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Abstract: In this paper, we present a new blockwise permutation test approach based on the moments of the test 
statistic. The method is of importance to neuroimaging studies. In order to preserve the exchangeability condition 

required in permutation tests, we divide the entire set of data into certain exchangeability blocks. In addition, 
computationally efficient moments-based permutation tests are performed by approximating the permutation distribution 
of the test statistic with the Pearson distribution series. This involves the calculation of the first four moments of the 

permutation distribution within each block and then over the entire set of data. The accuracy and efficiency of the 
proposed method are demonstrated through simulated experiment on the magnetic resonance imaging (MRI) brain data, 
specifically the multi-site voxel-based morphometry analysis from structural MRI (sMRI). 
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1. INTRODUCTION 

Hypothesis testing has been widely used in 

neuroimaging data analysis, such as morphometry 

analysis [1-5], brain activation detection and inference 

[6-10], and functional integration and connectivity [11]. 

Traditionally, brain imaging researchers perform 

statistical analysis by using parametric hypothesis 

testing, including commonly used F test, t test, Z test 

and Hotelling’s T
2
 test [6, 10-12]. In general, a 

parametric method models the distribution of a test 

statistic with a parametric form which is mathematically 

tractable. Parametric methods work well when data can 

be modelled as independent and normally distributed. 

However, in neuroimaging studies, the data distribution 

is usually unknown. If the sample size is too small, this 

can lead to biased or incorrect results, as there is no 

guarantee that the Central Limit Theorem underlying 

many standard parametric tests will hold. Furthermore, 

sometimes, certain test statistics are desirable but 

mathematically intractable. Nonparametric hypothesis 

testing methods are preferable in these cases [4, 7, 8, 

13]. Bootstrapping and permutation tests are both 

popular and computationally intensive nonparametric 

methods but primarily for different uses. The 

bootstrapping is best for estimating confidence 

intervals and the permutation test is best for testing 

hypotheses. Some detailed comparison between 

bootstrapping and permutation can be found in Good’s  
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book [14, chapter 3]. In this paper, we focus on 

permutation tests. 

In order to deal with small sample size 

neuroimaging data with unknown distribution, 

nonparametric permutation tests are employed [4, 7]. 

Permutation tests construct the distribution of a test 

statistic by resampling data without replacement. They 

are flexible and distribution-free. The key assumption 

for permutation tests is data exchangeability; that is, 

permutation tests are exact only if the rearranged data 

points are exchangeable under the null hypothesis. In 

the two-sample hypothesis testing case, data 

exchangeability means the distributions of two group 

data are identical under the null hypothesis [14, 15]. 

We can then randomly permute na data to one group 

and the remainder nb data to the other group. Here, na 

and nb are the sample sizes of the two groups. As a 

result, the empirical distribution of a test statistic is 

constructed using test statistic values for all possible 

permutations. The original observation can be 

considered as one of all possible permutation setups. 

To measure how strongly the observed data support 

the null hypothesis, we calculate the p-value by dividing 

the frequency of permutations having more extreme 

test statistic values by the number of all permutations. 

The statistical decision is made based on whether the 

p-value is less than a pre-chosen significance level. We 

reject the null hypothesis if the p-value is smaller than 

the pre-chosen significance level since it is unlikely to 

occur under the null hypothesis.  

In real applications, the data exchangeability 

condition is not always valid. Although permutation 
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tests still work when the exchangeability assumption is 

slightly violated, it is important to preserve data 

exchangeability to a reasonable level [14, 15]. In 

neuroimaging data analysis, the main effect (i.e. the 

effect of interest or the effect to be tested) is often 

confounded with the undesirable artifacts. For example, 

multi-site studies of neuroanatomical structures are 

increasingly becoming a standard element of clinical 

neurodegenerative research for diagnosing and 

evaluating neurological impairments [1, 16]. Multi-site 

collaboration is needed due to the quantitative and 

demographic nature of the study. One of the 

challenges of analyzing data from different sites is the 

image variability caused by technological factors (e.g., 

hardware differences, hardware imperfections), as 

such variability may be confounded with specific 

disease-related changes in the images thus limiting the 

power to detect structural differences over different 

populations. The exchangeability of the data from 

different sites is often violated because different MRI 

scanners typically have different inhomogeneity fields 

[17-19]. The spatial artifacts listed above in sMRI can 

be reduced in the data preprocessing but are unlikely 

to be taken away completely [17-19]. Therefore, the 

global data exchangeability does not usually hold. 

