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Abstract: The article focuses on the discussion of basic approaches to hypotheses testing, which are Fisher, Jeffreys, 
Neyman, Berger approaches and a new one proposed by the author of this paper and called the constrained Bayesian 

method (CBM). Wald and Berger sequential tests and the test based on CBM are presented also. The positive and 
negative aspects of these approaches are considered on the basis of computed examples. Namely, it is shown that CBM 
has all positive characteristics of the above-listed methods. It is a data-dependent measure like Fisher’s test for making a 

decision, uses a posteriori probabilities like the Jeffreys test and computes error probabilities Type I and Type II like the 
Neyman-Pearson’s approach does. Combination of these properties assigns new properties to the decision regions of 
the offered method. In CBM the observation space contains regions for making the decision and regions for no-making 

the decision. The regions for no-making the decision are separated into the regions of impossibility of making a decision 
and the regions of impossibility of making a unique decision. These properties bring the statistical hypotheses testing 
rule in CBM much closer to the everyday decision-making rule when, at shortage of necessary information, the 

acceptance of one of made suppositions is not compulsory. Computed practical examples clearly demonstrate high 
quality and reliability of CBM. In critical situations, when other tests give opposite decisions, it gives the most logical 
decision. Moreover, for any information on the basis of which the decision is made, the set of error probabilities is 

defined for which the decision with given reliability is possible. 
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1. INTRODUCTION 

One of the basic branches of statistical science is 
the theory of hypotheses testing which involves 
deciding on the plausibility of two or more hypothetical 
models based on some data. The modern theory of 
hypotheses testing began with Student’s discovery of 
the  t  test in 1908 [42]. This was followed by Fisher 
(1925), who created a new paradigm for hypothesis 
testing. The Fisher’s criteria for the observation result 

 x  is based on p value = P(X = x
i
| H )

i

 (for 

discrete random variable) or 

p value = p(x | H )dx
G

 (for continuous random 

variable)  G R ,  R  is the observation space, where 

 X  is the suitable random variable and 
  
p(x | H )  is the 

probability distribution density of  X  at hypothesis  H  

[17]. For appropriate values 
 
x

i
 or sub-space  G , 

hypothesis  H  is rejected. In particular, if the 
 
p -value 

is less than or equal to , the null hypothesis is 

rejected. The  level rejection region is defined as a 

set of all data points that have a 
 
p -value less than or 

equal to . The philosophical basis of the Fisherian 

test consists in the examination of the extent to which 
the data contradict the model corresponding to the test 
hypothesis.  
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A question that Fisher did not raise was the origin of 
his test statistics: Why these rather than some others? 
This is the question that Neyman and Pearson 
considered [46, 47]. Their solution involved not only the 
hypothesis but also a class of possible alternatives and 
the probabilities of two kinds of errors: false rejection 
(Error I) and false acceptance (Error II) [42]. The “best” 
test was the one that minimized the probability of an 
alternative at validity of the basic hypothesis (Error II) 
subject to a bound on probability of the basic 
hypothesis at validity of the alternative (Error I). The 
latter is the significance level of the test. They 
completely solved the problem for the case of testing a 
simple hypothesis against a simple alternative by 
means of the Neyman-Pearson lemma. Later it was 
generalized for any number of simple hypotheses [48]. 
For more complex situations, the theory required 
additional efforts, which was realized by a number of 
researchers (see, for example, [2, 5, 8, 9, 43, 59]). The 
basic idea of Neyman-Pearson criteria is to reject the 

null hypothesis when the likelihood ratio 
  
f

A
(x) / f

H
(x)  

exceeds the constant, where 
  
f

A
(x)  and 

  
f
H

(x)  are 

probability distribution densities of  X  at alternative and 
basic hypotheses respectively. The test minimizes the 
probability of accepting the hypothesis when it is 
erroneous subject to the probability of rejecting the 
hypothesis when it is correct. Because Neyman’s 
justification for this procedure was the frequentist 
principle, it is often called the frequentist method. 

There have been many attempts to modify the 
classical frequentist approach by incorporating data-
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dependent procedures which are based on 
conditioning. Earlier works in this direction were 
summarized by Kiefer (1977), and Berger & Wolpert 
(1988). In works [11, 41] the conditional frequentist 
approach was formalized. The basic idea of this 
approach is to condition on a statistic measuring the 
evidential strength of the data, and then to provide 
error probabilities conditional on the observed value of 
this statistic. Unfortunately, the approach never 
achieved substantial popularity, in part because of the 
difficulty of choosing the statistic upon which to 
condition, especially for multivariate cases [3, 39]. 

In [6, 7, 20, 19] the authors reviewed the practicality 
of the 

 
p -value and explored the dramatic conflict 

between the 
 
p -value and other data-dependent 

measures of evidence. Indeed, they demonstrated that 
the 

 
p -value could be highly misleading as the measure 

of evidence provided by the data against the null 
hypothesis. In [45] this suggestion is essentially 
strengthened as there is said “It is clear that the 
enormous success of the 

 
p -values in the realm of 

applications is partially due to their simplicity for 
scientific communication, but the bad news is that such 
a simplicity may be misleading.”  

In [42], the Fisher and Neyman-Pearson 

approaches to testing statistical hypotheses are 

compared with respect to their attitudes to the 

interpretation of the outcome, to power, to conditioning, 

and to the use of fixed significance levels. It is argued 

that despite basic philosophical differences, in their 

main practical aspects the two theories are 

complementary rather than contradictory and that a 

unified approach is possible that combines the best 

features of both. Unfortunately, not many of authors 

share such optimism. In particular, in [29] it is stated 

that the Neyman-Pearson test and the Fisherian test 

are not comparable procedures. The Neyman-Pearson 

testing is designed to detect optimally some alternative 

hypothesis while the Fisherian testing makes no 

reference to any alternative hypothesis.  

A prominent alternative approach to testing is the 
Bayesian approach introduced by Jeffreys [31]. It is 
based on the most extreme form of conditioning, 
namely, conditioning on the given data. The essence of 
the Bayesian approach is [2]: to define the likelihood 

ratio 
  
B (x) = f

A
(x) / f

H
(x) ; to accept the alternative 

hypothesis if B (x) >1 ; to report the posterior 

probabilities of the hypotheses 

  
P(H | x) = B (x) / (1+B (x))  or 

  
P( A | x) = 1/ (1+B (x))  

which have been obtained on the basis of assigning the 

equal prior probabilities of  1 / 2  to the two hypotheses 

and applying the Bayes theorem. 

