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Abstract: When designing studies to assess occupational exposures, one persistent decision problem is the selection 
between two technical methods, where one is expensive and statistically efficient and the other is cheap and statistically 
inefficient. While a few studies have attempted to determine the relatively more cost-efficient design between two 
technical methods, no successful study has optimized the fraction of the expensive efficient method in a combined 
technique intended for long-run exposure assessment studies. The purpose of this study was therefore to optimize the 
fraction of the expensive efficient measurements by resolving a precision-requiring cost minimization problem. For an 
indefinite total number of measurements, the total cost of a working posture assessment study was minimized by 
performing only expensive direct technical measurements. However, for a definite total number of measurements, the 
use of combined techniques in assessing the posture could be optimal, depending on the constraints placed on the 
precision and on the research budget.  
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1. INTRODUCTION 

An important decision to make when planning an 
assessment study of occupational exposures is 
choosing between a ‘cheap’ (resource-saving) 
subjective method and an ‘expensive’ (resource-using) 
direct technical method among the many techniques 
that have been developed [1-7]. Subjective methods 
may be selected due to constrained research budgets, 
while the direct technical methods are usually chosen 
to satisfy a requirement of statistical efficiency (i.e. the 
ability to produce minimum variance unbiased 
estimates). In general, indirect subjective measurement 
methods are known to be less costly and more feasible 
[8, 9], but produce measurement error [10, 11]. 
Conversely, direct technical measurement methods are 
known to produce large volumes of good-quality (low-
error) quantitative data on exposure variables, but at a 
higher cost [3, 12]. A similar decision problem may 
appear in choosing between a cheap simple technique 
and an expensive advanced technique when assessing 
the exposure data recorded by a video-based 
observation method [13]. Another economic decision 
problem when designing an exposure assessment 
study could be the choice between skilled or unskilled 
investigators to record/analyse exposure data; differing 
skill levels could produce differences in cost and even 
statistical efficiency [14-17].  
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In all the examples above, decision problems only 
appear when the advanced measurement technique is 
both economically expensive and statistically efficient 
compared to the simple assessment technique. There 
is thus no problem when making a decision about an 
alternative technical method that is expensive but 
produces the same or a lower quality of estimates on 
an exposure, provided that both techniques are 
feasible and appropriate in assessing the exposure. 
Analytical tools are available for comparing alternative 
exposure measurement designs according to their 
‘economic cost’ and ‘statistical efficiency’ when the 
objectives are: 1) to determine the highest point at 
which more investment in increased precision is 
worthwhile [18, 19]; 2) to identify the measurement 
design(s) providing higher precision for a particular 
number of measurements, or the design(s) requiring 
fewer exposure measurements for an acceptable 
precision [20, 21]; and 3) to measure relative cost 
efficiencies of alternative assessment techniques in 
terms of their ability to produce information at low cost 
[13]. To summarize, the relevant studies attempt to 
compare cost-efficiency in the ‘alternative’ 
measurement designs in order to select the right 
design for exposure measurement [22]. However, there 
is no widely accepted and formal definition of cost-
efficiency in the economic evaluation of ‘non-optimal 
alternative measurement designs’ (i.e. different designs 
that can be implemented in an exposure assessment 
study; none of them is optimized in its economic cost 
and/or statistical efficiency) One could, cautiously, say 
that the measurement design that produces less error 
on exposure relative to the cost of achieving it is the 
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most satisfactory measurement design to employ [13]. 
There are additional limitations in this approach to cost-
efficiency analysis. Analytical tools intended for use in 
the comparison approach do not provide evidence on 
technical efficiency (e.g. ability to maximize precision 
for the given economic resources) and productive 

efficiency (e.g. ability to achieve a predetermined 
precision at minimum cost) of the kind that an 
optimization approach would provide. Methodologies 
for comparing the cost-efficiency of alternative non-
optimal measurement designs are only analytical tools 
to help decision makers allocate the available 
resources in a way that reduces statistical error or 
economic cost. Only under the assumption of the same 
returns to scale (or economies of scale) for alternative 
designs will the analytical tools be able to identify the 
relatively cost-efficient technique. Hence, ‘returns to 
scale’ and ‘economies of scale’ are related economic 
terms that describe, for instance, what happens as the 
scale of information output increases in the long run, 
i.e. when all measurement inputs are variable.  