Nichols and Holmes [8] proposed a restrictive 

permutation scheme by segmenting the entire dataset 

into certain blocks such that the data exchangeability 

approximately holds within a block. The similar strategy 

can also be applied to the multi-site case by grouping 

data based on sites. The blockwise permutation tests 

only allow permutations within each block to preserve 

data exchangeability and prohibit any permutation 

across blocks.  

Another critical issue involved in permutation tests 

is the computational complexity. There are three 

common approaches to construct the permutation 

distribution [14, 20, 21]: (1) exact permutation 

enumerating all possible arrangements; (2) 

approximate permutation based on random sampling 

from all possible permutations; (3) approximate 

permutation using the analytical moments of the exact 

permutation distribution under the null hypothesis. The 

main disadvantage of the exact permutation is the 

computational cost, due to the factorial increase in the 

number of permutations with the increasing number of 

subjects. The second technique often gives inflated 

type I errors caused by random sampling. When a 

large number of repeated tests are needed, the random 

permutation strategy is also computationally expensive 

to achieve satisfactory accuracy. Regarding the third 

approach, the exact permutation distribution may not 

have moments or moments with tractability. In most 

applications, it is not the existence but the derivation of 

moments that limits the third approach. In [13], we 

proposed a solution by converting the permutation of 

data to that of the statistic coefficients symmetric to the 

permutation. Since the test statistic coefficients usually 

have simple presentations, it is often easier to track the 

permutation of the test statistic coefficients than that of 

data. However, this method requires the derivation of 

the permutation for each specific test statistic, which is 

not easily accessible in real world scenarios. Recently, 

we have been developing a new, computationally 

efficient and more general recursive algorithm to 

calculate the moments of the permutation distribution 

by a simple sumproduct of data partition sums and 

index partition sums [5]. The data partition sums and 

index partition sums are computed recursively, from the 

simplest to the most complex sum. For the first four 

moments, the computation can be done in the first 

order or third order polynomial time for univariate and 

multivariate test statistics, respectively. Given the first 

four moments, the permutation distribution can be well 

fitted by the Pearson distribution series [22]. Extensive 

validation of accuracy or error rate when the Pearson 

distribution is used to approximate the permutation 

distribution has been performed in our previous work 

[5, 13]. 

In this paper, we propose and develop a novel 

moments-based blockwise permutation test method. 

We first divide the entire set of data into certain blocks. 

For each block, we apply our new recursive algorithm 

to obtain the first four moments. The first four moments 

of the entire set of data are computed by combining the 

first four moments from all blocks through an efficient 

representation. With this computationally efficient 

moments-based blockwise permutation tests scheme, 

we maintain the flexibility of permutation tests, preserve 

the exchangeability condition, and reduce the 

computational cost dramatically. We apply the 

proposed method to neuroimaging data for voxel-based 

morphometry from simulated multi-site sMRI, 

compensating for the undesirable spatial effects/ 

artifacts with more sensitive and robust imaging data 

analyses. 

2. METHODOLOGY 

In this section, we first briefly describe and 

summarize our efficient algorithm for moments 

calculation. Then we demonstrate the idea of blockwise 

permutation tests in Section 2.2, using sMRI as an 
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illustrating example. In Section 2.3, we propose our 

efficient moments-based blockwise permutation tests 

algorithm. 