There have been many attempts (see, for example 

[3, 25]) to suggest compromises between the Bayesian 

and the frequentist approaches. The testing of simple 

versus simple hypotheses was considered in [5]. The 

method was generalized to testing a precise null 

hypothesis versus a composite alternative hypothesis 

in [3, 4]. In these papers, it was shown that the 

conditional frequentist method could be made 

equivalent to the Bayesian method. This was done by 

finding a conditioning statistic, which allowed an 

agreement between the two approaches. The error 

probabilities reported by the conditional frequentist 

using some conditioning strategy are the same as the 

posterior probabilities of the relevant errors reported by 

the Bayesian. The development of this approach was 

continued in [18], where testing of a composite null 

hypothesis versus a composite alternative was 

considered when both had related invariance 

structures.  

The conclusion of [17] is that Fisherian testing is not 

a competitor to Neyman-Pearson or Bayesian testing 

because it examines a different problem. Similarly to 

[8], here it is concluded that Bayesian testing is 

preferable to Neyman-Pearson testing as a procedure 

for deciding between alternative hypotheses. On the 

other hand, in [57] it was suggested that frequentist 

and Bayesian multiple testing analyses did not need to 

be grossly disparate.  

In [30], the Neyman-Pearson, 
 
p -value and 

Bayesian methods of hypotheses testing were 
considered. The positive and negative points of these 
approaches were described depending on the loss 
function used for making the decision. Also, a good 
reference was given for making such a comparison. In 
particular, it was concluded that the Bayes rules with 
respect to losses  

  
L

k
( , ) = I

0

( ) (x)
k

,k = 1,2,  

where 
  
I

0

( )  denotes the indicator of a set 
 0

 and 

  
(x)  is the decision rule, with   k = 1 , are Neyman-

Pearson-type solutions. 

In [15, 51] Bayesian and 
 
p -value methods were 

compared, and it was concluded that they were 
essentially different. In the one-sided problem, the 

 
p -

value is a limit of Bayes rules, but, in the two-sided 
case, they significantly differ from each other [6, 7, 15]. 
Though, even in the two-sided case, the 

 
p -value could 

be a viable measure of evidence against H
0

 (basic 
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hypothesis). It was also noted that “A strict Neyman-
Pearson frequentist despises 

 
p -values with even more 

fervor than a Bayesian, as 
 
p -values have no real roots 

in frequentist theory. However, through their 
widespread use, they are closely associated with 
classical, rather than Bayesian, statistics. …The 
problem here is that many users implicitly and wrongly 
assume that any optimality derived from the Neyman-
Pearson lemma can be transferred to data-dependent 
measures of accuracy”. A more complete comparison 
of 

 
p -values versus Neyman-Pearson rules is given in 

[16].  

The extended criticism of 
 
p -value methods is given 

in [12], and Bayesian Reference Criterion (BRC) and its 
investigation results are offered. The BRC indicates 

that the null model M
0
 should only be rejected if the 

posterior expected loss of information from using the 

simplified model M
0
 is too large or, equivalently, if the 

associated expected average log-likelihood ratio is 
large enough. In [11] it was suggested that the 
Bayesian interpretation of classical, i.e. frequentist 
hypothesis testing is possible by providing the one-to-
one approximate relationship between significance 
levels and posterior probabilities.  

In [2, 3, 5], for the purpose of finding the 
compromise between frequentist and Bayesian 
methods, a new conditional test which gave the region 
of acceptance of null hypothesis, the region of 
acceptance of alternative hypothesis and the region of 
making no decision were offered. In [3] it was 
mentioned that “In practice the no-decision region is 
typically innocuous, corresponding to a region in which 
virtually no statistician would feel that the evidence is 
strong enough for a conclusive decision… In some 
settings, even unconditional frequentists should 
probably introduce a no-decision region to avoid 
paradoxical behavior.” The article [2] was focused on 
the discussion of the conditional frequentist approach 
to testing, which was argued to provide the basis for 
methodological unification of Fisher, Jeffreys and 
Neyman approaches. In that paper, the author 
considers the positive and negative points of three 
different philosophies of hypotheses testing. An attempt 
to reconcile these different points of view was realized 
and as a result there was offered a new, compromise 

 T
C

 method of testing which used Fisher’s 
 
p -value 

criterion for making a decision, Neyman-Pearson’s 
statement (using basic and alternative hypotheses) and 
Jeffrey’s formulae for computing the Type I and Type II 
conditional error probabilities for every observation 
result x  on the basis of which the decision is made. 
Despite such a noble aim, the scientific community met 
this attempt not identically, as it is seen from the 
comments attached to the paper. In our opinion, 
despite some inconveniences in some specific cases, 

the offered method is interesting and deserves 
attention, and can be usefully used for solving many 
practical problems.  

The authors of the paper [45] revised the basic 
aspects of hypothesis testing for both the frequentist 
and Bayesian procedures and discussed the variable 
selection problem in normal linear regression for which 
the discrepancies were more apparent. On the basis of 
this analysis, they arrived to the conclusion 
diametrically opposite to the one made in the 
previously mentioned paper that were existed profound 
disagreement between the two approaches. It should 
be noted that we disagree with this opinion, because 
the results reported in [32, 34, 36, 38, 39] show that the 
Bayesian statement of hypotheses testing as a 
constrained optimization problem allows combining the 
best features of both Bayesian and Neyman-Pearson 
approaches. Moreover, it is the data-dependent 
method similar to the Fisher’s test and gives a decision 
rule with new, more common properties than a usual 
decision rule does, similarly to the decision rule of 

Berger’s T
C

 method. A brief description of this 
statement and its solution are given below in Section 2.  