The currently used measurement methods (i.e. self-
reports, observation, and direct technical methods) are 
not only different in economic cost and statistical 
efficiency, but also in feasibility and appropriateness. 
As each of the methods is capable of measuring one or 
more aspects of exposures, while has drawbacks as 
well [1], a method can be combined with others in an 
exposure assessment study [3]. Considering this, the 
methods are combined to remedy the disadvantages 
associated with each [23]. The introduced 
measurement methods can thus be complementary to 
each other in attempting to produce information on 
work-related exposures [24, 25]. The combined 
approach may also be appropriate when there are 
technological constraints in, for example, competences, 
technical support, and working conditions, particularly 
around direct technical measurements of work-related 
exposures. Among all measurement methods, direct 
technical and observation methods have been 
simultaneously used in assessment of work postures 
[13, 24]. The information produced by them can thus be 
combined in exposure assessments for statistical, 
technological and practical reasons. Direct 
measurements may be added in an attempt to increase 
accuracy, while observational assessments may be 
retained for several reasons. Firstly, the information 
provided by observation may complement the directly 
measured data in a way that helps the researcher gain 
a more complete and explicative picture of the 
exposure. Secondly, observational assessments may 

be more suitable given the technological and practical 
constraints in competences and time available for 
analysis of the data produced by the direct technical 
method. Finally, the availability of technical support and 
the preference of participants for observational 
assessments may also affect the decision to include 
indirect assessments. The combined approach have 
also been used in “powerful” exposure-response 
studies, where both “perfect” and “imperfect” 
measurement methods are used to assess a 
continuous exposure variable [26, 27].  

The interesting research question is whether the 
economic and statistical performance of a combined 
approach can be optimized. According to optimization 
approach, a combination of expensive direct and cheap 
subjective methods in larger exposure studies [23] can 
be advantageous compared to the choice of a relatively 
cost-efficient measurement method [18, 19]. The 
combined measurement technique to estimate/predict 
group mean exposures may be preferred because of its 
potential capacity to save total cost and further to 
reduce the measurement bias associated with indirect 
estimates or the selection bias associated with direct 
technical measurements [23]. When the average costs 
and statistical efficiencies associated with two 
alternative measurement methods are known, a 
determined budget can be used to identify the method 
that gives better statistical efficiency at the same cost. 
If, however, a combined technique is considered due to 
the abovementioned requirements and constraints, its 
ability to produce information at low cost should be 
optimized. While the optimal technique for producing 
exposure data may not be identified by applying 
analytical tools in the comparison approach, it may be 
identified by combining the two alternative technical 
methods. Hence, one interesting research challenge in 
relation to exposure assessment studies is to find a 
potential combined measurement technique that 
increases the cost-efficiency of a single measurement 
technique. Theoretically, optimizing resource allocation 
between two alternative measurement techniques 
(ibid.) would increase the cost-efficiency provided by 
the relatively cost-efficient assessment technique [18, 
19]. However, only one study, that by Duan and Mage 
(1997), has attempted to optimize the fraction of 
expensive direct technical measurements, and it was 
not entirely successful. The assumption of a correlation 
between direct and indirect measurements, and the 
attempt to use the estimated correlation to predict 
direct measurements that were not in fact performed, 
resulted in optimizing a fraction of ‘dual sample’, in 
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which both methods are used. The dual sample 
approach exhibited an additional strong assumption 
that a combined measurement technique was always 
the optimal choice. The total number of measurements, 
another important variable in using any combined 
technique, was not determined in the model. Thus, the 
influence of the budget constraint defined in the 
optimization problem on a possible combined 
technique was not known. Finally, the optimized 
fraction of dual sample was unfortunately allowed to 
exceed unity [22].  