2.1. Computationally Efficient Moments Calculation 

Here, we assume that the test statistic T can be 
expressed as a weighted v-statistic [5, 23] of degree d 
as following:  

T (x) = w(i, , i
d
)h(x

i
1

,
i
d
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n

i
1
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n

x
i
d

) , 
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x x x x=  is a dataset with n 

observations, w is an index function, and h is a 
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i i . If the data function h is not 

symmetric, the symmetric function 
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p
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k
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where  is the permutation operator. Any moment of 

permutation distribution can therefore be considered as 

a summation of the product of data function term and 

index function term over a high dimensional index set 

and all possible permutations.  

To address the high computational cost in 

calculating the summation directly, we can exchange 

the summation order of the permutations and the 

indices. Eq. (1) thus takes the form below: 
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of permutation distribution can be calculated by a 
sumproduct of data partition sums and index partition 

sums. A data partition sum is 
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within an index subset. An index partition sum is the 

sum of ( ) ( )
1

1

( , , )
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k k

d

k
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over an index subset. With 

this strategy, all partition sums can be calculated 
without any real permutation. In addition, we calculate 
the partition sums recursively, from the simplest one to 
the most complex one, so that the computational cost 
can be further reduced. Our recent work [5] provides 
the details of index partition and recursive calculation. 

The above approach can be applied to not only any 

weighted v-statistic, but also its equivalent test 

statistics. For permutation tests, two test statistics are 

equivalent if they have the same p-value for all 

observations.  

2.2. Blockwise Permutation Tests 

Let us consider a multi-scanner sMRI comparative 

study which is used to determine a treatment effect 

between the treatment group and the control group. 

The sMRI images are obtained with multiple different 

scanners which may carry different artifacts through 

scanning. Let x = [x(1), x(2), …, x(n)] denote sMRI 

values at the same interested location of size n (i.e. n 

subjects). Each subject is associated with a 

membership, for example, “treatment” or “control”. To 

test the main effect (i.e. the effect of interest or the 

effect to be tested), we may choose a test statistic to 

measure the difference between treatment group and 

control group. One choice could be the mean 

difference test statistic, which calculates the difference 

between the mean of “treatment” subjects and that of 

“control” subjects. In this case, we formulate the test 

statistic as: 

( ) ( ) ( )

i

T x c i x i= , 

where ( ) 1 /
t

c i n= if the membership of the i-th subject is 

“treatment”, ( ) 1 /
c

c i n=  elsewhere. Here, 
t
n and 

c
n  

are respectively the numbers of “treatment” and 
“control” subjects.  

Since the main effect is usually confounded with the 
undesirable artifacts of different scanners, the 
exchangeability condition may not hold for the entire 
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set of scans. To tackle this, we divide the scans into 
certain blocks. Each block includes all sMRI data 
collected from the same scanner. Since subjects are 
typically independent, we assume that the 
exchangeability is preserved within each block, which 
can be defined as an exchangeability block (EB) [8], 
i.e.,  

x = [x(1), …, x(n1); x(n1+1), …, x(n1+ n2); … ; x(n-ng+1), 
… , x(n)] = [x1; x2; … ; xg], 

where x1 = [x(1), …, x(n1)], …, xg = [x(n-ng+1), … , x(n)] 
are g EBs. Next, we perform all possible permutations 
within each block and conduct blockwise permutation 
tests. To preserve exchangeability, no cross-block 
permutation is allowed. Note that the number of total 
possible blockwise permutations is equal to the product 
of the numbers of permutations within each block, i.e., 

1 2#( ) #( ) #( ) #( )g= , where  is the blockwise 

permutation, and i is the permutation within the i-th 
block. Although this number is smaller than the number 
of general non-blockwise permutations, it is still large 
enough to lead to high computational cost for a typical 
multi-scanner dataset. 