In the works considered above (except of author’s 
works), as a rule, there are considered the cases when 
the number of hypotheses is not more than two and 
often their generalization for any number of hypotheses 
is vague. But in many cases, when solving the practical 
problems, it is necessary to consider more than two 
hypotheses. In [52, 53] a review of multiple hypotheses 
testing methods is given and special problems arising 
from the multiple aspect are considered. As was 
mentioned “… except in the ranking and selection area, 
there were no other than [44] book-length treatments 
until 1986, when a series of book-length publications 
began to appear [1, 13, 26, 27, 28, 40, 54, 58].” On the 
basis of these books and a set of reviewed papers, two 
types of methods were discussed in detail: (a) the 
methods based on ordered 

 
p -values and (b) the 

comparison among normally distributed means. More 
particularly, 

 
p -values and adjusted 

 
p -values methods, 

methods based on ordered 
 
p -values, the simple 

Bonferroni method, the Holm’s sequentially rejective 
Bonferroni method, methods based on the Simes 
equality, the Hochberg’s multiple test procedure and 
the Hommel’s multiple test procedure and their 
comparison were considered. On the basis of the 
analysis, there was made the conclusion that the 
considered methods were completely general, both 
with respect to the types of hypotheses and the 
distributions of test statistics, and, except for some 
results related to the independence of statistics, they 
utilized only the individual marginal distributions of 
those statistics. Different aspects of multiple 
hypotheses testing using classical methods and 
consideration of the obtained results were given in [21, 
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23, 24]. In [49] it was stated that, when contrasts or 
other tests of significance could be ordered according 
to their importance, adjusted 

 
p -values could be 

computed that permitted greater power to be brought to 
bear on contrasts of greater interest or importance. 
New methods of hypotheses testing called constrained 
Bayesian methods (CBM) were offered in [33, 34, 36, 
38, 39]. They incorporate different aspects of above-
considered classical approaches. In particular, they use 
the Neyman-Pearson constrained optimization 
statement for Bayesian formulation and get data-
dependent measures of evidence with regard to the 
level of restriction. They are optimum in the sense of 
the chosen criterion and convenient for testing any 
number of hypotheses.  

From the abovementioned, it is evident that there is 
no consensus on complete difference of the considered 
approaches or their identity, and also on the existence 
of the best procedure of hypotheses testing. As it 
seems the reason is, first of all, the absence of a 
universal, perfect in all aspects method which gives the 
most powerful results for any probable statistical 
hypotheses and, secondly, despite a great number of 
investigations, all aspects of the existing methods have 
not been investigated completely yet. For filling this gap 
even partly, the results of comparison of well-known 
and widespread methods such as 

 
p -value, Neyman-

Pearson and Bayesian criteria and comparatively new 

methods such as Berger’s  T
C

 and CBM are presented 
below (see Section 3). Also the comparison of 

sequential Wald test and based on the Berger’s   T
*

 
test and CBM is given in Section 4. In Section 2 the 
investigated parallel methods of hypotheses testing are 
briefly described. The description of the investigated 
sequential methods is given in the beginning of Section 
4.  

Because of the difficulty of theoretical overcoming of 

the stated problem, the comparative analyses of the 

considered methods are basically realized by the 

consideration of concrete examples. Not to make this 

paper enormous, we shall restrict our consideration of 

the above-mentioned methods and postpone the 

consideration of multiple methods, such as Bonferroni, 

Holm’s and other ones for future.  

2. DESCRIPTION OF THE INVESTIGATED 
METHODS OF HYPOTHESES TESTING 

As follows from the above reasoning, there exist 
three basic ideas of hypotheses testing [2]: the Fisher, 
the Neyman-Pearson and the Jeffreys ones. An 
attempt to reconcile these different points of view was 
made in [2], and as a result there was offered a new, 

compromise T
C

 method of testing. The method uses 

the Fisher’s 
 
p -value criterion for making a decision, 

the Neyman-Pearson’s statement (using basic and 
alternative hypotheses) and Jeffrey’s formulae for 
computing the Type I and Type II conditional error 
probabilities for every observation result  x  on the basis 
of which the decision is made. A new approach to 
hypotheses testing based on the Neyman-Pearson 
constrained optimization statement for Bayesian 
formulation was offered in [33, 34, 36, 38, 39]. It 
generates data-dependent measures of evidence with 
regard to the level of restriction. Its acronym CBM was 
introduced above. In spite of absolutely different 

motivations of introduction of T
C

 and CBM, they lead 
to the hypotheses acceptance regions with identical 
properties in principle. Namely, in despite of the 
classical cases when the observation space is divided 
into two complementary sub-spaces for acceptance 
and rejection of tested hypotheses, here the 
observation space contains the regions for making the 
decision and the regions for no-making the decision. 
Though, for CBM, the situation is more differentiated 

than for  T
C

. For CBM the regions for no-making the 
decision are divided into the regions of impossibility of 
making the decision and the regions of impossibility of 
making unique decision. In the first case, the 
impossibility of making the decision is equivalent to the 
impossibility of making the decision with given 
probability of the error for a given observation result, 
and it becomes possible when the probability of the 
error decreases. In the second case, it is impossible to 
make a unique decision when the probability of the 
error is required to be small, and it is unattainable for 
the given observation result. By increasing the error 
probability, it becomes possible to make a decision.  

In our opinion these properties of  T
C

 and CBM are 
very interesting and useful. They bring the statistical 
hypotheses testing rule much close to the everyday 
decision-making rule when, at shortage of necessary 
information, acceptance of one of made suppositions is 
not compulsory. 

As was mentioned above, our aim is to compare the 
listed methods for elucidation of their positive and 
negative points and revealing the best one if such 
exists. For this reason, let us introduce a brief formal 
description of these methods. The 

 
p -value, the 

frequentist, the Bayes and  T
C

 methods are described 
below in accordance with [2, 18]. CBM is presented in 
accordance with [36, 39].  

P-Value Method (The Fisher’s Method) 

Let us suppose that the observation result 

X ~ f (x | ) , and it is necessary to test hypothesis 

  
H

0
: =

0
. Let us choose the test statistic T = t(X )  

such that large values of  T  reflects evidence against 
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H
0

. After computing the 
 
p -value 

  
p = P(t( X ) t(x) | H

0
) , hypothesis 

  
H

0
 will be rejected 

if 
 
p  is small.  

 Some methods of generalization of this approach 
for multiple hypotheses are briefly mentioned above.  