The constrained optimization problems in any 
exposure assessment study are either maximizing the 
precision of the assessments at a given total cost or 
minimizing the total cost of the assessments for a 
desired level of precision. An optimal fraction of 
expensive direct measurements may be derived by 
resolving each of the optimization problems, because 
of their duality property. However, when attempting to 
optimally allocate resources for exposure assessment 
studies, the objective of minimizing costs involves 
weaker assumptions than the objective of maximizing 
precision. Thus, like in any production, it seems more 
rational to choose a design that saves the cost of 
producing a certain level of output (in this case, the 
precision of a combined mean exposure estimate).  

The purpose of this study was to economically 
evaluate different fractions of the expensive direct 
technical measurements based on the precision-
requiring cost minimization approach. Providing an 
optimal combined technique can be an alternative way 
to select a relatively cost-efficient technique in 
exposure assessment studies. When the economic and 
technological resources for direct technical 
measurements of an occupational exposure are limited, 
and the statistical efficiency of exposure assessments 
yielded by subjective methods is not satisfactory, the 
‘optimal’ measurement technique may be one that 
combines the two ‘non-optimal’ methods. 

2. METHODS 

To minimize the cost of achieving a required 
precision by using a combined assessment technique, 
two functions are required: 1) a constraint function to 
assess the precision of the combined technique, and 2) 
an objective function to calculate the total cost of using 
the technique. To derive the constraint function, the 
combined mean and the variance of the combined 
mean should be formulated. Thus, we began our 
analysis by assuming that direct technical 
measurements and indirect subjective estimates are 

composite inputs to an exposure assessment study, 
with the overall exposure mean using the assumed 
combined measurement technology estimated as 
follows: 
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Assuming that the two techniques independently 
measure/estimate exposure, and no type of bias is 
known, the variance of the combined mean 
exposure,Var(μ

c
) , can then be calculated as follows: 
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are the mean variances 

estimated by the direct measurement technique and 
the indirect subjective method, respectively.  

We substitute (2) into (3) and rearrange terms in 
order to estimate the variance by using N instead of n1 
and n2: 
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The precision of the combined measurement 
technique (P), which is the constraint of the 
optimization problem, can be estimated as the inverse 
of the standard error of the combined mean: 
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The total cost (TC) of the combined technique, 
which is the objective function of the optimization 
problem, can be expressed as follows: 
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where c
1  

and 
  
c

2  
are the average unit prices of a direct 

measurement and an indirect subjective estimate, 
respectively. 

We substitute (2) into (6) and rearrange terms in 
order to correlate the total cost to N and the fractions 
that are shared by the precision equation (5): 
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Resolving the precision equation (5) and the cost 
equation (7) for N, we can estimate N as a function of 
precision and total cost, respectively: 
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By (8) and (9), the total cost of the combined 
technique can be calculated in relation to the precision, 
the variances estimated by the techniques, and the 
average unit prices for different fractions of direct 
measurements:  
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Two cost curves are used to evaluate the combined 
technique economically: average cost (AC) and 
marginal cost (MC). AC is the cost per unit output, and 
is obtained here by dividing the total cost function by 
the precision; MC is the cost associated with producing 
one additional unit of the output, and is obtained by 
differentiating the total cost function with respect to 
precision as follows: 
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The cost function (10) shows that the combined 
measurement technique can be characterized by 
diseconomies of scale (cost disadvantage to improve 
the precision), since the cost elasticity of precision 

(
 
E

P

C ), which shows the percentage change in cost as a 

result of a one percent change in the precision, 
exceeds unity: 
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Thus, an improvement in precision by one percent 
requires a two percent increase in the cost. The 
statistical production technology exhibits decreasing 

returns to scale (i.e. the amount of improvement in 
precision is less than the amount of proportional 
increase in n1 and n2), since  

  

E
C

P
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= 1 2 = 0.5 <1 . 

