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Abstract: Both maternal and paternal disease history can be important predictors of the risk of common conditions such 
as heart disease or cancer because of shared environmental and genetic risk factors. Sometimes maternal and paternal 
history can have remarkably different effects on offspring’s status. The results are often affected by how the maternal 

and paternal disease histories are quantified. We proposed using the log-rank score (LRS) to investigate the separate 
effect of maternal and paternal history on diseases, which takes parental disease status and the age of their disease 
onset into account. Through simulation studies, we compared the performance of the maternal and paternal LRS with 

simple binary indicators under two different mechanisms of unbalanced parental effects. We applied the LRS to a 
national cohort study to further segregate family risks for heart diseases. We demonstrated using the LRS rather than 
binary indicators can improve the prediction of disease risks and better discriminate the paternal and maternal histories. 

In the real study, we found that the risk for stroke is closely related with maternal history but not with paternal history and 
that maternal and paternal disease history have similar impact on the onset of myocardial infarction. 
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1. INTRODUCTION 

Complex diseases including heart diseases, 

hypertension, and breast cancer often aggregate within 

families and disease history of ancestors is often 

correlated with the disease outcomes of descendants 

due to common environmental and inherited genetic 

factors. Interestingly, studies have found that such 

association may not be equal from maternal relatives 

as from paternal relatives. For example, maternal 

history plays a larger role in Alzheimer's disease, type 

2 diabetes, and breast cancer compared with paternal 

history [1-3]; only paternal not maternal family history 

was associated with lumbar spine bone mineral density 

[4]. Most of cohort studies have not pay attention to the 

possible unbalanced maternal and paternal effects due 

to possible lack of data, lack of interest, and mostly 

lack of appropriate statistical method. We believe that 

evaluating the effect of parental disease history on 

diseases and segregating maternal and paternal 

history can provide a better understanding of the 

disease risk factors, improve the accuracy of risk 

assessment, and allow clinicians to better target on 

high-risk individuals. In a recent national cohort study, 

we quantified parental disease history and investigated 

their associations with heart diseases. 

Historically, paternal and maternal disease histories 

were simply quantified using binary indicators defined  
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by the presence of the disease in mothers or fathers. 

However, incidence of many diseases is distinct 

between males and females and changes over age. 

The commonly used binary indicator unfortunately 

cannot capture the additional information in the specific 

age at onset of the affected parent.  

The log-rank statistic is a key concept to compare 

survivals, which is a summation of the contrasts of 

observed versus expected failures over all observed 

time intervals [5]. Within each time interval, the 

subcomponent of the long-rank statistic, as the 

difference between the observed and expected 

numbers of failures, can serve as a standardized 

measure of observed extremeness and has been used 

to compare two groups [6]. In a previous study [7], we 

have proposed a stratified log-rank score (LRS) to 

quantify family disease history, which accounts for the 

age of disease onset and disease status jointly. In this 

study, we would focus on separate parental influences. 

Possible mechanistic explanations are often sought 

following a claim of imbalanced influence of paternal 

histories. Intuitively, the lifetime environmental and 

cultural factors of children are more strongly linked with 

their mothers than with their fathers and may contribute 

to a large percentage of disease variation. Also, 

maternal effects were widely recognized to affect 

neonatal or neurological disorders due to genetics or 

prenatal exposure to tobacco, nutrition, drug, and 

pollution [8-13]. In addition, a pertinent genetic 

mechanism called imprinting, where genes are only 
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expressed when inherited from mothers or fathers, 

could explain the imbalance of paternal history on 

diseases. For instance, individuals with maternal 

history of Alzheimer's disease are more susceptible to 

neurodegenerative disease because they often carry 

the genes that prevent their brains from using glucose 

efficiently [1, 14]. 

In this paper, we propose to extend the use of the 

LRS to quantify maternal and paternal disease history, 

which will capture the informative risk differences in 

various age-of-onset and gender groups. To 

understand the performance of the LRS in general 

study, we conducted simulations with either maternal or 

imprinting effect. We also illustrated the advantage of 

using the new score by comparing it with conventional 

binary indicators. At last, we applied our score to a 

large cohort study of heart diseases. We found that 

only the maternal stroke history but not the paternal 

history was related to the stroke incidences of offspring 

and that the influences from parental histories on 

myocardial infarction (MI) were well balanced. 