The Frequentist Method (The Neyman-Pearson’s 
Method) 

For the Neyman-Pearson (N-P) criterion for test a 

null hypothesis, H
0
: =

0
, it is necessary to form 

some alternative hypothesis, for instance, 
  
H

A
: =

A
, 

  A
>

0
. The null hypothesis rejection region has the 

form T c  and otherwise it is accepted. Here  c  is the 
critical value defined from the condition 

= P(T c | H
0
) . Quantity  is the Type I error 

probability, while the Type II error probability is 

calculated as 
  

= P(T < c | H
A

) . 

Generalization of this method for multiple 
hypotheses, as was mentioned above, is given by 
generalized Neyman-Pearson lemma [48].  

The Bayes Method (The Jeffrey’s Method) 

Let us define the Bayes factor (or likelihood ratio) 

  
B(x) = f (x |

0
) / f (x |

A
) . 

Hypothesis H
0

 rejection region is defined as 

  
B(x) 1 , and its acceptance region is 

  
B(x) >1 . The 

posterior probabilities of the hypotheses are calculated 
as 

P(H
0
| x) = (B(x)) = B(x) / (1+ B(x))  

and  

  
P(H

A
| x) = (B(x)) = 1/ (1+ B(x)) , 

based on assigning equal prior probabilities of  1 / 2  to 

the two hypotheses and applying the Bayes theorem. 

The total risk of making a decision is 

  

r = p(
0
) f (x |

0
)dx

B(x) 1
+ p(

A
) f (x |

A
)dx

B(x)>1
=

= p(
0
)P(B(x) 1| H

0
) + p(

A
)P(B(x) >1| H

A
) =

= p(
0
) + p(

A
) =

+

2
,

 

where 
  
p(

0
)  and 

  
p(

A
)  are a priori probabilities of the 

hypothetical values of distribution parameters, taken 

equal to each other;  and  are the Type I and Type 

II error probabilities, respectively. 

Here is supposed that the losses of making 
erroneous decision for both hypotheses are equal to 
each other and are equal to unit.  

Generalization of the Bayes method for multiple 
hypotheses is given, for example, in [33, 38, 50].  

The Conditional Test  T
C

 (The Berger’s Method) 

The considered test has the following form 

TC =

if B(x) c
0
, reject H

0
and report

conditional error probability (CEP) (x) =
B(x)

1+ B(x)
,

if B(x) > c
0
, accept H

0
and report CEP (x) =

1

1+ B(x)
,

 

where 
  
B(x)  is the likelihood ratio, and c

0
 is the 

minimax critical value defined as  

  
P(B(x) < c | H

0
) = 1 P(B(x) < c | H

1
) .         (1) 

The Modified Conditional Test   T
*

 

The test consists in the following 

T * =

if B(x) r, reject H
0
and report conditional error

probability (CEP) (B(x)) = B(x) / (1+ B(x)),

if r < B(x) < a make no decision,

if B(x) a, accept H
0
and report

CEP (x) = 1/ (1+ B(x)),

 

where  a  and  r  are defined as follows 

  r = 1  and a = F
0

1(1 F
A
(1))  if 

  
F

0
(1) 1 F

A
(1) , 

  
r = F

A

1(1 F
0
(1))  and   a = 1  if 

  
F

0
(1) >1 F

A
(1) , (2) 

where 
  
F

0
 and 

 
F

A
 are the c.d.f. of 

  
B( X )  under 

  
p(x | H

0
)  and 

  
p(x | H

A
) , respectively.  

Constrained Bayesian Method (CBM) 

Let us consider a set of hypotheses 
 
H

i
, 

  i = 1,...,S (  S 2 ), involving that the random vector  X  is 

distributed by the law 
  
p(x,

i
) , i.e. 

  
H

i
: X ~ p(x,

i
) p(x | H

i
) ; 

  
p(H

i
)  is a priori probability 

of hypothesis H
i
; 

i
 is the region of acceptance of H

i
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(
i
 belongs to the observation space of random 

variable X , i.e. 
i
R
n , where  n  is the dimension of 

the observation vector). The decision is made on the 

basis of 
   
x

T
= (x

1
,..., x

n
) , the measured value of the 

random vector  X . It is possible to formulate different 
constrained tasks of testing the considered hypotheses 
[38]. Here we consider only one of them, namely the 
task with restrictions on the averaged probability of 
rejection of true hypotheses. The essence of this 
method is the minimization of the averaged probability 
of incorrect acceptance of hypotheses at restriction of 
the averaged probability of rejection of true 
hypotheses, i.e. 

   

1 p(H
i
)P(X

i
| H

i
)

i=1

S
min
{

i
}

,         (3) 

subject to 

   
p(H

i
) P(X

j
| H

i
)

j=1, j i

S

i=1

S
.         (4) 

Solution of task (3) and (4) is [34, 38] 

j
={x : p(H

j
)p(x | H

j
) > p(H

i
)p(x | H

i
)

i=1,i j

S
} , 

j = 1,...,S .            (5)  

Coefficient  is the same for all regions of 

acceptance of hypotheses, and it is determined so that 
in (4) the equality takes place.  

When the number of hypotheses is equal to two and 

their a priori probabilities are equal to 1/ 2 , solution (5) 

can be rewritten using the Bayes factor: the hypothesis 

  
H

0
 rejection region is defined as 

   
B(x) , and the 

alternative hypothesis rejection region is 
   
B(x) 1 / .  

Probabilities (3) and (4) take the forms 

1 (P(B(x) > | H
0
) + P(B(x) <1/ | H

A
)) / 2 min

0
,
A{ }

, (6) 

and 

   
(P(B(x) > | H

A
) + P(B(x) <1/ | H

0
)) / 2 , (7) 

respectively. 

The posterior probabilities of the hypotheses are 
calculated similarly to the above given Bayes method. 

The probabilities of incorrect rejection of basic and 
alternative hypotheses when they are true are 

0
= P(B(x) | H

0
) = 1 P(B(x) > | H

0
)  

and  

   A
= P(B(x) 1 / | H

A
) = 1 P(B(x) <1/ | H

A
) , 

respectively, and the probabilities of incorrect 
acceptance of hypotheses when they are erroneous 

are 
   0

= P(B(x) > | H
A

)  and 
   A

= P(B(x) <1/ | H
0
) , 

respectively. 

