies under transfer learning, which is 
less explored in AD detection. 

This research has been developed based on the 
following research questions. 

• Can computers predict disease? 

• What are the types of brain disorders? 

• Can a deep learning model predict Alzheimer's 
disease using MRI images? 

• How to implement transfer learning in deep 
learning models? 

• How does this work support neurospecialists? 

 
Figure 1: Sample of human brain MRI showing different stages of AD. 
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The practical implication of this work is given below: 

The finding of this study has practical implications 
in the field of medicine. This study is more helpful to 
neurologists and people with brain disorders. 
Nowadays, the number of neurologists is very low in 
rural areas. The early detection of AD is very 
important. Computer-aided diagnosis is more helpful 
for early disease detection and will save people from 
severe problems. AI technology is implemented in 
every field, especially in medical diagnosis. It analyzes 
huge MRI data and gives predictions consistently. The 
result will be accurate, and it is most helpful to medical 
professionals to find a rapid and accurate solution for 
the patients. 

Another implication of this research is helpful for 
researchers who are doing research in the field of 
deep learning and also in Alzheimer's disease. This 

research provides knowledge of transfer learning in 
deep learning models. 

The objectives of this study are summarized as 
follows: 

• To implement MobileNetV1 CNN architecture to 
classify the brain MRI images into various 
stages of Alzheimer's disease, such as mild, 
moderate, normal and severe. 

• To implement the novelty of the transfer learning 
technique that is freezing layers on the 
MobileNetV1 architecture. The layers freeze 
from the bottom up to four layers. 

• Xception architecture layers are frozen from the 
bottom to achieve better accuracy. 

• The Xception and MobileNetV1 performance are 
compared.  

Table 1: Literature Review 

Ref Objectives Methods Limitations Accuracy 

1 Classifying AD Stages Multi-layer feedforward 
neural network Limited dataset size 93% 

2 
To automate the classification of Alzheimer's disease 
and mild cognitive impairment (MCI) using a single 

MRI and deep neural networks 

Utilized deep neural 
networks for classification 

Limited to a single MRI 
modality - 

3 
To investigate the use of Convolutional Neural 

Networks (CNNs) for medical image analysis and 
compare full training with fine-tuning approaches 

Utilized CNNs for image 
analysis 

Performance may depend 
on data characteristics - 

4 To explore Alzheimer’s disease classification using 
Convolutional Neural Networks (CNNs) 

Utilized CNNs for 
classification 

Dataset size and diversity 
may impact results - 

5 Lung nodules localization from CT scans Novel Machine Learning 
Approach 

Limited sample size, 
dataset diversity 84.8% 

6 To classify Alzheimer’s disease using MRI and fMRI 
data with deep convolutional neural networks 

Employed deep CNNs for 
classification 

Dependency on data 
quality and preprocessing 97.79% 

7 Detection of COVID-19 from chest X-ray images 
Deep Learning Models 

Resnet 50, Inception V3, 
VGG16 

Limited dataset size, 
generalization challenges 

Resnet 50-97%, 
InceptionV3-

98%, VGG16-
98% 

8 To classify Alzheimer's disease using a transfer 
learning approach 

Employed transfer 
learning techniques using 

CNN 

Dependence on the 
source domain for 

transfer 
97.84% 

9 
To use deep learning for diagnostic classification and 

prognostic prediction in Alzheimer's disease using 
neuroimaging data 

Employed deep learning 
techniques on 

neuroimaging data 

Data availability and 
quality may affect results - 

10 To explore the use of machine learning and deep 
learning for skin cancer detection 

Employed machine 
learning and deep 

learning techniques 

Data quality and size may 
impact performance - 

11 To diagnose Alzheimer's disease using deep learning 
techniques 

Utilized deep learning 
methods for diagnosis 

Data availability and 
quality may impact results - 

12 Thorough analysis of deep learning techniques for AD 
early detection CNN Dependence on data 

quality and quantity - 

13 
Develop an explainable deep-learning model for 

Alzheimer’s disease diagnosis using PET and MRI 
images 

CNN, Multimodal data 
fusion on PET and MRI 

images 

Dependence on data 
quality and quantity 73.90% 

14 
To perform multi-class motor imagery EEG 

classification using Convolutional Neural Networks 
(CNNs) 