2. METHOD 

Suppose we have information on both parents of an 
individual and we know whether or not they have 
developed a particular disease at their current age or 
until their death. Different from the binary indicator, 
which simply indicates a person’s disease status, the 
log-rank score takes all individuals’ information in a 
group into consideration and gives a person a relative 
score to indicate his/her risk of disease development. 
For example, if the majority of fathers in a study 
developed a disease at the age of 60, and there was a 
father whose age at onset was 40, then his score 
would be relatively higher. In this particular study, we 
are only interested in quantify parents’ disease history 
and thus we define a fathers’ group and a mothers’ 
group. Then the score of a mother or a father is 
calculated separately within the corresponding group 
so that the relative risk of one’s disease status is only 
compared to others with comparable characteristics. 
Specifically, for the fathers’ group, let T0 = 0 and T1, 
T2,…. Tr, be the r distinct time points of observed 
events for all fathers. Suppose during the l

th
 time period 

(Tl-1, Tl], there are 
  
n

0

l  observations without an observed 

event (censored) and 
  
n

1

l  observed events, then the risk 

of disease for any father in the l
th

 period (Tl-1, Tl] is 

  

n
1

l
n

0

m
+ n

1

m

m=l

r

. Assuming that the censorship occurs 

randomly and that the censored times are lower 
bounds for true event times [15], the log-rank score for 
censored events up to the k

th
 time period is defined as 

the negative of the sum of the risk of disease from the 
beginning to the k

th
 period, 
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and the LRSs for observed observations are defined as 

  
a

1

k
= 1+ a

0

k
. 

Obviously, the magnitude of 
  
a

0

k  is an increasing 

function of the time period highlighting a common 

consensus that one is more likely to get a disease 

when getting older. If a father has an age of onset 

between Tk-1 and Tk, he is assigned a risk score a1
k
; 

otherwise, he gets a score of a0
k

 
if his age at censor is 

within (Tk-1, Tk]. This procedure is repeated for the 

mothers’ group and then every parent is assigned a 

score.  

Here we provide a simplified example to illustrate 

how the LRS is calculated. Assume there are 7 

unrelated individuals in the population and their fathers 

have event times 49, 56, 60+, 66, 70+, 71. Then T1=49, 

T2=56, T3=66, T4=71, n0
1
=n0

2
=0, n0

3
=n0

4
=1, n1

1
=n1

2
=0, 

n1
3
=n1

4
=1. Thus, a0

1
= 1/6, a0

2
= (1/6+1/5)= 11/30, 

a0
3
= 11/30 1/4= 37/60, a0

4
= 37/60 1/2= 67/60, 

and a1
1
= 5/6, a1

2
= 19/30, a1

3
= 23/60, a1

4
= 7/60. For an 

event, the corresponding LRS is 1 minus the order 

statistic for this observation, which orders individuals 

from the smallest to largest risk; The LRS for the 

censored observation suggests the reduced risk 

compared with the observed events and its value was 

derived by Koch (1985) based on the argument that the 

total individual risk of observed events should be the 

same as the total risk of all censored observations 

given the independence of censoring and risk. As in the 

previous example, the summation of all event scores 

equals -26/15, which balances the total risk score at 

two censored observations a0
3
+ a0

4
.  

Intuitively, one can consider this LRS as the binary 

score offset by the age-specific risk of the disease in a 

population. In order for the LRSs to be meaningful and 

helpful to the general public as a guidance, the number 

of people in the study must be large, and the 

censorship must exhibit a random pattern [16]. A large 

cohort study like the one we reported in this paper can 

serve as a basis to generate a standardized risk chart 

for doctors and researchers to access disease risk for 

the general public. 
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Other factors that cause heterogeneity in parental 

disease risks, such as birth cohort or ancenstry 

admixture, can be adjusted using a stratified log-rank 

score [7]. 