It is clear that, at = 1 , CBM completely coincides 

with the Bayes method but, at 1  it has new 

properties [36, 39]. Namely, when  <1  hypotheses 

acceptance regions intersect and for the data from this 
intersecting area it is impossible to make an 

unambiguous decision; when  >1  in the observation 

space here arise sub-region which does not belong to 
any hypothesis acceptance region and it is impossible 
to make a simple decision [36]. Therefore probabilities 
of errors of Types I and II are computed by the 
following ratios: 

at  = 1 , 

   0
= P(B(x) | H

0
) , 

   A
= P(B(x) 1 / | H

A
) , 

   0
= P(B(x) > | H

A
) , 

   A
= P(B(x) <1/ | H

0
) ; 

at  >1 , 

   0
= P(B(x) <1/ | H

0
) , 

   A
= P(B(x) > | H

A
) , 

0
= P(B(x) > | H

A
) , 

A
= P(B(x) <1/ | H

0
) ; 

at  <1 , 

   0
= P(B(x) | H

0
) , 

   A
= P(B(x) 1 / | H

A
) , 

   0
= P(B(x) 1 / | H

A
) , 

   A
= P(B(x) < | H

0
) . 

While the probabilities of making no decision are  

   
P(1 / B(x) | H

0
)  and 

   
P(1 / B(x) | H

A
)   

at  >1 , 

and  

   
P( < B(x) <1/ | H

0
)  and 

   
P( < B(x) < | H

A
)   

at <1 , 

respectively.  

Let us denote by  and  the probability of no 

accepting true hypothesis and the probability of 
accepting false hypothesis, respectively. Then, it is 
obvious that,  
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when  = 1 , 

 0
=

0
, 

 A
=

A
, 

 0
=

0
, 

 A
=

A
; 

when >1 ,  

0
=

0
+ P(1 / B(x) | H

0
) , 

   A
=

A
+ P(1 / B(x) | H

A
) , 

 0
=

0
, 

 A
=

A
; 

and when <1 ,  

0
=

0
+ P( B(x) 1 / | H

0
) , 

A
=

A
+ P( B(x) 1 / | H

A
) , 

0
=

0
, 

A
=

A
.  

As was mentioned in [18] (p. 196), “  T
*

 is an actual 

frequentist test; the reported CEPs, 
   

(B(x))  and 

   
(B(x)) , are conditional frequentist Type I and Type II 

error probabilities, conditional on the statistic we use to 
measure strength of evidence in the data. Furthermore, 

(B(x))  and (B(x))  will be seen to have the 

Bayesian interpretation of being (objective) posterior 

probabilities of H
0

 and H
A

, respectively. Thus,   T
*

 is 

simultaneously a conditional frequentist and a 
Bayesian test.” It is not difficult to be convinced that the 
same is true for the considered CBM. Generalization of 

the   T
*

 test for any number of hypotheses seems quite 
problematic. For the general case, it is possible only by 
simulation because the definition of exact distribution of 

   
B(x)  likelihood ratio for arbitrary hypothetical 

distributions is very difficult if not impossible. 
Generalization of CBM for any number of hypotheses 
does not represent any problem. It is stated and solved 
namely for the arbitrary number of hypotheses [34, 36, 
38, 39]. The properties of the decision rules are 
common and do not depend on the number of 

hypotheses.  

In [18] it is also noted that, because   T
*

 is a 
Bayesian test, it inherits many of the positive features 
of Bayesian tests; as the sample size grows, the test 
chooses the right model. If the data actually arise from 
the third model, the test chooses the hypothesis which 
is the closest to the true model in Kullback-Leibler 
divergence [10]. CBM has the same positive features 

that the   T
*

 test has and chooses the right model with 
greater reliability at the increasing sample size (see 
[39] and examples given below). If the data arise from 
the model which is not included in the hypothetical set 
of tested hypotheses and  is quite small in restriction 

(4), the CBM does not choose any tested hypotheses. 

3. THE RESULTS OF COMPARISON OF THE 
CONSIDERED METHODS 

For comparison of the above-described methods, let 
us consider concrete examples from (Berger, Brown & 

Wolpert, 1994). In particular, let us consider the 
following example. 

Example 1 [5]. Suppose that 
  
X

1
, 

  
X

2
,…,

 
X

n
 are 

i.i.d. 
  
N ( ,1)  and that it is desired to test 

  
H

0
: = 1  

versus 
  
H

A
: = 1 . Then 

  

B =

(2 ) 1/2 exp{
1

2
(x

i
+1)2}

(2 ) 1/2 exp{
1

2
(x

i
1)2}i=1

n

= exp{ 2nx}. 

Let us test the introduced hypotheses for   n = 4  and 
different  x . 

In the  T
C

 test, the threshold C
0

 is determined on 

the basis of condition (1) which, in the considered case, 
takes the form 

1
1

n
lnC

0
+ 2 =

1

n
lnC

0
2 , 

where  is the standard normal c.d.f. 

From here it is seen that C
0
= 1 . 

Thus the  T
C

 test completely coincides with the 
Bayes one. In both tests, the hypothesis acceptance 

regions are: if   B 1  (i.e   x 0 ), reject 
  
H

0
 and report 

error probability 

  

(B) =
B(x )

1+ B(x )
; if   B >1  (i.e   x < 0 ), 

accept 
  
H

0
 and report error probability 

  

(B) =
1

1+ B(x )
. 

Hereinafter, considering the concrete examples, we 
imply that the hypotheses are a priori identically 
probable. 

To concretize condition (2) for determination of the 

thresholds  r  and  a  in the   T
*

 test, we obtain 

  
F

0
(1) = 1 F

1
(1) = 1 (2) ,          (8) 

and from here it is obvious that   r = a = 1.  Thus the   T
*

 

test coincides with the  T
C

 and Bayes tests for the 
considered example.  

It is not difficult to be convinced that, for the 
considered example when the variance of the normal 
distribution does not depend on the hypothesis, 
independently from the hypothetical values of the 
parameter of the mathematical expectation , 

  
F

0
(1) = 1 F

A
(1)  always takes place and consequently 
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  r = a = 1 . Therefore, the   T
*

 test coincides with the  T
C

 
and Bayes tests.  