Employed CNNs for EEG 
classification 

Data variability and 
subject-specific patterns 
may affect performance 

74% 

15 
To assess the fetus's health status using a hybrid 

deep learning algorithm (AlexNet-SVM) on 
cardiotocographic data 

Utilized a hybrid deep 
learning approachRCNN 

Data quality and 
availability 99% 
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Section 1 contains the introduction and the 
literature survey, and also describes the framework for 
the proposed work. Section 2 describes the transfer 
learning techniques and also the architecture of 
transfer learning. Section 3 explained the MobilenetV1 
architecture, and Section 4 describes the Xception 
architecture. In Section 5,the implementation of 
freezing of layers and performance of the models for 
Alzheimer's disease are discussed. Section 6 
discusses about conclusion and future scope. The 
framework of the proposed diagram is shown in Figure 
2. 

2. TRANSFER LEARNING 

Creating a visual architecture diagram for transfer 
learning can be a bit challenging. In Transfer learning, 
a pre-trained neural network, often referred to as the 
"base model" or "source model," is adapted for a new 
task or domain. The architecture of a transfer learning 
model typically consists of two main parts: the pre-
trained layers (base layers) and the task-specific 
layers (top layers) [22] where a pre-trained neural 
network, often referred to as the "base model" or 
"source model," is adapted for a new task or domain. 
The architecture of a transfer learning model typically 
consists of two main parts: the pre-trained layers (base 
layers) and the task-specific layers (top layers). 

2.1. Pre-trained Layers (Base Layers): 

• Convolutional Base: This part of the network 
consists of convolutional layers, pooling layers, 
and sometimes normalization layers. These 
layers have learned to extract hierarchical 
features from images and are responsible for 
capturing general patterns, textures, and 
shapes. 

• Feature Extractor: The pre-trained layers act 
as a feature extractor by transforming the input 
data (e.g., images) into a more abstract and 
compact representation. These layers retain 
valuable knowledge learned from a large 
dataset during the original training process. 

• Transfer Learning Architectures: Common 
pre-trained architectures include VGG, ResNet, 
Inception, MobileNet, and more. These 
architectures have different depths and 
complexities, depending on the specific use 
case and resource constraints. 

2.2. Task-specific Layers (Top Layers): 

• Fully Connected Layers (Dense Layers): 
These layers are added on top of the pre-trained 
base layers to adapt the network to the specific 
task. They can consist of one or more dense 
layers. The number of neurons in the final dense 
layer usually matches the number of classes in 
the new task (for classification tasks). 

• Activation Functions: Activation functions like 
ReLU (Rectified Linear Unit) are applied to the 
outputs of dense layers to introduce non-
linearity and enable the network to learn 
complex relationships. 

• Output Layer: The output layer depends on the 
nature of the task. For example: 

• For image classification, the output layer 
typically consists of a softmax activation 
function to produce class probabilities. 

• For regression tasks, a single neuron without 
an activation function may be used to predict 
a continuous value. 

3. MOBILE NETV1 

MobileNets are based on depth-wise separable 
convolution layers [23]. Each layer of convolution with 
depthwise separable consists of a depth wise 
convolution and a pointwise convolution [24]. The 28 
convolutional layers in a MobileNetV1 are counted 
independently in both depth and point wise directions. 
By properly adjusting the width multiplier 
hyperparameter, the 4.2 million parameters in a 
traditional MobileNetV1 can be reduced. The size of 
the provided image is 224 × 224 × 3. A standard 

 
Figure 2: Framework of the Proposed Classification Model for AD. 
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convolution unit, a depth-wise separate convolution 
unit, a width multiplier, and a resolution multiplier make 
up this system. Figure 3 depicts the MobileNetV1 
architecture [25]. 

 
Figure 3: Architectural Diagram for Transfer Learning. 

Depth-wise Separable Convolution is used in this 
MobileNetV1 architecture to reduce the complexity and 
size of the model. It should be mentioned that Batch 
Normalization (BN) and ReLU come after each depth-
wise convolution [26]. A depth-wise separable convo-
lution is a depth-wise convolution that has been tailed 
by a pointwise convolution, as shown in Figure 4. 