3. SIMULATIONS 

We simulated 1000 families with 2 parents and 1 

offspring. Each individual had a disease phenotype and 

its age of onset available, which were either random or 

associated with their mothers’ genotypes or their own 

inherited maternal alleles. For the parents to have their 

mothers’ genotypes available, we first generated the 

genotypes of the 4 grandparents at a diallelic 

autosomal locus and their offspring inherited an allele 

from each parent following Mendelian inheritance. One 

allele at the locus was a causal allele and its mean 

allele frequency (MAF) varied from 10% to 50%. 

Under the null hypothesis that neither parent’s 
history is related with the disease status of the 
offspring, the age of onset for each offspring was 
generated from the exponential distribution, with the 

scale parameter  equal to 
0

 (mean of 
0

). Under 

the alternative hypothesis that only maternal (not 
paternal) history is a risk factor for disease, the age of 
onset of offspring was generated similarly with the 

scale parameter 
  0 1

G
m

 where Gm was the number 

of causal alleles in subjects’ mothers for maternal effect 
mode, and the maternally inherited allele in offspring 

for imprinting model. We fixed 
0

 at 4 then the 

constant hazard rate at 1/4 for those who did not carry 

the maternal risk alleles. Then 
 
1 / (1

1
/

0
)  was the 

hazard ratio of the event of interest due to the 
inheritance of maternal risk allele copy to the offspring 
and its magnitude indicated the strength of the 
association between the imprinted allele and the event. 
We let the hazard ratio vary from 1.5, 2, to 3 with 

corresponding 
 1

 being 4/3, 2, and 8/3. 
 
G

m
 was an 

underlying gene and could not be observed in the real 
cohort data. The goal of our proposed method is to 
quantify the maternal and paternal disease risk and to 
associate the maternal history with the event of 
interest.  

Another event of censoring was generated from the 

exponential distribution with a parameter /(1- ) so 

that  percent of censoring would occur. If time to 

censoring was less than the time to the event, a right 

censoring event was recorded to indicate the person 

had not developed the disease yet, while if the time of 

the event was less than that of censoring, then that 

age-onset was the time of disease development.  

In addition to calculating our proposed LRS as 

described above, we also used the paternal and 

maternal binary indicators defined as whether the 

father and the mother had the event or not at any age. 

We are interested in detecting a strong association 

between offspring’s disease status and their parental 

disease history. The null hypothesis is that there is no 

correlation between offspring and their maternal or 

paternal history. We used a Cox regression model [17] 

to estimate the effect of the maternal and paternal 

history on the offspring events.  

The association was inferred from the hazard ratio 
of offspring’s disease due to paternal or maternal risk 
score change. A nominal significance level of 0.05 was 
used. 10,000 simulations were conducted for each 
MAF under the null hypothesis and 1,000 were done 

for each MAF and 
1

 under the alternative hypothesis. 

The power of these statistical tests, or the proportion of 
events that had significant correlations, was calculated 
for each of the five MAF values (10%, 20%, 30%, 40%, 
and 50%) and the three 

1

 values (1.0, 2.0, and 3.0). 

The simulations were repeated for the number of 

families being 200 and 500 and the percentage of 

censoring being 10% and 40% to monitor the type-I 

errors and power influenced by smaller sample sizes 

and various percentage of censoring.  

4. REAL DATA APPLICATION 

We applied our method to the REasons for 

Geographic and Racial Differences in Stroke 

(REGARDS) study, a national cohort study of 

individuals over age 45 years. The recruitment began 

in January 2003 and was completed in October 2007. 

The individuals (proband) from commercial lists of 

residents in the 48 contiguous US states were 

contacted by mail and phone calls. For those who 

agreed to participate, demographic information, 

medical history, including prior diagnosis of high blood 

pressure, family history, and indices of cognitive 

function and quality of life were collected by computer-

assisted telephone interview (CATI). Following the 

CATI, physical measures were collected during in-

home examinations including height, weight, blood 

pressure, blood and urine samples, electrocardiogram, 

and an inventory of current medications. Also, a self-

administered questionnaire was provided to each 

participant to collect information on stroke and heart 

attack events of their parents and up to four siblings. 

As of June 2006, 22,927 participants had completed in-
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home visits, and 18,945 (83%) participants returned the 

family history questionnaires through mail. A total of 

57,269 first-degree family members of 13,995 

REGARDS participants had information available about 

the age at the onset of stroke or MI events, age at 

death from other diseases, or age at the time of form 

completion without event. Informed consent was 

obtained from all participants, and the study was 

approved by the University of Alabama’s Institutional 

Review Board for human use. 