Regression technique and equation (10) are used to 
estimate/predict two important costs associated with 
the combined technique: 1) the cost of achieving a 

required precision ( TC
P

0

) at each fraction of the direct 

measurements by using the following regression 
equation: 
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and 2) the cost of each level of precision while the 

fractions are constants (
  
TC

f
0

), by using the following 

regression equation: 
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Hence intercept  in (14) (or a in (15)) is the 

autonomous cost, which is not dependent on f
1  

(or P 

in (15)); slopes 1 and 2 in (14) (or b1 and b2 in (15)) 
show the rates at which the total cost is changed when 

  
f
1  

(or P in (15)) increases by one unit. The use of 

quadratic regression equations is due to non-linearity in 
TC relationships with P and f1shown by equation (10).  

The productive efficiency (PE) of a non-optimal 
alternative is obtained by dividing the cost of the 
optimal choice by the cost of the non-optimal 
alternative when the precision is the same. The cost 
saving (CS) from the elimination of productive 
inefficiency associated with each non-optimal design is 
then estimated as  1 PE . 

 

The cost of improving precision by one unit in using 
the more precise design j is estimated by using the 
term marginal cost-benefit ratio (MCBR) defined as the 
incremental cost of the design divided by its 
incremental precision, compared to a cheaper and less 
precise design i: 
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3. A PRACTICAL EXAMPLE 

Data 

The data for this example are drawn from a study by 
Rezagholi et al. (2012), who included an investigation 
of the proportion of time that hairdressers worked with 
their upper arm above 60° during a two-hour period. 
The average cost for a two hours’ simple observation-

based assessment was estimated at 
  
c

2
= 765

 
SEK1, 

with a random error of 
  2

2
= 45.8

 
including the 

observer-based variances produced by the technique. 
Further, the average cost for two hours’ direct 
measurements of the posture by inclinometer was 

estimated at 
  
c

1
= 1575  SEK, with a random error of 

  1

2
= 9.2 . We can conclude that the expensive direct 

measurements are more cost-efficient compared to the 

                                            

1EUR and USD to SEK exchange rate, 3 June 2011, were 9.00 and 6.14, 
respectively. 

observational assessments, when the cost ratio 
  
c
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is less than the variance ratio 

  2

2

1
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Constraints 

For the first scenario of cost calculation, with a 
predetermined level of precision and an indefinite 
number of measurements, the precision is set to 2.75; 
while for the second scenario, with a predetermined 
number of measurements (  N = 100 ) due to a limited 
number of workers participating in the exposure 
assessment study, both precision and cost are 
calculated for each fraction of direct measurements. 
The fraction of expensive direct measurements by 
inclinometer is bounded between zero and unity; that 
is, 

  
0 f

1
1 . 

4. EMPIRICAL RESULT 

4.1. Indefinite Number of Total Measurements 

The total cost of statistical production for achieving 
a certain level of precision changes as the fraction of 

Table 1: Calculation of Costs (TC, AC, MC), Total Number of Measurements (N), Numbers of Direct Measurements (n1) 

and Indirect Estimates (n2), Productive Efficiency (PE), and Cost Saving (CS) for Different Values of f1 
 
and a 

Predetermined Precision (P). Costs are in SEK, and all Values are Rounded to the Nearest Integer 
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1 f