4. XCEPTION 

It is possible to think of Xception as an extreme 
version of the Inception architecture that uses depth-
wise separated convolution. Xception widened the first 
inception block to control computation complexity and 
swapped out for a single dimension (3x3) and a 1x1 
convolution. Figure 5 depicts the architecture of the 
Xception block. It initially utilizes 1x1 convolutions to 

translate the convolved output to low-dimensional 
embeddings. It then undergoes n spatial 
transformations, where n is a cardinality specifying the 
width and represents the number of transformations. 

l+1

Kf (p,q)=
l

kf (x, y)xy! . l
ke (u,v)         (1) 

l+2
kF =

cg ( l+1
kF , l+1K )          (2) 

Kl is a kth kernel of the lth layer with depth one that 
is spatially convolved across the kth feature map in 
equation (2). 

l
kF , where the spatial indices of the 

feature map and kernel are represented by (x, y) and 
(u, v), respectively. It should be emphasized that in 
depth-separable convolution, the number of input 
feature maps is denoted as K, as opposed to 
traditional convolutional layers, where K is 
independent of the feature maps from the preceding 
layer.While the l+1th layer, which conducts depth wise 
convolution across the output feature, uses the (k 
l+1)th kernel of the (1x1) spatial feature-maps l+1

1F!" ,..., l+1
kF ]

 
of lth layer, used as input of l+1th layer.  

Xception simplifies the computation by doing 
independent cross-axes convolutions on each 
featuremap before performing pointwise convolutions 
(1x1 convolutions) to conduct cross-channel 
correlation. CNN architectures only use one 
transformation segment for the convolutional operation 
and three for the inception block. The transformation 
technique Xception uses improves performance while 
increasing learning efficiency, even if it does not 
decrease the total number of parameters [27]. 

Initially, the data passes over the entry flow, then 
completes the middle flow, where it replications itself 
eight times, and to the end, concludes the exit flow 
[28]. 

5. FREEZING OF LAYERS 

To study the influence of layer freezing, ablation 
studies were conducted. These involved progressively 

 
Figure 4: Architecture of MobileNetV1. 
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unfreezing the last 1 to 4 layers and comparing model 
performance. Xception responded well to full training, 
while MobileNetV1 performed optimally when the last 
three layers were trainable. 

 
Figure 5: Working of Depth-wise Separable Convolution. 

 
Figure 6: Architecture of Xception Model. 

Freezing of MobileNetV1 Layers 

In MobileNetV1, the last four layers play a crucial 
role in the final feature extraction and classification 
stages. MobileNetV1 performs image classification 
tasks; the layers are responsible for producing the final 
class probabilities. Here's a breakdown of the role of 
the last four layers in MobileNetV1: 

1. Global Average Pooling (Global_avg_pool): 
This layer comes after the final depth-wise 
separable convolution layer. Global average 
pooling preserves crucial channel-wise 
information while shrinking the feature maps' 

spatial dimensions to 1x1. A feature vector 
summarizing the most notable aspects of the 
entire image is produced by this operation. 

2. Fully Connected Layer (FC): The Global 
Average Pooling layer is followed by a fully 
connected layer, sometimes referred to as the 
"FC" layer. This layer maps the feature vector 
obtained from global average pooling to the final 
class scores or logits. The number of units 
(neurons) in this layer typically corresponds to 
the number of classes in the classification task. 

3. Normalized function: Finally, the output of FC 
is passed to a normalized activation function. 
This function ensures that the class probabilities 
sum to one across all classes. 

4. Output: The final layer in MobileNetV1 is the 
output layer, which consists of class 
probabilities. The network produces a vector of 
probabilities, with each element corresponding 
to a different class. The class with the highest 
probability is considered the predicted class for 
the input image during inference. 

These last four layers collectively form the final 
classification and prediction stage of MobileNetV1, 
where the network takes the feature representations 
learned from the earlier layers and transforms them 
into class probabilities for image classification. During 
training, the network learns to adjust its parameters, 
including those in these final layers, to minimize the 
classification error and make accurate predictions on 
the given dataset. 