Proband’s demographic characteristics were 

summarized using means and proportions. For their 

parents, the 10-year incidence rates for both stroke and 

MI were calculated for separate gender and age groups 

to understand the gender and age differences in the 

incidence. 

For all proband, we calculated the LRS for their 

mothers and fathers separately. As a preliminary step 

to investigate the association between the disease 

event and parental history, we inspected the Kaplan-

Meier survival curves of stroke and MI for different 

groups classified by their parental LRSs. Also, the 

comparison was done by using the groups with and 

without parental disease history.  

To adjust for other known risk factors and potential 

confounders, we used a Cox regression model [17] to 

predict the risk of an event at the current age for each 

person in the test set, with age, gender, race, paternal 

or maternal history score, cholesterol level, diastolic 

blood pressure (DBP), high-density lipoproteins (HDL), 

C-reactive protein (Crp), hypertension, and diabetes 

status as potential predictors. A base Cox model was 

chosen to keep all the significant predictors with 

p<0.05. To determine whether parental history 

predicted the events, an additional maternal or paternal 

LRS was added to the base model. For comparison, 

we also used the binary indicator in place of LRS. We 

repeated the procedure for the two events of interest, 

MI and stroke, separately. Proportional hazard 

assumptions were checked using a Chi-square test and 

none of the predictors had significant violation of the 

assumption. The final models include all significant risk 

factors and parental health history information. To 

measure how good all models predict, we calculated 

the concordance index (C-index) [18, 19] using R 

package survAUC [20]. 

5. RESULTS 

Type I Error of Using Family Risk Scores Under the 
Null Hypothesis 

When 
 1

= 0  or the hazard ratio equals 1, the time 

to event for each individual does not depend on the risk 
of their mothers and the maternal LRS is not 
associated with offspring disease status. Under this null 
hypothesis, we generated data with five different MAFs. 

Based on 10,000 replications for each family size, 

the empirical type I errors of finding significant 

associations between maternal history and offspring’s 

disease status by using maternal LRS or binary 

indicator are listed in Table 1. Under the null 

hypothesis of no true family risk, the empirical type I 

errors for both our LRS and the binary indicators were 

conservative at the nominal level of 0.05 (95% C.I. 

0.044--0.056). The type I errors for association 

between paternal history and offspring’s disease status 

were similar as expected and are not shown.  

Power  

The powers to detect a significant association 

between offspring’s risk and maternal history score at 

5% significance level are shown in Figure 1 for different 

MAFs and  from the paternal imprinting and maternal 

effect models. (a), (c), and (e) are from the imprinting  

 

Table 1: Type I Errors of Finding Significant Associations Between the Offspring’s Status and Parental History Scores 

Minor Risk Allele Frequency 
Association with 

No. of 
families 

0.1 0.2 0.3 0.4 0.5 

200 0.056 0.052 0.054 0.055 0.050 

500 0.054 0.053 0.050 0.047 0.048 Maternal LRS 

1000 0.046 0.048 0.046 0.046 0.045 

200 0.049 0.049 0.050 0.052 0.054 

500 0.050 0.052 0.055 0.051 0.050 Maternal Event Indicator 

1000 0.051 0.048 0.046 0.050 0.045 
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models and (b), (d), and (f) are from the maternal effect 

models.  

The top panels of Figure 1 show the powers for 

different hazard ratios along MAF of 0.1 to 0.5 with 

1000 families. Under the imprinting scenarios, the 

power of detecting significant maternal disease history 

increased from 6.0% to above 75% as the hazard ratio 

increased from 2 to 5 (corresponding to those with 

maternal causal allele vs. those without). For a fixed 

hazard ratio, as the casual allele frequencies increased 

up to 0.2-0.3, the power increased; however, with 

larger allele frequencies, a larger proportion of mothers 

with offspring who do not carry the risk allele would 

also carry the grand-maternal risk allele, and thus can 

dilute the power to detect the actual association. Under 

the maternal effect scenarios, the power increased as 

HR or MAF increased. The power in dash lines were 

from the association tests using the binary maternal 

history indicator and were almost constantly around the 

type-I error rates, much lower than using our maternal 

LRS.  

