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Abstract: Disease risk prediction tools are used for population screening and to guide clinical care. They identify which 

individuals have particularly elevated risk of disease. The development of a new risk prediction tool involves several 
methodological components including: selection of a general modelling framework and specific functional form for the 
new tool, making decisions about the inclusion of risk factors, dealing with missing data in those risk factors, and 

performing validation checks of a new tool’s performance. There have been many methodological developments of 
relevance to these issues in recent years. Developments of importance for disease detection in humans were reviewed 
and their uptake in risk prediction tool development illustrated. This review leads to guidance on appropriate 

methodology for future risk prediction development activities. 
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INTRODUCTION 

The use of disease risk prediction tools is common, 

whether to identify high-risk individuals who should be 

treated or, in a population context, to whom screening 

or diagnostic tests should be applied. Risk prediction 

tools are also commonly used in clinical care settings 

for a variety of purposes including guiding clinical care 

of individual patients and performing risk-adjustment 

when comparing institutional performance. 

The development of a risk prediction tool involves a 

considerable statistical challenge [1]. There are many 

facets to the statistical analysis and different methods 

exist for each facet. Usually no one method is correct 

and others incorrect, but statistical theory will often 

indicate that some methods are more desirable than 

others in particular circumstances or perhaps even in 

general terms. In this regard, a relatively recent 

account of methodology for risk prediction [1] provides 

excellent guidance, but there have been, even more 

recently, a number of important advances in 

understanding.  

The key methodological components or steps of 

developing a new tool are as follows. First, an 

appropriate data set needs to be identified from which 

to develop a new risk prediction tool. Imperfections in 

the data, such as missing data, need to be identified 

and decisions made about how to proceed with 

analysis in light of the imperfections. Second, a general 

modelling framework and specific functional form for 

the new tool needs to be chosen. This should involve 

consideration of the eventual application of the new  
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tool, e.g. is a simple point-scoring tool required for use 

in general practice? Third, variables that may 

contribute to the prediction of risk need to be selected 

from the data set and combined together in the chosen 

statistical model. Decisions need to be made as to 

whether inclusion of an extra variable improves in a 

meaningful way a simpler tool that excludes the 

variable, and these decisions have both a statistical 

aspect (fitting the observed data) and a utility of 

prediction aspect (weighing up the pros and cons of 

correct and incorrect identification of people with and 

without the disease of interest). Fourth, an independent 

data set needs to be identified to test the new tool’s 

performance. Performance can be measured in 

different ways using different statistical summary 

measures, but two domains need to be considered: 

model discrimination, i.e. the ability to rank 

appropriately individuals at increasing risk, and model 

calibration, i.e. the ability to predict an accurate level of 

risk. The c statistic is a popular choice for measuring 

discrimination while the Hosmer-Lemeshow test is 

popular for measuring calibration. A wide variety of 

statistical methods have been employed in the 

development of risk prediction tools and there are 

examples of tools being developed with flaws in the 

application of statistical methodology; flaws that 

compromise the new tool’s integrity. 

This review aims to provide comprehensive 

coverage of the important areas of statistical 

methodology for the development of risk prediction 

tools with a focus on issues that have undergone 

important evolution in recent years. The review 

highlights how statistical methodology has been 

applied to risk prediction tools for disease in humans. 

Instances of inappropriate use of methodology are 

noted, together with guidance on more appropriate 

approaches. 
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CONSIDERATION OF THE CONTEXT 

In practice it is often desirable to have a quick and 

simple point-score or chart-based risk prediction to 

facilitate efficient assessment of large numbers of 

people. For example a complex risk table was 

considered to have limited value in primary care for 

patient education and informed shared decision making 

[2]. Tool development methods generally have not 

reflected this desire, for example tools for disease 

presence have been developed using the relatively 

complex method of logistic regression and only 

afterwards the model coefficients simplified to point 

scores, sometimes erroneously [3]. If a simple 

prediction tool is desired then a development process 

that reflects this desire is entirely appropriate rather 

than coming as an afterthought. 