In the proposed work, tuningis performed in five 
ways. Initially, keep all layers static except the dense 
layer. Then, make all but the last two layers non-
trainable. Similarly, keep all layers frozen except the 
final three. By tuning in different ways, trainable 
parameters and performance vary. The total 
parameters of MobileNetV1are 3,228,864, without 
adding the dense layer, 3,206,976 are trainable, and 
21,888 are non-trainable. Once the dense layer is 
added, the Alzheimer's MRI images are classified into 
four classes Viz: mild, moderate, normal, and severe, 
where the parameters are increased by 200708. The 
total parameters are 3,429,572, the trainable 
parameters are 3,407,684, and 21,888 are non-
trainable. The parameters after the dense layer are 
shown in Table 1.  

5.1. Freezing of Xception Layers 

Xception (short for "Extreme Inception") is a deep 
convolutional neural network architecture that was 



Improving Alzheimer’s Disease Detection with Transfer Learning International Journal of Statistics in Medical Research, 2025, Vol. 14     409 

introduced as a variation of the Inception architecture. 
It has a distinctive structure, and its last four layers 
play important roles in the final feature extraction and 
classification stages. Here's a breakdown of the role of 
the last four layers in the Xception architecture: 

1. Entry Flow: Before discussing the last five 
layers, it's important to mention that Xception is 
organized into two main parts: the Entry Flow 
and the Middle Flow. The Entry Flow consists of 
initial layers that perform feature extraction and 
dimensionality reduction. 

2. Middle Flow: The Middle Flow is a repeated 
block of convolutional layers that preserves 
spatial dimensions and allows for feature 
extraction across different scales. Exit Flow: 

a. Global Average Pooling (GAP): After the last 
separable convolution block in the Exit Flow, 
Xception employs a global average pooling 
layer. Global average pooling reduces the 
spatial dimensions of the feature maps to a 1x1 
spatial size while retaining important channel-
wise information. This operation generates a 
feature vector that summarizes the most salient 
features across the entire image. 

b. Fully Connected Layer (FC): The output of the 
global average pooling layer is connected to a 
fully connected layer (FC). The number of units 
(neurons) in this layer typically corresponds to 
the number of classes in the classification task.  

c. Softmax Activation: The FC layer is followed 
by a softmax activation function. This activation 
function converts the class scores into class 
probabilities. Each probability represents the 
likelihood of the input image belonging to a 
particular class. The softmax function ensures 
that the class probabilities sum to one across all 
classes. 

d. Output: The final layer in Xception is the output 
layer, which consists of class probabilities. The 
network produces a vector of probabilities, with 
each element corresponding to a different class. 
The class with the highest probability is 
considered the predicted class for the input 
image during inference. 

In summary, the last four layers in the Xception 
architecture, located in the Exit Flow, are responsible 
for final feature extraction, spatial reduction, and 
classification. They play a crucial role in transforming 

Table 2: Parameters of MobileNetV1 

Freezing Layer Except Total Parameters Trainable Parameters Non-Trainable Parameters 

Last one layer 3,429,572 202,756 3,226,816 

Last two layer 3,429,572 202,756 3,226,816 

Last three-layer 3,429,572 1,251,332 2,178,240 

Last four layer 3,429,572 1,251,332 2,178,240 

 

 
Figure 7: Parameter Distribution for Xception. 
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the learned feature representations into class 
probabilities for image classification tasks. 

In this proposed work, five kinds of tuning are done. 
Initially, freeze entire layers except for the dense layer. 
Secondly, freeze all layers except the final two. Like 
the last four layers, freeze all layers except the last 
three. Trainable parameters and performance continue 
to fluctuate as a result of various tuning techniques. 
The total parameters of Xception are 20,861,480 
without adding the dense layer; the trainable 
parameters are 20,806,952, and the non-trainable 
parameters are 54,528. After adding the dense layer, 
the Alzheimer's MRI images are classified into four 
types of classes: mild, moderate, normal and Normal, 
where the parameters are increased by 8196. The total 
parameters are 20,869,676 and 20,815,148 are 
trainable, and 54,528 are non-trainable. Four classes 
of Alzheimer's images are created after the dense 
layer is added: mild, moderate, normal, and severe. 
Analysis is done on the trainable and non-trainable 
parameters. The parameter is shown in Table 3. 