 

Figure 1: Power of detecting significant associations between the offspring’s status and maternal history scores under different 
scenarios. Each left panel shares the same legend as the right panel. LRS is short for log-rank score and BI is for binary 
indicator. 
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We found that the test has limited power when the 

samples size is less than 1000 (Figure 1c, d) and the 

power almost reduces linearly with the proportion of 

censoring decreases (Figure 1e, f).  

For single-locus models, our method has larger 

power to detect an imprinting effect than a maternal 

effect given the same effect size and MAF smaller than 

0.4 and this reverses when the MAF of the casual allele 

is close to 0.5. In either scenario, the tests using LRS 

had remarkable power gain over those using the binary 

indicators. These suggest that we will require larger 

sample size to detect a single-locus maternal effect 

using our approach and it is extremely difficult for a 

binary indicator to claim a significance even for a large 

maternal effect with sample size around a few 

thousands. 

Please note that a hazard ratio of 5 for 1 allele copy 

change corresponds to a much smaller hazard ratio 

(1.7-2.1) between two quartiles of the LRS or an even 

smaller hazard ratio (1.2-1.7) for a standard deviation 

change in the LRS. Therefore, the sample size required 

to have a decent power (>80%) for a small percentage 

of censoring and small effect size is about 1100-2000 

and would be higher with more censored observations 

when the true mechanism is single-locus imprinting 

[21].  

Results from REGARDS 

Among all proband, 10,747 (46.88%) were males 

and 12,176 (53.12%) were females; 58.27% were 

Caucasians and 41.73% were African Americans. The 

average age of the proband was 66.0 (s.d.=9.12) 

years. For their parents, the risk of having MI and 

stroke was age- and sex-dependent, increasing at 

younger ages and peaked at older ages, and then 

falling again at advanced age as shown in Figure 2.  

Clearly, the incidence rates for both stroke and MI 

were different for fathers and mothers. Therefore, we 

estimated the proposed LRS separately for paternal 

and maternal history. Figure 3 shows the risk scores for 

stroke (left panel) and MI (right panel) at different ages 

for fathers (blue solid curve) and mothers (red dashed 

curves). The difference in stroke risk scores between 

mothers and fathers was small and almost a constant 

0.05 between ages of onset 35-95. The MI risk scores, 

 

Figure 2: 10-year incidence rate (per person per year) of MI and stroke among fathers and mothers of the proband in 
REGARDS. 
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however, differ significantly between mothers and 

fathers, with mothers having alarmingly higher risk 

scores at all ages, reflecting the lower MI incidence 

rate in females as shown in Figure 2. Since the 

REGARDS study is the largest cohort study on heart 

disease so far, we believe that the log-rank chart we 

have shown in Figure 3 could be used by doctors and 

researchers to assess stroke and MI risk for the 

general public. 

For the proband, we calculated the survival curves 

of stroke for three groups separated by the upper and 

lower quartiles of their parental LRSs. The first group 

with LRS in the lower quartile has lowest risk from their 

parents who lived longer enough before having a 

stroke and the third group with LRS in the upper 

quartile corresponds to the highest risk whose parents 

had a stroke at much younger ages. Figure 4 shows all 

the calculated survival curves for different quartiles of 

the maternal and paternal LRSs. As a comparison, the 

survival probabilities of the offspring were also 

calculated separately for maternal and paternal stroke 

history using both the binary indicator and the LRS. 

Figure 4 suggests that the maternal history of stroke 

has a bigger influence than the paternal history on their 

offspring’s survival. Especially when the patients were 

60+ years old, whether the mother had a stroke at a 

younger age or an old age could affect up to 10% the 

chance of survival, or up to ten years of life expectancy 

at the same survival probability. This clearly 

demonstrates the advantages of using the log-rank 

score over the binary indicator. As shown at the bottom 

panels of Figure 4, the binary indicator could not give 

enough warning, especially at early age.  

The same survival curves for MI are provided in 

Figure 5. Different from stroke, individual MI risks seem 

positively associated with both maternal and paternal 

MI histories. Also, the curves stratified by paternal 

history LRSs are further apart than using binary 

indicators, suggesting capability of desegregating risk 

groups.  