Only recently have contextual considerations 

strongly entered into methodology for assessing the 

performance of a new tool. One such development is 

the incorporation of clinical utility in determining cut-offs 

for defining high risk from predicted risk scores [4]. 

Similarly, the use of a decision analytic framework to 

assess the suitability of a new tool for its intended 

screening purpose potentially offers new insights [5]. A 

review of risk scoring for cardiovascular disease was 

noteworthy for paying considerable attention to 

important practical issues such as the link between 

model form and tool acceptability [6]. 

MODELLING FRAMEWORK AND CHOICE OF 
FUNCTIONAL FORM  

Many modelling frameworks have been proposed 

for risk prediction [1] and comparisons among different 

frameworks typically fail to find a preferred approach or 

disagree in their conclusions about which framework is 

to be preferred. Attention is limited here to commonly 

used regression-model based frameworks for disease. 

Discrimination and logistic regression models were 

original choices for developing risk prediction models 

for chronic disease onset and/or death using data from 

the Framingham cohort study, for example risk 

prediction models for cardiovascular (CVD) events [7, 

8]. As an alternative, survival models have the 

advantage of incorporating time to event, rather than 

simply prevalence or incidence as in logistic and 

discriminant analysis models. Logistic regression is not 

recommended for long term predictions of chronic 

disease events such as coronary heart disease 

mortality since it has been found to have lower 

predictive ability than survival models for long term 

prediction of a chronic disease event [9]. It has been 

shown by a simulation study that ignoring time to event 

in studies with long follow-up might lead to biased 

estimates of measures of discrimination such as area 

under the receiver operating characteristic (ROC) 

curve, sensitivity and specificity [10]. Thus, for long 

term prediction of an event survival models are 

preferred over logistic regression since survival models 

analyze the time to occurrence of an event whereas 

logistic regression only analyzes the occurrence of the 

event in a given time frame and ignores the event’s 

exact timing. However, for short term prediction, in 

particular for predicting one year risk of CHD death, the 

performance of logistic regression has been found to 

be similar to survival models and is thus an acceptable 

alternative [9].  

Possible inappropriate usage of logistic regression 

has been seen for screening of breast cancer patients 

through estimating a woman’s individual absolute risk 

of developing breast cancer over a 10-year period, as 

well as over her lifetime, based on environmental, 

reproductive, and hormonal factors [11]. Most other risk 

prediction models used for screening of breast cancer 

and other types of cancer have relied on the Cox 

proportional hazards model.  

Among the survival models used for predicting 

CVD-related events, the non-proportional hazards 

Weibull model [12] is extremely flexible in terms of 

model assumptions. However, for convergence, this 

model requires the covariates to be mean centred. 

Proportional hazards models such as the Cox model 

and the standard Weibull model are preferable for 

applications requiring a relatively simple and 

interpretable survival model. A large number of chronic 

disease risk prediction equations are based on 

proportional hazards models [13-15] while a few have 

used Anderson’s non-proportional hazards Weibull 

model [18, 19]. The latter risk functions based on the 

Framingham heart study found that the proportional 

hazards assumption was strongly violated for long term 

(10 year) prediction of CHD events and for low risk 

individuals, indicating how sometimes compromise is 

necessary between model simplicity on the one hand 

and accurate representation of observed data on the 

other.  

MISSING DATA 

Missing data is a common problem in data sets 

used for the development of risk prediction models. 

Missing values of the outcome variable or of risk 
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factors can occur for a variety of reasons such as non-

response of the individual to some items on a 

questionnaire or failure to collect, or loss of, biological 

specimens before laboratory-based measurement. 

Since “missingness” in risk predictors is of great 

importance in prediction tool development, and offers 

scope for retrieval of information from study 

participants who have some missing and some 

observed data, hence the focus here is on this topic. 