1
 P TC AC MC N 

  
n

1
 

  
n

2
 PE (%) CS (%) 

0.00 1.00 2.75 264967 96352 192704 346 0 346 41 59 

0.05 0.95 2.75 267847 97399 194798 333 17 316 41 59 

0.10 0.90 2.75 269607 98039 196077 319 32 287 41 59 

0.15 0.85 2.75 270245 98271 196542 305 46 259 41 59 

0.20 0.80 2.75 269762 98095 196190 291 58 233 41 59 

0.25 0.75 2.75 268158 97512 195024 277 69 208 41 59 

0.30 0.70 2.75 265433 96521 193042 263 79 184 41 59 

0.35 0.65 2.75 261587 95123 190245 249 87 162 42 58 

0.40 0.60 2.75 256620 93316 186633 236 94 141 43 57 

0.45 0.55 2.75 250532 91103 182205 222 100 122 44 56 

0.50 0.50 2.75 243323 88481 176963 208 104 104 45 55 

0.55 0.45 2.75 234994 85452 170904 194 107 87 47 53 

0.60 0.40 2.75 225543 82016 164031 180 108 72 49 51 

0.65 0.35 2.75 214971 78171 156343 166 108 58 51 49 

0.70 0.30 2.75 203278 73919 147839 153 107 46 54 46 

0.75 0.25 2.75 190464 69260 138520 139 104 35 58 42 

0.80 0.20 2.75 176530 64193 128385 125 100 25 62 38 

0.85 0.15 2.75 161474 58718 117436 111 94 17 68 32 

0.90 0.10 2.75 145297 52835 105671 97 88 10 75 25 

0.95 0.05 2.75 127999 46545 93090 83 79 4 86 14 

1.00 0.00 2.75 109581 39848 79695 70 70 0 100 0 
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direct measurements is increased (cf. Table 1). The 
relationship between total cost and 

  
f
1  

is shown in 
Figure 1. 

 

Figure 1: Total cost of achieving the required precision as a 
function of f1. 

As shown in Table 1 and Figure 1, the total cost of 
achieving the required precision initially increases at a 
decreasing rate as the fraction of direct measurements 
increases from 0 0.15 . However, from 0.15 1 , the 
total cost decreases at an increasing rate, which 
means that the cost of the combined technique can be 

decreased while retaining precision, by increasing f
1
. 

The cost of the statistical production for achieving the 

required precision is lowest when f
1
= 1 ; in other 

words, the empirical data indicate that it is cheaper to 
produce information by using the direct technical 
method rather than the observation method. This 
means that the fraction of observational assessments 
should be limited to the lowest possible level for any 
combined assessment technique.  

Analysis of the regression model (14) gives the 
following result: 

TC
P=2.75

= 264967 + 68811 f
1

224198 f
1

2
      (17) 

Hence the autonomous cost of the statistical 
production in the regression equation (264967 SEK) is 
the cost of achieving the required precision by using 
only the observation method (cf. Table 1). The high 

value of 
 2

 shows the significant curvature of the cost 

function, while its negative sign shows that the cost 
decreases at an increasing rate as the fraction of direct 
measurements is increased. 

When the fraction of the direct measurements is 
predetermined due to practical and/or technological 
constraints, the total cost of statistical production grows 
at an accelerating rate as the level of precision is 
increased, because the marginal cost of output 
(precision) is twice the average total cost (cf. equation 
(13)). The estimated regression model (15) for 

  
f
1
= 0.5

 
is: 

TC
f
1
=0.5

= 32175 P2          (18) 

The relationship between total cost and precision is 
shown in Figure 2. 

 

Figure 2: Cost versus precision when f1 = 0.5. 

4.2. Definite Number of Total Measurements 

Assuming the total number of measurements is 
predetermined, the optimal fraction of direct 
measurements is determined at each level of budget 
between 76500 to 157500 SEK or each required 
precision from 1.478 to 3.297 for   N = 100 . Table 2 
shows the cost needed and the precision yielded for 
each combined technique: 

As shown, both cost and precision are increasing in 

  
f
1
, while the cost of improving precision by one unit is 

decreasing in 
  
f
1
. When a constraint is present either in 

budget or in precision, a combined technique is 
optimal. For instance, the maximum precision for a 
research budget that cannot exceed 100000 SEK is 

achieved with
  
f
1
= 0.25 , while the cost of achieving a 

precision of at least 2 is minimized by 
  
f
1
= 0.6 . The 

values of MCBR show whether the necessary 
investment for improving the precision of an already 
implemented design may be funded.  