Let us determine the threshold  in CBM on the 

basis of condition (7). After simple transformations, we 
obtain  

 
= exp( (8+ 4 1( ))) .           (9) 

For probabilities of errors of Types I and II, in this 
case, we have  

at  = 1  

0
=

A
=

0
=

A
= 1 (2) ;       (10

1
) 

at  >1  

0
=

A
=

0
=

A
= 1

ln

4
+ 2 ;      (10

2
) 

at  <1  

  

0
=

A
=

0
=

A
=

ln

4
2 .      (10

3
) 

The probabilities of no accepting of hypotheses and 
suspicion on validity of both hypotheses are:  

at  >1  

   

P(1 / B(x) | H
0
) = P(1 / B(x) | H

A
) =

ln

4
+ 2

ln

4
+ 2

,  

at <1  

   

P( < B(x) <1/ | H
0
)= P( < B(x) <1/ | H

A
) =

ln

4
+ 2

ln

4
+ 2

,  

respectively. 

From (9) it is seen that the thresholds in the 
decision rule of CBM depend on the restriction of the 
averaged probability of incorrect rejection of 
hypotheses. The dependence of these thresholds, i.e. 

 and  1 / , on the probability  is shown in Figure 1. 

Here are also given different values of the likelihood 
ratio, which are used for making a decision. The 
computation results of the thresholds and error 
probabilities depending on  are given in Table 1. 

From here it is seen that, depending on the chosen 
restriction , the region of making the decision on the 

basis of likelihood ratio 
  
B(x )  is divided into three non-

intersecting sub-regions: sub-regions of acceptance of 
one of tested hypothesis, sub-region of not acceptance 
of the hypotheses and sub-region of the impossibility of 
acceptance of one hypothesis. Their union coincides 

with the domain of definition of 
  
B(x ) . 

 

Figure 1: Dependence of the thresholds  and 1/  on the probability  (see (9)) ( lam , lam1 1/ , Bx B(x ) ).  
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Table 1: Computed Values of the Thresholds, Error Probabilities and Probabilities of Making No Decision for Example 
1 

  1 /  =  

Prob. of 

 no decision   

0.0001 968.8075 0.00103 0.0001 0.38926 0.38936 0.0001 

0.0002 473.5868 0.00211 0.0002 0.32259 0.32279 0.0002 

0.0005 174.5318 0.00573 0.0005 0.23852 0.23902 0.0005 

0.001 78.32989 0.01277 0.001 0.18047 0.18147 0.001 

0.005 10.00732 0.09993 0.005 0.07220 0.0772 0.005 

0.006 7.75686 0.12892 0.006 0.06239 0.06839 0.006 

0.007 6.22799 0.16057 0.007 0.05445 0.06145 0.007 

0.008 5.13286 0.19482 0.008 0.04780 0.0558 0.008 

0.009 4.31662 0.23166 0.009 0.04209 0.05109 0.009 

0.01 3.68913 0.27107 0.01 0.03710 0.0471 0.01 

0.015 1.97459 0.50643 0.015 0.01863 0.03363 0.015 

0.016 1.78183 0.56122 0.016 0.01576 0.03176 0.016 

0.017 1.61654 0.61861 0.017 0.01306 0.03006 0.017 

0.018 1.4736 0.67861 0.018 0.01052 0.02852 0.018 

0.019 1.34907 0.74125 0.019 0.00811 0.02711 0.019 

0.02 1.23986 0.80654 0.02 0.00581 0.02581 0.02 

0.021 1.14348 0.87452 0.021 0.00362 0.02462 0.021 

0.022 1.05798 0.9452 0.022 0.00152 0.02352 0.022 

0.023 0.98174 1.0186 0.0225 0.00050 0.023 0.0225 

0.024 0.91345 1.09475 0.02156 0.00244 0.024 0.02156 

0.025 0.85202 1.17368 0.02067 0.00433 0.025 0.02067 

0.026 0.79655 1.25541 0.01985 0.00615 0.026 0.01985 

0.027 0.74628 1.33998 0.01908 0.00792 0.027 0.01908 

0.028 0.70057 1.4274 0.01836 0.00964 0.028 0.01836 

0.029 0.65888 1.51772 0.01768 0.01132 0.029 0.01768 

0.03 0.62075 1.61095 0.01704 0.01296 0.03 0.01704 

0.04 0.36889 2.71083 0.01225 0.02775 0.04 0.01225 

0.05 0.24157 4.13954 0.00926 0.04074 0.05 0.00926 

0.07 0.12284 8.14037 0.0058 0.06420 0.07 0.0058 

0.09 0.07158 13.97095 0.00392 0.08608 0.09 0.00392 

0.1 0.05648 17.70406 0.00328 0.09672 0.1 0.00328 

0.15 0.02119 47.19398 0.00152 0.14848 0.15 0.00152 

0.2 0.00972 102.875 0.00079 0.19921 0.2 0.00079 

0.25 0.00498 200.7461 0.00044 0.24958 0.25002 0.00044 

0.3 0.00273 365.9139 0.00025 0.29984 0.30009 0.00025 

0.4 0.00092 1082.049 0.00009 0.40035 0.40044 0.00009 

0.5 0.00034 2980.958 0.00003 0.49863 0.49866 0.00003 

0.6 0.00012 8212.301 0.00001 0.60140 0.60141 0.00001 

0.7 0.00004 24284.71 0 0.70252 0.70252 0 

0.8 0.00001 86377.71 0 0.81009 0.81009 0 
 



Comparison of Some Methods of Testing Statistical Hypotheses International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 2      183 

The dependences of the probabilities of errors 

Types I and II on the threshold  are shown in Figure 

2a. The appropriate computed values are given in 
Table 1. Here are also given the probabilities of making 

no decision depending on the threshold . From these 

data, it is seen that, when the probabilities of errors 
Types I and II are equal to 

= F
0
(1) = 1 F

1
(1) = 0.02275 , we have  = 1  and the 

probabilities of errors have the maximum values and 
the probability of making no decision is equal to zero 
(see Figure 2b). In this case, CBM coincides with the 

 T
C

,   T
*

 and Bayes tests with identical probabilities of 
errors of both types (see Eq. (8) and Eq. (10)). Though, 
in the general case, for arbitrary  the situation is 

more common, and, to each statistics  x , on the basis 
of which the decision is made, there corresponds a 

certain interval for , 
 

[
1
,

2
] , for which the right 

decision is made. For [
1
,
2
] , either both 

hypotheses are rejected (when the information 
contained in x  is insufficient for making the decision at 
the given level) or both hypotheses are suspected to be 
true (when the information contained in  x  is insufficient 
for making a unique decision at the given level). For 
that reason probabilities of errors of both types in CBM 

are less than in the  T
C

,   T
*

 and Bayes tests. 
Probability of making no decision is a measure 
characterizing a shortage of information for making a 
simple decision for chosen  for the given hypotheses. 