Complete Case Analysis 

The simplest option to deal with missing data is to 

remove from analysis the individuals with missing risk 

factor values. This strategy is generally termed 

complete case analysis or listwise deletion. This 

approach continues to be used widely in developing 

risk prediction models. Recent examples include: 

development of a risk prediction model for chronic 

kidney disease screening by discarding individuals with 

missing serum creatinine measurements and other 

covariates [20, 21]; refinement of a risk prediction 

model for postpartum depression by incorporating 

season variation but discarding the many individuals 

who had missing data for either of the two key 

variables, education and income [22]; estimation of the 

diagnostic accuracy of stratus optical coherence 

tomography for glaucoma screening in high-risk 

populations using complete case analysis [23]. 

One general drawback of complete case analysis is 

possible over- or under-fit of the model (i.e. biased 

discrimination ability) arising from using a subset of 

data [24]. Also complete case analysis can lead to 

biased model coefficients when the individuals included 

in the analysis are systematically different from the 

individuals excluded from analysis because of their 

missing data [25]. Further, in complete case analysis 

standard errors of the model parameters will be 

unnecessarily large, i.e. the analysis makes inefficient 

use of the full sample by simply discarding anyone with 

missing values. A greater proportion of the sample with 

missing data corresponds to greater inefficiency of 

complete-case analysis. Comparison of different 

methods of dealing with missing data in developing a 

risk prediction model for a binary outcome has found 

that complete cases analysis “can lead to substantial 

bias and poor predictions which in practice could affect 

treatment strategies and decisions” [26]. 

Simple alternatives to complete case analysis are 

the missing indicator method [27] and single 

imputation. For the missing indicator method, an 

additional category is created for a categorical variable 

with missing data representing missingness in the 

variable while for a continuous variable it involves 

creating a new variable which recodes missing values 

to some common value. Although examples of use of 

the missing indicator method can be found [28, 29], 

and the method is conceptually efficient compared to 

complete case analysis , the method is susceptible to 

bias and generally it is not recommended [32]. 

Conceptually, single imputation is an attractive solution 

to the missing data problem as it fills in missing 

observations with plausible values, and examples of its 

use are not scarce [13, 33-35]. The simplest single 

imputation method is to substitute the missing value of 

a continuous predictor with the mean, or the most 

frequent category for a categorical predictor. However, 

such methods have serious limitations because they 

ignore potential correlation of the values of predictors 

among each other, and lead to an underestimation of 

variability in the predictor values among subjects. 

Regression imputation and conditional mean 

imputation are improved single imputation methods as 

they consider the correlation among predictors. In 

regression imputation a random draw from the 

distribution of predicted values is taken. In conditional 

mean imputation an imputation model is made to 

predict the missing values. Expected values are then 

imputed reflecting the correlations in the data. A 

simulation study [33] has shown that conditional mean 

imputation is preferable to complete case analysis. 

However, the method is only suitable if missingness 

depends on risk factors alone and not on the outcome 

of interest. The limitation of single imputation methods 

is that they only provide one of many possible imputed 

values to replace a missing value and, once imputed, 

there is no uncertainty associated with this single 

estimate. Thus single imputation will lead to over-

estimation of the precision in parameter estimates, the 

opposite problem to complete case analysis. In this 

context the conservatism inherent in precision 

estimates from complete case analysis may seem an 

advantage.  

Multiple Imputation 

In multiple imputation missing data are replaced by 

imputing each missing value using some well defined 

imputation model. What differentiates the approach 

from single imputation is that the imputation process is 

repeated a number of times, say 10. Standard analysis 

is performed on each of the 10 data sets resulting in 10 

sets of estimated model coefficients and associated 

standard errors. The 10 point estimates and their 
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standard errors are then combined using Rubin's rules 

[37] to get a single estimated coefficient for each risk 

factor and its associated overall standard error. This 

overall standard error, unlike its counterpart in single 

imputation, takes into account the uncertainty involved 

in the process of imputation. 