2.3. Moments-Based Blockwise Permutation Tests 

To estimate the p-value, the permutation distribution 

needs to be constructed using test statistic values 

corresponding to all possible permutations. However, it 

is computationally expensive to enumerate all possible 

blockwise permutations. To reduce the computational 

cost, we fit the permutation distribution with the 

Pearson distribution series [22] without performing any 

permutation. The Pearson distribution series is a widely 

used four-parameter system. The four parameters 

required are the mean, variance, skewness, and 

kurtosis, which can all be calculated from the first four 

moments. We describe next how to calculate the 

moments of our blockwise permutation distribution.  

Based on the efficient recursive algorithm 

introduced in Section 2.1, we calculate the moments of 

a regular (non-blockwise) permutation distribution. To 

obtain the moments of blockwise permutation 

distribution for the entire set of data, the key idea is to 

formulate it as a combination of the moments of a 

regular permutation distribution from all EBs (see Eq. 

(2)). Here, we assume the test statistic is summable. 

That is,  

1 1 2 2( , ) ( , ) ( , ) ( , )g gT x T x T x T x= + + + . 

This is a reasonable assumption and works for most 

popular test statistics or their equivalent test statistics 

[14, 15, 21].  

The r-th moment of the blockwise permutation tests 
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In order to further reduce the computational cost, 

we represent the first four moments by several 

symmetric functions: 
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where mj(i) is the j-th moment for the i-th block. All 

within-block moments mj(i) can be obtained through our 

newly developed recursive algorithm as described in 

Section 2.1. Here, the within-block moments are the 

moments for an EB data using the same test statistic 

function as that for the complete data. For example, 

when n = 8, and the membership is [treatment, control, 

treatment, control, treatment, control, treatment, 

control], we choose the mean difference test statistic 

for the complete scans, i.e.,  

T = (x(1)+ x(3)+ x(5)+ x(7))/4 - (x(2)+ x(4)+ x(6)+ 

x(8))/4 

If we divide the scans by scanner into two blocks,  

x1 = [x(1), x(2), x(3), x(4)] and x2 = [x(5), x(6), x(7), x(8)]   

For each block, for example x1, T(x1) should be: 

(x(1)+x(3))/4 - (x(2)+x(4))/4 

rather than the mean difference for the block: 

(x(1)+x(3))/2 - (x(2)+x(4))/2 

The above efficient blockwise permutation test 
method not only works for the linear test statistic 
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i

T x c i x i= , but also for any weighted v-statistic 

of degree d, that is,  
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This is because the weighted v-statistic is always 

summable. 

In summary, we convert the moments calculation for 

blockwise permutation tests to a simple combination of 

a moments calculation for regular permutation tests 

without restriction. The computational cost due to this 

simple combination can be ignored, compared with the 

cost of a moments calculation for regular permutation 

tests. If we assume the entire set of data is divided into 

g blocks with equal size, the computational costs are 

O(n/g)g = O(n) and O(n
3
/g

3
)g = O(n

3
/g

2
) for weighted v-

statistics with d = 1 and d = 2, respectively, since the 

computational cost for each group is O(n/g) and 

O((n/g)
3
) [5]. For random permutations, the 

computational costs of calculating the test statistics are 

respectively O(n/g)g = O(n) and O((n/g)
2
)g = O(n

2
/g) 

per permutation for weighted v-statistics with d = 1 and 

d = 2. If we use 10,000 random permutations, the total 

costs are correspondingly O(10,000n) and 

O(10,000n
2
/g). Therefore, our method is much more 

computationally efficient than the popular random 

permutation method as long as the sample size is not 

too large (n << 10,000). When lots of samples are 

available, the standard parametric tests can be used 

due to the large sample theorem and permutation tests 

are not necessary. 

3. EXPERIMENTS SIMULATION AND RESULTS 

Here, we apply our blockwise permutation method 

to a simulated multi-site sMRI data set for voxel-based 

morphometry (VBM). VBM involves a voxel-wise 

comparison of the local anatomical differences 

between two groups of subjects [12]. First, we generate 

32 copies of real brain MRI data. Then we add 

Gaussian noise to each copy. The entire data set is 

evenly divided into two groups, group A and group B. 