5.2. Dataset Description 

The dataset was composed of Kaggle online 
database. Anoverall of 7679 MRI images were 
collected in which 6400 (896 Moderate, 64 Severe, 
3200 Normal, 2240 Mild) were used for training and 
1279 (896 Moderate, 12 Severe, 60 Normal, 448 Mild) 
were used for Validation. The models were trained with 
a batch size of 32, learning rate of 0.0001, and Adam 
optimizer. Each model was run for 3 epochs on a 
Tesla V100 GPU with 16 GB memory. Hyperpara-
meters were selected via grid search. Given the 
significant class imbalance (e.g., only 64 severe 
cases), class weighting was applied during training. 
We also experimented with SMOTE for balancing 
minority classes, which showed modest improvements 
in recall for underrepresented categories. Per-class 
sensitivity and specificity metrics were calculated to 
assess class-wise performance. 

5.3. Performance Measures 

The Accuracy, Precision, Recall, and F-score are 
evaluation parameters utilized in this work to assess 
performance. These measurements are established 

using the confusion matrix obtained from the 
classification process's results [29]. 

Accuracy 

The quality of measurement that produces genuine 
(no systematic mistakes) and consistent (no random 
errors) results is known as a measuring system's 
accuracy. 

Accuracy = TP+TN
TP+TN +FP+FN

        (3) 

Precision 

The number of TP (i.e., the total number of objects 
properly categorized as fitting to the positive class) 
divided by the total number of objects categorized as 
fitting to the positive class in classification work 
determines the precision for the class (i.e. the 
summation of true positives and false positives, which 
are objects in accurately categorized as fitting to the 
class). 

Precision = TP
TP+FP

         (4) 

Recall 

The division of the total number of TP to the total 
number of components that really fall into the positive 
class is known as recall (i.e., the summation of true 
positives and false negatives, which are objects which 
are not categorized as fitting to the positive class but 
ought to have been). 

Recall = TP
TP+FP

         (5) 

F-Measure 

In order to calculate the score, the F-Measure 
accuracy metric considers both the precision and recall 
of the test (Harmonic mean). 

F !Measure = 2 Precision"Recall
Precision+ Recall

        (6) 

5.3. Performance 

The higher Performance based on the comparison 
of the classification of Alzheimer's disease using 

Table 3: Parameter of Xception Model 

Freezing Layer Except Total Parameters Trainable Parameters Non-Trainable Parameters 

Last one layer 20,869,676 8,196 20,861,480 

Last two layer 20,869,676 8,196 20,861,480 

Last three-layer 20,869,676 8,196 20,861,480 

Last four layer 20,869,676 12,292 20,857,384 
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Xception and MobileNetV1, shown in Table 3 and 
Table 4 are taken as the accuracy. The Xception Pre-
trained model provides an accuracy of 79%, and 
MobileNetV1 provides an accuracy of 62%. The deep 
learning models [30] are trained with 6400 samples 
and validated with 1279 samples for three epochs. The 
transfer learning is applied here to freeze the layers in 
Xception and MobileNetV1 architecture [31]. First, all 

layers in the architecture are trained, and then the last 
layer is trained; all other layers are frozen. 

The Xception provides higher accuracy when it’s 
trained by all the layers than when freezing layers. The 
Mobilentv1 [32] provides higher accuracy when trained 
by all the layers. The Xception model performed with 
an accuracy of 79%, whereas the MobileNetV1 [33] 

Table 4: Performance for Classification of Alzheimer’s Disease using Xception 

Freezing of layers 
except in Xception  

Alzheimer 
level Precision (in %) Recall (in %) F- Score (in %) Accuracy (in %) 

Moderate 76.01 71.11 73.08 

Severe 88.21 81.42 84.11 

Normal 74.03 67.00 70.44 

All layers 

Mild 68.32 89.23 77.45 

79.34 

Moderate 83.00 93.11 88.12 

Severe 56.12 78.21 65.37 

Normal 95.56 55.41 70.56 

Last one layer 

Mild 77.21 62.11 69.09 

73.14 

Moderate 51.00 43.00 47.00 

Severe 62.12 71.29 70.28 

Normal 34.26 30.00 32.11 

Last two layers 

Mild 42.28 48.35 44.19 

72.28 

Moderate 52.32 46.17 49.51 

Severe 68.00 77.24 72.53 

Normal 32.65 28.21 30.19 

Last three layers 

Mild 42.41 47.15 44.19 

74.34 

Moderate 80.19 81.11 83.21 

Severe 75.26 84.22 80.27 

Normal 80.11 65.40 74.21 

Last four layers 

Mild 70.17 70.15 69.21 

73.54 

 

 
Figure 8: Parameter Distribution for MobileNetV1. 
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performed with 62%. Compared to these two models, 
the Xception outperforms well. 