As elsewhere in medical research, multiple 

imputation has become increasingly popular in 

developing risk prediction models [1]. The increased 

uptake of multiple imputation is welcome but important 

issues have arisen which stem from the fact that a 

range of different approaches to multiple imputation are 

possible.  

The simplest method of multiple imputations is 

known as “hotdecking” and there are a variety of 

hotdeck techniques available. The simplest hotdecking 

technique is to impute missing values for a predictor by 

using a sample drawn with replacement from the 

available values of that predictor [36]. A better 

approach matches, over all covariates, individuals with 

missing data to subsets of the remainder who have 

complete data; then imputation involves sampling with 

replacement from the relevant subset. Inclusion of the 

outcome of the risk prediction model in the imputation 

model is part of the hotdeck technique known as 

predictive mean matching [38].  

Multiple imputation using normal-based methods 

[39] or a chained equation approach [40, 41] are 

popular alternatives to hotdeck techniques and a 

number of software options exist, e.g. the package 

MICE (Multiple Imputation by Chained Equations) in R 

[42], the mi system [43] and ice command in Stata [44-

46].  

To get unbiased estimates of model coefficients, the 

dependent variable of the risk prediction model must be 

included in the imputation model [39]. This somewhat 

counter-intuitive theory has been verified in a 

simulation study comparing complete cases analysis 

and multiple imputation [47]. More recently it has been 

found that using outcome as a predictor in the 

imputation model is preferable for all types of missing 

data mechanism [48]. Omitting outcome of the risk 

prediction model from the imputation model has led to 

erroneous omission of cholesterol from a tool for 

cardiovascular disease risk prediction [49] requiring a 

modified version to be published [16]. 

An important technical consideration in multiple 

imputation is the choice of the number of imputations 

(m). Rubin suggested that unless the rate of 

missingness is very high then m=5 is a reasonable 

choice. In developing risk prediction models, van 

Buuren [50] used m=3 for predictors with 20% missing 

values, Clark [51] used m=10 for predictors of ovarian 

cancer with about 40% missing values, and for 

predicting cardiovascular disease risk scores Hippisley-

Cox [16, 49] used m=5. In general, the number of 

imputations required depends not only on the amount 

of missing data but also on the complexity of the risk 

prediction model and the data themselves. Royston et 

al. [46] discuss the impact of the number of imputations 

on the precision of estimates and suggest ways of 

determining the required number of imputations by 

evaluating the sampling error of the MI estimates. In a 

case study [52] 25 imputations were advocated to 

reduce the effect of sampling variability in the 

parameter estimates. However the conclusion is limited 

to the case study and was neither backed by any 

theoretical argument nor evaluated by extensive 

simulation. 

Results from a multiple imputed data set are 

sensible only if the imputation model and the risk 

prediction model agree [53]. For example, if the risk 

prediction model is assessing interaction effect 

between two variables then the imputation model must 

also inclulde that interaction effect [54], or, if the risk 

prediction model is hierarchical then the imputation 

model has to share this structure [46]. Thus an 

important consideration in using multiple imputation 

effectively is to build a proper imputation model. A 

general guideline is: (i) structure the imputation model 

in a more general form so that imputed data can be 

used for a wider choice of risk prediction model [54], 

and (ii) use all variables including the outcome of the 

risk prediction model in the imputation model even if 

some variables have weak correlation with the variable 

to be imputed or have weak correlation with the 

missing data mechanism [52]. Following these 

guidelines makes the assumptions behind the missing 

data mechanism more plausible [46] and can increase 

the efficiency of the parameter estimates of the 

analyst’s model [55]. 