Each group has 16 3D brain MRI images.  

We add the generated anatomical group difference 

(Figure 1d) to group A to simulate the main effect of 

interest. We also simulate the multi-site effect by 

adding two different inhomogeneity fields (Figure 1a 

and 1b) to both groups. For each group, we add 

inhomogeneity field one to 8 of the 16 3D brain images, 

and add inhomogeneity field two to the rest 8 images. 

Without blocking, we permute data at each voxel 

location by randomly assigning 16 observations into 

group A and the other 16 to group B. The group 

comparison result (Figure 2f or 2h) is severely affected 

by the confounded multi-site effect. Thus, we can only 

detect regions having small or negligible multi-site 
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Figure 1: Multi-site sMRI experiment: data generation process with ground truth. (a) and (b): inhomogeneity fields from site one 
and site two, respectively. (c): difference of bias fields in (a) and (b), with positive differences shown as light regions and 
negative differences as dark regions. (d): generated ground truth anatomical differences between two subject groups. (e): 
difference of bias fields in the regions having main effect (i.e. the red regions in (d)). (f) and (g): enlarged version of slice no. 10 
in (d) and (e), respectively (i.e. the last slice of the second row in (d) and (e)). 

 

 

Figure 2: Multi-site sMRI experiment: data analysis results comparing the effects of blockwise and multiple comparison (MP) 
correction. (a) and (b): results from our moments-based blockwise permutation tests without multiple comparison (MP) correction 
(a) and with false discovery rate (FDR) control at significance level  = 0.05 (b). (c) and (d): enlarged version of slide no. 10 in 
(a) and (b), respectively (i.e. the last slice of the second row in (a) and (b)). (e) and (f): results from our moments-based regular 
permutation tests without MP correction (e) and with FDR control at  = 0.05 (f). (g) and (h): enlarged version of slide no. 10 in 
(e) and (f), respectively (i.e. the last slice of the second row in (e) and (f)). Note that the regular permutation tests (see (f) and 
(h)) can only detect the regions with small or negligible bias field difference (gray level close to background in Figure 1e or 
Figure 1g. 
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effect (i.e. the regions in Figure 1e or 1g with gray level 

intensity similar to background, denoting the difference 

between the two inhomogeneity fields is close to zero). 

The regular permutation tests failed in identifying 

regions severely confounded by the site effect (i.e. the 

very bright or dark regions in Figure 1e or 1g, denoting 

the strong positive or negative difference between the 

two inhomogeneity fields). On the other hand, we can 

successfully detect the anatomical differences between 

the two subject groups using our blockwise permutation 

test (Figure 2b or 2d). In this case, we randomly assign 

8 observations of site one and 8 observations of site 

two to group A and the remaining 16 to group B during 

the permutation, to handle the multi-site effect. Note 

that a false discovery rate (FDR) control [24, 25] is 

used in this experiment to correct the multiple 

testing/comparison problem [9, 12]. Without the FDR 

control, the detection leads to false positive differences, 

as shown in Figure 2a and 2c compared with the 

ground truth in Figure 1d and 1f. 

4. CONCLUSION AND DISCUSSION 

We have developed a new moments-based 

blockwise permutation test approach based on the 

moments of the test statistic, and applied it to structural 

neuroimaging data analysis. To preserve the 

exchangeability condition, the entire data set is first 

divided into several exchangeability blocks. Next, 

computationally efficient moments-based permutation 

tests are performed by approximating the permutation 

distribution of the test statistic with the Pearson 

distribution series. This involves the computation of the 

first four moments of the permutation distribution within 

each block and then over the entire set of the data. Our 

method works for both balanced and unbalanced 

designs. Experimental results demonstrated the 

advantages of the proposed method.  