5. DISCUSSION  

The cost of achieving a required precision by using 
a combination of techniques to assess a working 
posture was calculated for different fractions of 
expensive direct technical measurements. Based on 
the empirical data on costs and variances associated 
with the two measurement methods, a certain level of 
precision (2.75) could be reached with around 346 
indirect (observational) assessments at an estimated 
cost of 264967 SEK (cf. Table 1). If the researcher 
began to add direct measurements in order to get 
accurate values, the cost would start to increase at a 
decreasing rate until the fraction reached 0.15. If,  
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however, the researcher continued to increase the 
fraction of direct measurements, the cost of achieving 
the required precision would fall at an accelerating rate, 
and would reach its minimum when the fraction 
reaches unity (cf. Figure 1). By using direct 
measurements in a combined technique, the 
researcher could improve the cost efficiency of the 

observation method since 

   

c
1

c
2

<
2

2

1

2
, which does mean 

that the direct technical method offered much lower 
average cost of precision and then much higher cost 
efficiency compared to the observation method. If, 
however, the cost ratio 

  
c

1
c

2  
would be larger than the 

variance ratio 
  2

2

1

2

 
(i.e. the observation method 

offered lower average cost and thus higher cost 
efficiency compared to the direct method) the cost 
efficiency of the posture assessment study would 
increase by using more observational assessments in 
the combined technique and would maximize by using 
only the observation method. Thus, while a combined 

measurement technique (i.e. 0 < f
1
<1 ) could not be 

suggested for minimizing the cost of achieving the 
required precision, after a certain point the cost could 
definitely be reduced by increasing the fraction of direct 
measurements. However, when the total number of 
measurements was predetermined, the fraction could 
be optimized for a constraint either in budget or in 
precision (cf. Table 2).  

By using a regression technique, the cost of the 
statistical production could be estimated / predicted for 
any fraction of direct measurement at a constant level 
of precision, and also for any level of precision at a 
constant fraction.  

5.1. Duality in Cost-Precision Association  

Resolving the cost function (10) with respect to 
precision, we obtain the precision of the combined 
mean as a function of total cost and other parameters: 

Table 2: Calculation of Total Cost (TC), Precision of Combined Mean (P), and the Cost of Improving Precision by One 
Unit Compared to the First Alternative (MCBR). Costs are in SEK 

N f
1

 1 f
1
 n

1
 n

2
 TC P MCBR 

100 0 1 0 100 76500 1.478 0 

100 0.05 0.95 5 95 80550 1.508 133068 

100 0.1 0.9 10 90 84600 1.540 125011 

100 0.15 0.85 15 85 88650 1.575 117123 

100 0.2 0.8 20 80 92700 1.612 109408 

100 0.25 0.75 25 75 96750 1.652 101870 

100 0.3 0.7 30 70 100800 1.695 94514 

100 0.35 0.65 35 65 104850 1.741 87344 

100 0.4 0.6 40 60 108900 1.791 80364 

100 0.45 0.55 45 55 112950 1.846 73581 

100 0.5 0.5 50 50 117000 1.907 67000 

100 0.55 0.45 55 45 121050 1.974 60627 

100 0.6 0.4 60 40 125100 2.048 54470 

100 0.65 0.35 65 35 129150 2.132 48536 

100 0.7 0.3 70 30 133200 2.226 42834 

100 0.75 0.25 75 25 137250 2.334 37374 

100 0.8 0.2 80 20 141300 2.460 32168 

100 0.85 0.15 85 15 145350 2.609 27227 

100 0.9 0.1 90 10 149400 2.789 22567 

100 0.95 0.05 95 5 153450 3.011 18206 

100 1 0 100 0 157500 3.297 14166 
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Thus we can calculate the precision of the mean 
estimate for different combinations (i.e. different values 
of f

1
) subject to a predetermined research budget. The 

results here would be the converse of those obtained 
when considering the situation with a predetermined 
precision: the budget-constrained precision would 
decrease as the fraction of direct measurements was 
increased from 0 to 0.15, but increase as the fraction 
was increased further from 0.15 to 1.00. 