MODEL VALIDATION 

For internal validation of new risk prediction models, 

the split-sample validation method has been used most 

frequently. Examples of its use can be found in models 

developed for predicting the risk of colorectal cancer 

[56] and CHD in primary care patients with chest pain 

[57]. However, there are several limitations of this 
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method. First, if the samples are split fully at random as 

has been done in the aforementioned studies, then the 

distribution of the outcome and the predictors are likely 

to vary between the two sub-samples, and these 

distributions may be somewhat different in the original, 

combined, sample [1]. As sample size decreases the 

likelihood of these problems increases. As a result, 

inferences on model validation drawn from the testing 

(validation) data set may be misleading since the aim 

of using any internal validation method is to examine 

how valid a model is when applied to a particular 

sample. This limitation of the split-sample validation 

method can be overcome by stratifying the random 

sampling by outcome and relevant predictors [1].  

There are other limitations of the split-sample 

validation method which cannot be avoided. For 

example, since only part of the data is used for model 

development this results in reduced precision in model 

parameter estimates compared with development 

based on the entire data. Also, since the validation 

sample is relatively small this can result in unreliable 

assessment of model performance [1]. The model may 

show, purely by chance, a poor performance in the 

validation random sample. The bias and instability of 

model results associated with the split-sample 

validation method reduce with increasingly large 

sample size [58].  

An improvement on the split-sample validation 

method is offered by cross-validation which uses a 

larger part of the sample for model development 

compared with split-sample validation. In cross-

validation the data is first randomly divided into deciles 

and the prediction model is developed based on nine of 

the deciles and tested in the remaining decile; when 

this process is repeated ten times with a different decile 

used for testing each time, it is known as ten-fold 

cross-validation. The performance of the model is 

estimated as the average of the ten testings. This 

method has been used, to a lesser extent than split-

sample validation, for validating risk prediction models, 

for example as used in screening of breast cancer [28], 

infection in hospitalized patients with systemic lupus 

erythematosus [35] and pulmonary embolism in the 

emergency department [59]. Although the cross-

validation method has an advantage over the split-

sample method as it uses a larger part of the data for 

model development, to obtain truly stable results the 

method may need to be repeated many times, for 

example 400-times ten-fold cross-validation [1]. The 

most extreme cross-validation is to leave out each 

patient once, but with large numbers of patients this 

method is not efficient. The other problem with cross-

validation is that it may not properly reflect all sources 

of model uncertainty as caused by using automated 

variable selection methods [1].  

All limitations of the split-sample and cross-

validation methods can, in principle, be overcome by 

the bootstrap validation method. For bootstrap 

validation the prediction model is evaluated both in the 

original sample and in the bootstrap samples. This 

method uses average validation across repeated 

bootstrap samples (all samples are of the same size as 

the original sample) drawn with replacement from the 

data set. The difference in performance between the 

original sample and the average performance across 

repeated bootstrap samples indicates the optimism, 

which is then subtracted from the apparent 

performance of the model in the original sample. This 

optimism-corrected performance estimate is rather 

stable, since samples of the same size as the original 

sample are used to develop the model as well as to 

test the model [1]. Despite the clear advantage of this 

method over the other commonly used validation 

methods, its application in development of a model for 

risk of having CHD in patients with chest pain [57] is a 

rare example of its use. 

Discrimination and calibration are the two 

fundamental concepts associated with model 

validation. The discrimination of a model is its ability to 

correctly classify subjects into events and non-events. 

The area under the ROC curve or its equivalent, the c 

statistic, is the most commonly used measure of 

discrimination. Calibration, on the contrary, indicates 

how close the observed and predicted probabilities 

agree with each other. The closer the agreement, the 

better is the calibration. The most commonly used 

measure of calibration is the Hosmer-Lemeshow 

statistic [24]. The latter statistic has well-known 

limitations, for example, it assumes that the event is 

evenly distributed across the deciles yet this 

assumption is unlikely to hold when the event is 

uncommon. Alternatives to the Hosmer-Lemeshow 

statistic and ROC have been proposed and shown to 

have improved properties in specific situations [60] 

although it is yet to be ascertained whether other 

statistics are preferable in general. 