As our next goal, we would like to apply the 

developed blockwise permutation method to imaging-

based real neuroscience research and clinical 

diagnosis. Although we focus on sMRI data analysis in 

this paper, the method is general and applicable to 

many other situations and biomedical image modalities 

involving hypothesis tests and group comparisons.  

One issue that needs investigating in the future is 

the dependence of the size and the number of blocks 

on the performance of the method. There is little 

literature addressing how to choose the optimal block 

size for blockwise permutation tests. Based on the 

specific applications, different strategies can be 

utilized. For multi-site studies, it is obvious that the 

optimal blocking is to group the data by site, as in our 

sMRI experiment in Section 3. Alternatively or in some 

other applications, the choice of block size could 

depend on the property of undesired artifacts. One 

strategy we could take is to test the exchangeability for 

a set of choices of block size. That is, given a block 

size, we test whether the artifact is exchangeable 

under the same main effect condition. Since the 

permutation tests are more powerful with less 

restriction on permutations, we prefer the largest block 

size that can pass the exchangeability test. 

ACKNOWLEDGEMENTS 

This work was in part supported by the Intramural 

Research Program of the NIH, Clinical Research 

Center and through an Inter-Agency Agreement with 

the Social Security Administration, and by NIH grants 

K25AG033725, NIBIB 2R01EB000840, and COBRE 

5P20RR021938/P20GM103472. 

REFERENCES 

[1] Ashburner J, Csernansky JG, Davatzikos C, Fox NC, Frisoni 
GB, Thompson PM. Computer-assisted Imaging to Assess 

Brain Structure in Healthy and Diseased Brains. Lancet 
Neurol 2003; 2(2): 79-88. 
http://dx.doi.org/10.1016/S1474-4422(03)00304-1 

[2] Ashburner J. VBM Tutorial 2010. http://www.fil.ion.ucl.ac.uk 

[3] Gaonkar B, Pohl K, Davatzikos C. Pattern Based 
Morphometry. Medical Imaging Computing and Computer 
Assisted Intervention. 2011: p. 459-466. 

[4] Pantazis D, Leahy RM, Nichols TE, Styner M. Statistical 

Surface-based Morphometry using A Non-parametric 
Approach. IEEE International Symposium on Biomedical 
Imaging; 2004: p. 1283-1286. http://www.stat.wisc.edu/ 

~mchung/softwares/pvalue/permutation.tstat.hippocampus.p
df 

[5] Zhou C, Wang H, Wang YM. Efficient Moments-based 
Permutation Tests. Advances in Neural Information 

Processing Systems; 2009: p. 2277-2285. 
http://papers.nips.cc/paper/3858-efficient-moments-based-
permutation-tests.pdf 

[6] Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, 
Frackowiak RSJ. Statistical Parametric Maps in Functional 

Imaging: A General Linear Approach. Hum Brain Mapp 1995; 
2: 189-210. 
http://dx.doi.org/10.1002/hbm.460020402 

[7] Holmes AP, Blair RC, Watson JDG, Ford I. Nonparametric 
Analysis of Statistic Images from Functional Mapping 

Experiments. J Cereb Blood Flow Metab 1996; 16: 7–22. 
http://dx.doi.org/10.1097/00004647-199601000-00002 

[8] Nichols TE, Holmes AP. Nonparametric Permutation Tests 
for Functional Neuroimaging: A primer with Examples. Hum 

Brain Mapp 2001; 15: 1-25. 
http://dx.doi.org/10.1002/hbm.1058 

[9] Sandrone S, Bacigaluppi M, Galloni MR, Cappa SF, Moro A, 
Catani M, Filippi M, Monti MM, Perani D, Martino G. 
Weighing Brain Activity with the Balance: Angelo Mosso's 

Original Manuscripts Come to Light. Brain 2014; 137: 621-
33.  