The results from the final Cox models with 

significant covariates and parental health history for the 

proband are listed in Table 2.  

For stroke, we have found a strong correlation with 

maternal stroke history (p=4.7e-6) yet a non-significant 

correlation with paternal stroke history (p=0.29) using 

LRS. Using the binary indicator, the p-values were 

0.028 and 0.66, respectively. Both maternal and 

imprinting effects could give such results, as shown in 

our simulations. But, since the maternal effect generally 

influences early life disorders, we suspect that the 

imprinting effect was the main cause for the result. 

The MI event of offspring is significantly associated 

with both parental disease histories, regardless of the 

offspring’s gender. 

The larger C-index for the models using our LRS vs. 

using binary indicators also confirm the merit of our 

proposed LRS though the difference is minor. For 

stoke, both models using maternal history had slightly 

larger C-index than those using paternal index.  

To investigate whether there is a gender difference 

in the association pattern, we fit the same Cox model 

 

Figure 3: Stroke and MI risk curves for fathers and mothers. 
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Figure 4: Stroke survival curves stratified by maternal and paternal LRSs and binary disease history indicators. 

 

Figure 5: MI survival curves stratified by maternal and paternal LRSs and binary disease history indicators. 
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Table 2: Hazard Ratios (p-Values) in Cox PH Model Using Parental History and Other Risk Factors as Covariates 

 In the model with 

 Maternal LRS Paternal LRS Maternal binary indicator Paternal binary indicator 

Event of Interest: Stroke 

Parental history
+
  1.346 (4.7e-6) 1.072(2.9e-1)  1.238 (2.8e-2) 1.048 (6.6e-1) 

Age 0.922 (<1e-12) 0.923 (<1e-12) 0.920 (<1e-12) 0.923 (<1e-12) 

Race (W) 0.785 (5.4e-3) 0.771 (2.8e-3) 0.770 (2.6e-3) 0.771 (2.8e-3) 

Cholesterol level  0.998 (1.0e-1) 0.997 (4.9e-3) 0.998 (1.1e-1) 0.997 (4.9e-3) 

HDL 0.988 (2.9e-5) 0.990 (3.0e-4) 0.988 (2.2e-5) 0.990 (2.9e-4) 

Hypertension 1.968 (1.0e-12) 2.003 (3.7e-13) 1.995 (3.5e-13) 2.012 (2.4e-13) 

Diabetes 1.687 (4.1e-9) 1.710 (1.3e-9) 1.704 (2.0e-9) 1.714 (1.1e-9) 

C-Index 0.707 0.703 0.706 0.703 

Log-likelihood -5402.173 -5426.877 -5410.287 -5427.332 

N 12486 12567 12486 12567 

Event of Interest: Myocardial Infarction 

Parental history
+ 

1.365 (1.7e-8) 1.344 (3.6e-9) 1.351 (3.2e-4) 1.347 (2.0e-5) 

Age 0.974 (2.2e-7) 0.976 (6.2e-7) 0.973 (4.0e-8) 0.975 (1.8e-7) 

Race (W) 1.455 (7.4e-6) 1.317 (9.7e-4) 1.424 (2.4e-5) 1.337 (5.0e-4) 

Cholesterol level  0.990 (<1e-12) 0.990 (<1e-12) 0.990 (<1e-12) 0.990 (<1e-12) 

HDL 0.979 (5.6e-16) 0.980 (2.3e-15) 0.979 (4.4e-16) 0.980 (2.1e-15) 

ln(DBP) 0.585 (4.3e-2) 0.589 (4.5e-2) 0.575 (3.7e-2) 0.593 (4.8e-2) 

ln(Crp) 1.074 (1.3e-2) 1.070 (1.8e-2) 1.077 (9.4e-3) 1.074 (1.2e-2) 

Hypertension 1.440 (1.3e-6) 1.427 (2.0e-6) 1.458 (5.4e-7) 1.444 (8.8e-7) 

Diabetes 1.555 (3.4e-9) 1.580 (5.6e-10) 1.563 (2.3e-9) 1.590 (3.3e-10) 

Log-likelihood -7858.71 -8002.214 -7868.062 -8010.577 

C-Index 0.682 0.679 0.682 0.680 

N 11006 11104 11006 11104 

+
: corresponding to the four maternal or paternal history scores respectively.  

for male and female offspring separately and the 

results were similar to those using combined data, thus 

ruling out gender difference for both MI and stroke. 