Despite the importance of using both measures of 

discrimination and calibration for assessing the 

prediction ability of a model there has been a lack of 

consistency in their use. For example, in risk prediction 

models developed for predicting colorectal cancer [56] 
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and CHD in primary care patients with chest pain [57], 

measures of both discrimination and calibration have 

been used while examples in breast cancer [28] and 

pulmonary embolism [61] have only used a measure of 

discrimination through the area under ROC curve.  

MODEL UPDATING – INCLUSION OF EXTRA 
BIOMARKERS 

For assessing the improvement in discrimination 

between two nested models, a test for difference in two 

correlated c statistics has been developed [62].
 
But, for 

models containing standard risk factors and possessing 

reasonably good discrimination, very large 

‘independent’ associations of the new covariate with 

the outcome are required to result in a meaningfully 

larger c statistic [63-65]. Additionally, the c statistic has 

little or no direct relevance to clinical practice because 

it does not assist a doctor in making a treatment 

decision about an individual [5].  

Reclassification tables are a way to express the 

results of prediction models in clinical terms [5] and 

together with the Net Reclassification Improvement, 

NRI, and Integrated Discrimination Improvement, IDI,
 

provide valuable supplements to the c-statistic when 

comparing two nested models [66, 67]. The NRI and 

IDI attempt to quantify, in different ways, risk 

reclassification or the level of shift in the distribution of 

absolute risk after a new covariate is included in the 

model [68]. For calculating NRI, risk reclassification can 

be assessed by categorizing the predicted
 
risk for an 

‘old’ model and a ‘new’ model into clinically meaningful 

categories. For example, for evaluating improvement in 

CVD risk due to the inclusion of an additional covariate 

in the model the predicted risk may be categorised as 

<5%, 5% to
 
<10%, 10% to <20%, and 20%, and used 

to examine how many individuals change from one 

category to another between the old and new models. 

For calculating IDI the mean absolute risk for the old 

model is subtracted from the mean absolute risk for the 

new model. For assessing the improvement in global fit 

between two nested models the conditional likelihood 

ratio test is the standard approach. For assessing 

calibration of a new model the Hosmer–Lemeshow 

statistic, and a modification for reclassification tables 

[66], are standard approaches.  

These newer statistics have had rapid uptake for 

comparing models in risk prediction. For example, to 

assess whether the addition of breast density to a 

model that included current age, age at menarche, age 

at first live birth, family history of breast cancer, and 

number of breast biopsies, improved model 

discrimination for breast cancer risk among individuals 

without a prior history of breast cancer, the use of a 

test for difference in two correlated c statistics [69], was 

replaced with use of a reclassification table in later 

work by the same authors [28].  

Of concern however, is that reclassification statistics 

were developed for comparing the predictive 

performances of two nested models, but despite this 

restriction, developments for predicting the risk of 

breast cancer [28], CVD [70] and survival among 

patients with coronary artery disease [71] have used 

these statistics for comparing two non-nested models. 

The major problem with non-nested comparisons is 

that the amount of reclassification does not represent 

differences in model performance [72]. Secondly, the 

proportion of events in the reclassification table’s inner 

cells may be misleading as the cells may contain 

individuals selected on the basis of factors in both 

models, and not on the basis of an additional factor in 

the new model.  

Another issue for model comparability has been the 

natural problem of having two separate concepts of 

model performance evaluation: discrimination and 

calibration. If the conclusion on model suitability differs 

between the two, then there can be some confusion. 