The results of testing of the hypotheses by the 
above-considered tests for different values of the 
statistics  x  are given in Table 2. The classical 
Neyman-Pearson test is defined with equal error 

probabilities, which gives the rejection and acceptance 

regions similar to  T
C

,   T
*

 and Bayes tests, but reports 
the error probabilities of Types I and II, 

= = 1 ( n) , equal to the same probabilities of 

CBM for  = 1  (
 
= 0.04550 ). There was also reported 

the 
 
p -value against 

  
H

0
 which was equal to 

  
1 ( n(x +1)) . Some of these data were taken from 

Table 1 in [5].  

It is seen from Table 2 that  T
C

,   T
*

, Bayes and 
Neyman-Pearson tests accept the alternative 
hypothesis on the basis of   x = 0  while there is no basis 
for such a decision. Both hypotheses are identically 
probable or are identically improbable. In this sense, 

the 
 
p -value test is more preferable as it rejects the H

0
 

hypothesis, to say nothing about 
 
H

A
. Though, the 

value of the probability 
 
p  does not give any 

information about the existence of other hypothesis 

identically probable to H
0

. In this situation, CBM gives 

the most logical answer, as it proves that both 
hypotheses are identically probable or identically 
improbable. For other values of the statistics  x , all 
considered tests make correct decisions with different 
error probabilities. But in these cases CBM also seems 
more preferable, as it simply defines the significance 
levels of the test for which it is possible to accept one 
of the tested hypotheses by statistics  x .  

It is evident that = =  and  changes 

similarly to the probability of no decision but it is shift to 
the positive side of the ordinate by the value of . If it 

 

Figure 2: The dependences of the probabilities of errors and making no decision on . 
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is necessary to have such a decision that not only  

and  do not surpass some * , but also , it is 

necessary to choose such  and, accordingly, such  

to which correspond * . It is obvious that in this 

case 
 

= <
* . For instance, in the considered 

example, if, for the statistics   x = 0.25 , it is necessary to 

have such a decision that 0.05 , we must take 

 
= 0.01  for CBM, to which corresponds the following: 

 = 3.68313 ,  1 / = 0.27107 ,  = 0.0471  and 

= = = 0.01 , i.e. 1 = 0.99  (see Table 1). In this 

case, CBM is a more powerful test than  T
C

,   T
*

 and 
Bayes tests. It is also a more powerful test than N-P by 

 and  but is a less powerful by .  

If we take 
 
= 0.02275 , then the parameters of CBM 

will be: = 1.00001 , 1/ = 0.99999 , = = =  

= 0.02275 , and CBM and N-P tests will have the 

identical probabilities of errors of both types, and they 

will surpass the  T
C

,   T
*

 and Bayes tests. For other 
values of  from the interval [0.007,0.05]  (see 

Table 1), CBM surpasses the N-P tests by  and  

but by  it is worse than the N-P test. For the sake of 

justice, it is necessary to note that to compare CBM 

with the N-P by  is not completely correct, as the N-

P has not region of making no decision, i.e. has not 

characteristic like .  

If the interval 
 
[

1
,

2
] , in which unique decisions are 

possible to accept, does not contain 
 

*  for which it is 

necessary to make a decision then we must act as 

follows. If 
 

*
>

2
, choose the value 

 2
 and say that 

this is the minimum possible significance level of the 

test for given information and make the decision for 
 2

. 

If *
<

1
, choose the value 

 1
 and say that this is the 

maximum possible significance level of the test for 

given information and make the decision for 
 1

. If 

*
[
1
,
2
] , make the decision for 

 

*  and say that this 

is the chosen significance level (or power (this depends 
on the kind of the considered task (see [34, 38]) of the 

test. In the considered case, 
 
(1 )  is the averaged 

power of the test (see (7)). 

In [5], for considering the  T
C

, N-P and 
 
p -value 

tests for Example 1, it was stated “The intuitive 

attractiveness of 
  

(B)  and 
  

(B)  is clear. If the data 

are x = 0 , intuition suggests that the evidence equally 

supports 
  
H

0
: = 1  and 

  
H

1
: = 1 ; 

  
(B)  and 

  
(B)  so 

indicate, while  and  (and p -value) do not. When 

x = 1 , in contrast, intuition would suggest 

overwhelming evidence for 
  
H

1
 (note that x = 1  is four 

standard deviation from  = 1 ); again 
  

(B)  and 
  

(B)  

reflect this.” There was also stated (see p. 1791) “Since 

 T
C

 is completely justified from all foundational 
perspectives and is as “data-adaptive” as the 

 
p -value, 

T
C

 is clearly to be preferred.” 

Applying these suggestions to the data given in 

Table 2, the advantage of CBM over  T
C

 and 
consequently over the other tests is evident.  

Let us consider the following example from [3].  

Example 2. Suppose   X > 0  and it is necessary to 

test H
0
: X ~ e

x  versus H
A
: X ~

1

2
e
x /2 . 

The likelihood ratio is B(x) = 2e x /2  and its range is 

the interval 
 
(0,2) .  

Let us concretize the above-considered tests for this 
example. Let us begin the consideration with CBM.  

Like in the previous case, let us consider the 
situation when the hypotheses are a priori identically 
probable. Condition (7) will be written as follows 

  
P(2e

X /2
> | H

A
) + P(2e

X /2
<1/ | H

0
) 2 .         (11) 

Thus we have the following decision rule: if 

  
B(x) = 2e

x /2
> , i.e. 

  

x < 2ln
2

, hypothesis 
  
H

0
 is 

accepted, if B(x) = 2e x /2
<1/ , i.e. 

  

x > 2ln
1

2

 

hypothesis 
 
H

A
 is accepted. It is clear that, if  = 1 , the 

hypotheses acceptance regions are mutually 
complementary, and CBM coincides with classical 

Bayes and N-P tests (see below). If <1 , the sub-

regions of impossibility of making unique decisions 

appear in the decision-making space, and, if >1 , the 

sub-regions of impossibility of making decision appear 
in the decision-making space.  