For broader benchmarking, future comparisons 
should include state-of-the-art models like Vision 
Transformers, Swin Transformers, and Efficient Net. 
These newer architectures have shown strong 
performance on similar classification tasks. 

5.4. Sample output 

The sample output of Alzheimer's Disease 
classification is shown in the following Figure 8. 

CONCLUSION 

In the quest for faster (AD) diagnosis, this study 
explored the potential of deep learning. We employed 
pre-trained models, Xception and MobileNetV1, to 
classify AD into four stages: mild, normal, moderate, 
and severe. By leveraging transfer learning and 

strategically freezing model layers, we achieved 
impressive results. Xception, with its deeper 
architecture, excelled, reaching an accuracy of 79%, 
surpassing MobileNetV1's 62%. This suggests 
Xception's ability to capture the subtle nuances of AD 
progression. Notably, optimal training configurations 
differed between models. Xception thrived with all 
layers trained, while MobileNetV1 preferred focusing 

 

Figure 9: Evaluation Metrics for Xception. 

 
Table 5: Accuracy for Xception 

Freezing of Layers Except Freezing of layers except Percentage of Accuracy Accuracy (in %) 

All layers 79.34 

Last one layer 73.14 

Last two layers 72.28 

Last three layers 74.34 

Last four layers 73.54 

 
Figure 10: Accuracy for Xception. 
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on the last three. These findings highlight the 
importance of model-specific tuning for peak 
performance. 

The primary drawback of the proposed research 
computer-based diagnostic tool being developed for 
Alzheimer’s [34] will solely focus on classifying the 

disease into various stages without providing any 
medical suggestions. It should be emphasized that the 
neuro specialist’s role remains essential in offering 
guidance regarding the disease and its treatment. A 
critical limitation is the lack of external validation. 
Future work will focus on testing the trained models on 
datasets like ADNI and OASIS to assess 

Table 6: Performance for Classification of Alzheimer’s Disease using MobileNetV1 

Freezing of layers 
except MobileNetV1 Alzheimer level Precision (in %) Recall (in %) F- Score (in %) 

Moderate 49.34 40.20 44.00 

Severe 34.12 42.20 32.12 

Normal 52.11 75.26 45.44 

All layers 

Mild 78.42 26.21 39.00 

Moderate 70.23 14.41 23.46 

Severe 54.36 35.41 42.41 

Normal 41.23 89.46 56.32 

Last one layer 

Mild 62.40 59.26 61.35 

Moderate 94.35 17.15 29.56 

Severe 37.22 96.32 53.18 

Normal 72.22 32.34 45.45 

Last two layers 

Mild 93.21 36.23 52.22 

Moderate 56.34 26.32 35.21 

Severe 34.23 54.22 42.45 

Normal 58.23 76.50 73.00 

Last three layers 

Mild 73.28 24.34 37.17 

Moderate 88.51 52.11 20.21 

Severe 53.20 38.23 50.11 

Normal 69.43 52.11 68.21 

Last four layers 

Mild 45.22 68.21 21.19 
 

 
Figure 11: Evaluation Metrics for MobileNetV1. 
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generalizability across different populations. Additional 
limitations include dataset bias in terms of age and 
ethnicity, and high computational costs that may 
restrict deployment in low-resource clinical settings. 
Furthermore, the model’s ability to distinguish AD from 
other types of dementia remains limited and is a 
subject for future study. 

 
Figure 12: Accuracy for MobileNetV1. 

The future scope of this research involves 
improving the accuracy of the classification model. 
While the current research has achieved an accuracy 
of 79%, further modifications and refinements to the 
methodology are expected to enhance the accuracy in 
future iterations of work.  

This research can be further extended by 
considering Multi-Modal Transfer Learning and 
Domain Adaptation. Alzheimer's disease research 
often involves multiple modalities, such as 
neuroimaging data (MRI, PET), genetic data, and 
clinical information. Transfer learning can be extended 
to incorporate these diverse modalities by jointly 
learning from multiple pre-trained models or 
developing fusion strategies to combine information 
from different domains. 
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