152     International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 2 Zhou et al. 

http://dx.doi.org/10.1093/brain/awt091 

[10] Worsley KJ, Evans AC, Marrett S, Neelin P. A Three-
dimensional Statistical Analysis for CBF Activation Studies in 

Human Brain. J Cereb Blood Flow Metab 1992; 12: 900–918. 
http://dx.doi.org/10.1038/jcbfm.1992.127 

[11] Wang YM, Xia J. Unified Framework for Robust Estimation of 
Brain Networks from fMRI using Temporal and Spatial 

Correlation Analyses. IEEE Trans on Med Imaging 2009; 
28(8): 1296-1307.  
http://dx.doi.org/10.1109/TMI.2009.2014863 

[12] Ashburner J, Friston KJ. Voxel-based Morphometry – the 
Methods. Neuroimage 2000; 11(6): 805-821. 
http://dx.doi.org/10.1006/nimg.2000.0582 

[13] Zhou C, Wang YM. Hybrid Permutation Test with Application 
to Surface Shape Analysis. Stat Sin 2008; 18(4): 1553-1568. 
http://www3.stat.sinica.edu.tw/statistica/oldpdf/A18n417.pdf 

[14] Good P. Permutation, Parametric and Bootstrap Tests of 
Hypotheses. 3rd ed. New York: Springer, 2005. 

[15] Edgington E. Randomization Tests. 3rd ed. Boca Raton: 
CRC 1995. 

[16] Fox NC, Schott JM. Imaging Cerebral Atrophy: Normal 

Ageing to Alzheimer’s Disease. Lancet 2004; 363: 32-394.  
http://dx.doi.org/10.1016/S0140-6736(04)15441-X 

[17] Fu L, Fonov V, Pike GB, Evans AC, Collins DL. Automated 
Analysis of Multi Site MRI Phantom Data for the NIHPD 

Project. Medical Imaging Computing and Computer Assisted 
Intervention; 2006: p. 144-151. 

[18] Jones RW, Witte RJ. Signal Intensity Artifacts in Clinical MR 

Imaging. Radiographics 2000; 20: 893–901. 
http://dx.doi.org/10.1148/radiographics.20.3.g00ma19893 

[19] Jovicich J, Czanner S, Greve D, Haley E, Kouwe AVD, 
Gollub R, Kennedy D, Schmitt F, Brown G, Macfall J, Fischl 
B, Dale A. Reliability in Multi-site Structural MRI Studies: 

Effects of Gradient Non-linearity Correction on Phantom and 
Human Data. NeuroImage 2006; 30: 436–443. 
http://dx.doi.org/10.1016/j.neuroimage.2005.09.046 

[20] Hubert L. Assignment methods in combinatorial data 
analysis. New York: Marcel Dekker 1987. 

[21] Mielke PW, Berry KJ. Permutation Methods: A Distance 

Function Approach. New York: Springer 2001. 
http://dx.doi.org/10.1007/978-1-4757-3449-2 

[22] Hahn J, Shapiro SS. Statistical Models in Engineering. New 
York: John Wiley & Sons 1967. 

[23] Serfling RJ. Approximation Theorems of Mathematical 
Statistics. New York: Wiley 1980. 
http://dx.doi.org/10.1002/9780470316481 

[24] Benjamini Y, Hochberg Y. Controlling the False Discovery 
Rate: A Practical and Powerful Approach to Multiple Testing. 
J R Stat Soc Series B Stat Methodol 1995; 57: 289-300. 

http://engr.case.edu/ray_soumya/mlrg/controlling_fdr_benja
mini95.pdf 

[25] Storey JD. A Direct Approach to False Discovery Rates. J R 
Stat Soc Series B Stat Methodol 2002; 64: 479-498. 
http://dx.doi.org/10.1111/1467-9868.00346 

 
Received on 28-03-2014 Accepted on 27-04-2014 Published on 30-04-2014 
 

http://dx.doi.org/10.6000/1929-6029.2014.03.02.8 

 
© 2014 Zhou et al.; Licensee Lifescience Global. 
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in 
any medium, provided the work is properly cited. 

 