5.2. Diseconomies of Scale  

The precision of the combined mean estimate 
expressed as equation (5) is increasing in 
measurement inputs n1 and n2 but at a decreasing rate; 
that is, the statistical production technology is 
characterized by decreasing returns to scale. This 
property results in a cost that grows exponentially with 
the precision, so that the marginal cost of precision is 
twice the average total cost. However, since the 
precision of the combined mean is not valued in the 
same terms as the cost, one should be careful with the 
conclusion that the statistical production technology 
exhibits diseconomies of scale. Thus, any combined 
measurement technique provided by determining the 
fraction of direct measurements would demonstrate 
decreasing returns to scale, which does also mean that 
the marginal cost is greater than the average total cost 
(cf. equations (11) and (12)).  

5.3. Allocation in Long-Run Exposure Assessment 
Studies 

The solution of the allocation problem requires 
enough information on the constant parameters, such 
as costs and variances associated with the two 
independent measurement methods. The variable cost 
for each technical method usually consists of all costs 
that vary with the number of measurements. In long-run 
data production, no fixed costs are considered because 
all costs vary. Distinguishing between long-run and 
short-run data production in exposure assessment 
studies is therefore very important when attempting to 
evaluate alternative measurement methods 
economically. The basic assumption in optimizing the 
combined technique was that the exposure 
assessment study was carried out in the long-run case; 
that is, where both types of measurements were 
allowed to vary. However, in a short-run exposure 
assessment study, where one type of measurement is 

fixed, the derived cost function cannot be used to find 
the appropriate combined technique.  

In short-run studies, when fixed costs are of major 
importance in any economic decision, a comparison 
analysis of alternative measurement methods could be 
used to identify the measurement method that is 
relatively most cost-efficient [13, 18, 19], or the cost 
function could be rearranged in order to determine the 
variable input in terms of the fixed input. Thus, if the 
researcher is only allowed to adjust one of the 
measurement methods (short-run decision), the 
demand function will be dependent on the amount of 
the fixed input in addition to the input prices and the 
precision. 

5.4. Model for Estimating Total Variable Cost 

As pointed out above, the allocation problem was 
reasonably resolved in the case of a long-run exposure 
assessment study; and thus the isocost line equation 
(6) consisted of stable average variable costs with 
linear characteristics. When the average costs are 
unstable due to a typically fast labour productivity 
growth at the beginning of a statistical production, the 
average costs develop non-linearly with the number of 
measurements/estimates. In the long run, however, the 
average cost will not develop non-linearly, as the 
labour productivity growth in exposure measurements 
usually smoothes out and becomes stable. The long 
run cost minimization problem should thus be resolved 
by using the equation (6) and the stable average unit 
costs of a direct measurement and an indirect estimate.  

5.5. The Impact of Systematic Errors  

In this study, the ability of the combined 
measurement technique to produce information on 
exposure was evaluated by using the combined mean 
variance (3). However, systematic errors (bias) 
produced by the measurement methods, which reduce 
this ability, would influence the results. Reducing the 
measurement bias associated with an indirect 
subjective method and/or the selection bias associated 
with direct technical methods can be a reason in itself 
to use a combined technique [23]. However, the 
applied error equation, and thus the derived functions, 
did not account for any ‘constant’ error associated with 
the composited inputs. To get the cost function to 
include systematic errors, the mean square error of the 
combined mean, MSE μ

c
( ) , containing the systematic 

errors produced by the techniques (
  
B

1

2

 
and 

  
B

2

2 ) can 

replace the applied variance formula (3) in the cost-
efficiency analysis. 
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5.6. Minimizing the Cost of a Combined Technique 
for an Indefinite N: A Recommendation 