For example, in a comparison of the two prediction 

models, “Partin” and “Gallina,” the Gallina model had 

better discrimination while the Partin model had better 

calibration [73]. The authors made the tentative 

conclusion that “limitations [of each model] need to be 

acknowledged and considered before their 

implementation into clinical practice.” [5] It should be 

noted that discrimination is considered to be the 

primary metric in judging prediction accuracy since it 

cannot be improved by any adjustment [74, 75] unlike 

calibration which can be improved through recalibration 

without sacrificing discrimination [76]. While both will 

always be important to prediction, their relative 

importance can depend on the intended clinical 

application of the prediction rule. Calibration is the 

more important if the rule aims to estimate patient 

prognosis on the average, i.e. not necessarily at the 

level of the individual patient. On the contrary, 

discrimination is preferred if the use is to provide a 

prognostic classification for individuals [77]. 

The area under ROC curve, NRI and IDI have been 

extended to survival models as a function of the length 

of the period of risk to account for censoring [78]. 

Simulation studies have found the extended versions to 
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have less bias, less variance and mean squared error 

than the traditional versions of these estimators [78]. 

Another limitation of summary model performance 

measures such as NRI, to be examined recently [79], is 

the obscuring of model features of importance to 

subsets of the population. New model performance 

measures have been developed for evaluating the 

precision gain within each of the risk groups of the 

reduced model. 

COST OR UTILITY CONSIDERATIONS 

There are some limitations of a reclassification 

table. First, although it aids in comparing the risk 

prediction performance of two nested models, it cannot 

be used to determine whether an individual model has 

better clinical value in terms of treating only those at 

high risk as identified by the model, compared to the 

strategy of treating all in the population. Also, 

reclassification tables do not directly help to determine 

which of two models has better clinical value, when one 

model reduces both true and false positives. For 

example, if a new model, having additional variable(s) 

compared to an old model, identifies fewer people 

subjected to intensive screening for a disease but 

detects fewer cases of disease early, then it is not 

immediately apparent whether a reduction in screening 

is worth the extra number of cases detected. To 

overcome this limitation of interpretability with 

reclassification tables, simple decision analytic 

approaches have been proposed for evaluating 

prediction models in terms of clinical benefits and 

costs. One such cost-benefit approach [5] uses 

different weighting schemes for true and false 

positives, to reflect whether delaying the diagnosis of a 

disease is more harmful than an unnecessary 

screening for the disease. Such approaches have great 

potential, recently summarised and illustrated [80], as 

they are capable of determining whether clinical 

implementation of prediction models is more beneficial 

than harmful in terms of costs. 

DISCUSSION 

This article has reviewed important statistical 

methodology issues for risk prediction and the main 

messages are now summarised. 

Survival analysis regression models have an 

advantage over logistic regression in their incorporation 

of time to event resulting in better predictive ability for 

long term prediction of events.  

In the presence of missing data on risk factors, 

multiple imputation should be used even though the 

theoretical and empirical basis to justify this position is 

not yet complete [1]. The alternatives have been shown 

to be worse in straightforward situations. Multiple 

imputation needs to be undertaken with care, for 

example inclusion of the outcome of the risk prediction 

model in the imputation model is important for valid 

prediction performance, and the number of imputations 

needs to be carefully chosen. 

For internal validation of risk prediction models the 

bootstrapping validation method has certain 

advantages over split-sample validation and cross-

validation methods and should be used more often for 

assessing internal validation of risk prediction models 

used for screening.  

Measures of both discrimination and calibration 

should be used for assessing the prediction ability of a 

model but contextual considerations ultimately may be 

more relevant in deciding whether a model’s 

performance is acceptable. Hence cost or utility 

considerations should be routinely assessed as part of 

the evaluation of the benefits of a new model. 

Net reclassification improvement and integrated 

discrimination improvement are important statistics to 

be included in an evaluation of two competing and 

nested models. However they should not be used for 

non-nested models.  

Methods for risk prediction have matured in the last 

twenty years. While advances continue to be made, for 

example recent extensions to measures of 

discrimination [81-84], there exists now a 

comprehensive methodology, well supported by 

statistical theory and simulation studies. Full adoption 

of these methods will lead to better quality risk 

prediction tools in the future. 
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