6. CONCLUSION AND DISCUSSION 

In this study, we have proposed a log-rank score to 

assess parental histories of a disease. Unlike the 

binary indicator, which only accounts the parents’ 

status of disease, the log-rank score takes parents’ 

ages and relative risk into consideration. If a parent 

experienced disease at a relatively young age, his/her 

score would be high, and vice versa. This log-rank 

score can be considered as the binary indicator offset 

by factors related to age, and thus better reflects 

genetic risk.  

We have applied the LRS separately to mothers 

and fathers in the REGARDS study and found that for 

stroke, the maternal LRSs are a little bit higher than the 

paternal ones, but for MI, the maternal LRSs are 

substantially higher. Investigating the assocition 

between parental risk score and offspring’s risk of 

disease, we have found that the risk of stroke is 

strongly associated with maternal history but not with 

paternal history, suggesting imbalance of parental 

effects, and the risk of MI is strongly associated with 

both maternal (p=1.7e-8) and paternal (p=3.6e-9) 

histories. Using the binary scores, we have found 

similar conclusions, albeit with much weaker signals.  

We did sensitivity analysis, using a binary family 

history indicator defined as yes only when parental 

event occurs before age 60. The results were similar as 

using the simple binary indicator.  

In cases where strong associations were found, the 

p-values obtained using the LRSs were 4 magnitudes 

lower than those obtained using the binary indicator; in 

cases of weak association, the p-values were similar 
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using either of them. Our simulation studies also 

suggest that the proposed LRSs are more likely to be 

found significantly associated with the offspring’s 

disease than the binary indicators regardless of effect 

size and causal effect frequency, and that the LRSs 

yield conservative type I error rates comparable to 

those of binary indicators. Both the real application and 

the simulations suggest that the proposed LRS is well-

behaved under the null hypothesis and is more 

powerful to detect associations with true underlying 

family risk across a broad range of alternative 

hypotheses. 

It is known that genetic factors play an important 

role in heart diseases. Parental cardiovascular disease 

history has been suggested as an independent 

predictor of offspring cardiovascular events in middle-

aged adults [22]. Moreover, it has been shown that a 

maternal history of myocardial infarction might be more 

strongly associated with risk of cardiovascular disease 

than paternal history [23]. Although our study gave both 

maternal (HR=1.365, p=1.7e-8) and paternal 

(HR=1.344, p=3.6e-9) history of MI basically the same 

weight of importance in general, the log-rank scores for 

mothers are indeed substantially higher than the 

fathers’ at the same ages. This could possibly explain 

our observations. 

Our analysis suggests that proposed LRS can 

better quantify the risks of parental history and help 

clinicians and patients with prevention of 

cardiovascular disease. This score only requires the 

parental disease and age-on-set information without 

burdening collection and analysis of genetic markers. 

Because the disease status of family members were 

obtained based on children’s recalls during interviews, 

the explicit forms of stroke for those affected family 

members were unknown. We cannot investigate the 

risk factor and heritability difference among stroke 

subtypes, which may limit the accuracy of risk 

prediction if the subtypes are heterogeneous.  

In a study of cancer family history [24], the number 

of reported paternal family histories of cancer was 

much less that of maternal cancer histories, which 

promotes careful inspection of reporting bias in similar 

studies. In our real study, both ratios of stroke and MI 

in mothers vs. that in fathers were the same as in the 

overall population [25] and there is no evidence of 

reporting bias.  

For complex diseases that have a wide range of 

onset age and various causes, this study has 

demonstrated the value of using the LRS to quantify 

parental disease history. In addition, LRS is a 

nonparamatric score and requires minimum 

assumptions so it is flexible and relatively robust to 

various underlying distributions. 

Alternatively, the Gehan-Wilcoxon score [26] can be 

used if earlier events need to be emphasized and later 

censoring are more likely to be caused by other factors 

not related with diseases. However, this score has 

lower power in the event occurring in later life than the 

log-rank score, as seen in our simulation (data not 

shown). 
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