Differentiating the cost function (10) with respect 
to

  
f
1
, and equating this to zero, the optimized fraction 

of direct measurements is obtained as follows: 
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provided the following conditions to satisfy 
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By substituting (20) into the cost function (10) to 
minimize the cost of achieving a required precision by 
using a combined technology, the following optimal 
(value) function (cost function) is obtained: 
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However, a (minimized) cost function has to be 
concave in c – that is, 

  
2
C(c, P) c

i

2 0
 
must hold – 

which does not apply to the function (22). It is worth 
noting that the underlying precision formula does not 
provide a quasi-convex isoquant curve, which contains 
all combinations of direct and indirect measurements 
giving the same precision. Thus, the isoquant curve 
has no minimizing point. The cost of the combined 
assessment technique can, however, be minimized 
when an appropriate function is used to estimate the 
value of information (VOI) produced by direct 
measurements and indirect estimates. The function 
should provide a quasi-convex isoquant. The VOI is the 
amount of money a decision maker would be willing to 
pay for information prior to making an economic 
decision. Regarding exposure assessment studies, the 
statistical efficiency (precision and/or accuracy) is only 
one factor determining the amount of money a decision 
maker would be willing to pay; the value of information 
produced is also determined by the usefulness of the 
information in further research and the expected social 
benefit of the exposure assessment study. Thus, we 
recommend that the output of the statistical production 
(i.e. the value of information produced by the combined 
technique) is estimated by using the following CES 
production function: 

Y = A n
1

+ 1( ) n
2

1

       (23) 

Here,   A > 0  exhibits the technological effect on the 
output Y (in this case, the productivity of the combined 
technique); n1 and n2 are the numbers of direct and 
indirect measurements, respectively; the distribution 
parameter being bounded between zero and unity, 
0 1 , reflects the intensity of direct technique in the 
statistical production; and 

 
1  is a constant 

reflecting the output elasticities of inputs. 

The Lagrangian for resolving the cost minimization 
problem of the combined technique is: 

  

L n
1
,n

2
,( ) = n

1
c

1
+ n

2
c

2

n
1

+ 1( ) n
2

1

Y
0

,      (24) 

where c
1  

and c
2  

are the average unit costs of a direct 

and an indirect measurement, respectively, and  is the 
Lagrange multiplier. 

The first-order conditions lead to the optimization 
condition as follows: 
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which can be rearranged as the following logarithmic 
regression equation to estimate the elasticity of 

substitution 

 

=
1
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between n1 and n2: 
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The optimization condition is used to derive the 
conditional demand functions for n1 and n2, and by 
substituting the demand functions into the isocost 
equation, we obtain the optimal (value) function (cost 

function) which relates the minimized cost to c
1  

and 
  
c

2
, 

as well as to the required value of information 
produced: 
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where C is the total cost; K is a function of A; a and b 
are function of ; k is a function of ; and  is the 
returns to scale. Hence the cost function above is 
concave in c. 



Optimizing the Fraction of Expensive Direct Measurements International Journal of Statistics in Medical Research, 2014 Vol. 3, No. 1      53 

6. CONCLUSION  

When combining an expensive direct technical 
method with an inexpensive subjective method in an 
exposure assessment study, increasing the fraction of 
expensive direct measurements can, unexpectedly, 
reduce the cost of achieving a desired level of 
precision. Thus, the average cost of an exposure 
measurement is not the determining factor in cost 
efficiency analysis; the decisive factor is the average 
and marginal cost of precision. In principle, if a SEK 
spent on direct measurements is more productive than 
a SEK spent on indirect estimates, the decision-maker 
will want to use more direct measurements.  
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