After simple transformations, we obtain from (11)  

=
1

2 4
+
1

8
2

.         (12)  

The graph of dependence (12) is shown in Figure 3. 
From here it is seen that the inverse proportional 

dependence exists between  and .  

Since  > 0  at 0 1 , the value of the threshold 

 changes in the interval [0.4516,2.1121] . Thus, for the 
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given value of , we find a positive solution of 

equation (12) with regard to  (which is in the interval 

 
[0.4516,2.0] ), and the thresholds  and  1 /  

determine the regions of acceptance of tested 
hypotheses. By these thresholds, the probabilities of 
errors Type I and Type II are also determined  

at  = 1  

  
0
=

A
=

1

4
2
= 0.25 , 

A
=

0
= 1

2
= 0.5 ; 

at  >1  ( 1< 2.1121 ) 

  
0
=

A
=

1

4
2

, 

  

A
=

0
=

1
2

, if 1< 2,

0, if 2 < 2.1121;

 

at  <1  ( 0 <1 ) 

  
0
=

A
=

2

4
, 

  

A
=

0
=

0, if 0 0.5,

1
1

2
if 0.5 < <1.

 

The probabilities of no accepting of hypotheses and 
suspicion on validity of both hypotheses are: 

at  >1  ( 1< 2.1121 ) 

   

P( 2 ln
2
< x < 2ln 2 | H

0
) =

4 1

4 2
, if 1< 2,

1
1

(2 )2
, if 2 < 2.1121,

 

   

P( 2 ln
2
< x < 2ln 2 | H

A
) =

2 1

2
, if 1< 2,

1
1

2
, if 2 < 2.1121;

 

at <1  ( 0 <1 )  

   

P(2 ln 2 < x < 2ln
2

| H
0
) =

1
2

4
, if 0 0.5,

1 4

4 2
, if 0.5 < <1;

 

   

P(2 ln 2 < x < 2ln
2

| H
A

) =

1
2

, if 0 0.5,

1 2

2
, if 0.5 < <1,

 

respectively. 

The computed values of these error probabilities are 
given in Table 4. 

In this case, the Bayes test has the following form: 

  

B :

if x 1.38629, reject H
0

and report the posterior

probability *(B(x)) =
B(x)

1+ B(x)
,

if x <1.38629, accept H
0

and report the posterior

probability *(B(x)) =
1

1+ B(x)
.

 

The critical values of the  T
C

 test determined on the 

basis of (1) are: C
1
= 1.236  and C

2
= 3.236 . Of our 

 

Figure 3: Dependence between  and  for Example 2. 
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Figure 4: Dependence of  and  1 /  on  for Example 2 (Data are obtained by the exact solution of dependence (12) using 

MATLAB). 

interest is only the positive solution of this equation, 
which is   C = 1.236 . The conditional error probabilities 

of this test are similar to the Bayes test [5], p. 1788. 

The thresholds of the   T
*

 test are determined by 
condition (2) which, after simple computation, yields 

  r = 1  and a = 2 , so that the no-decision region is the 

interval 
 
(1, 2)  [3]. The reported error probabilities, 

upon rejection or acceptance, are analogous of the 

Bayes and  T
C

 tests.  

The critical value for the classical N-P test with 
equal error probabilities is defined on the basis of (1) 

and, like for the  T
C

 test, it is   C = 1.236 . Error 

probabilities of Types I and II are equal to 

 
= = 0.382 . If we choose   C = 1  in the N-P test, the 

error probabilities of the unconditional test are  = 0.25  

and 
 

= 0.5 .  

The 
 
p -value against 

  
H

0
 is computed by the 

formula 
  
p value = exp( x) . 

The results of application of these tests for solving 
the considered problem are given in Table 3. Because 

the error probabilities for the Bayes,  T
C

 and   T
*

 tests 

are identical, in Table 3 they are omitted for T
C

 and 

  T
*

 tests. The thresholds for making the decision, the 

error probabilities of Types I and II and probabilities of 
making no decision in CBM are given in Table 4 and in 
Figure 4. Therefore, the error probabilities of CBM are 
not given in Table 3.  

Comparing the results of different tests given in 
Table 3, we can infer the following. Despite the identity 

of the probabilities of both types in the Bayes,  T
C

 and 

  T
*

 tests, for the observation result   x = 1 they accept 

different hypotheses: the Bayes - 
  
H

0
,  T

C
 - 

 
H

A
 and 

  T
*

 - no-decision. For the same observation result, the 

N-P and
 
p -value tests accept the 

  
H

0
 hypothesis, and 

the probabilities of errors of both types for N-P are least 
than in the previous tests. For the observation result 

  x = 1.38629 , for which the likelihood ration is equal to 1, 

the Bayes,  T
C

 and   T
*

 tests accept the 
 
H

A
 

hypothesis, while N-P and 
 
p -value tests accept the 

  
H

0
 hypothesis. Though, for this observation result, 

both hypotheses are equiprobable. For justice it should 
be noted that this fact is evidenced by the equality of 

the error probabilities of Types I and II in Bayes,  T
C

 

and T
*

 tests to 0.5.  

The CBM differs from the considered tests. For any 
observation result, depending on the chosen level of 
the averaged error probability of Type II (see (11)), the 
correct decision is made, or it is indicated that on the 
basis of the existing information it is impossible to 
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Table 3: The Results of Application of the Considered Tests for Exponential Distribution 

For Bayes tests  For 

 T
C

 

tests 

For   T
*

 

tests  

For N-P test For p-value 

test 

For constrained Bayes test  x  
  
B(x)  

CEP 

  
(B)  

CEP 

  
(B)  

AH
*)
 AH

*)
 AH

*)
   AH

*

)
 

p-value AH
*)
  AH

*)
 

0 2 0.66(6) 0.33(3) 

  
H

0

 
  
H

0
 

  
H

0
 

0.382 0.382 

  
H

0

 

1 

  
H

0

 

 
[0.04,0.85]

0.9  

 
0.03  

  
H

0
 

Bothe 

No one 

0.5 1.5576 0.609 0.39099 

  
H

0

 
  
H

0
 

  
H

0
 

0.382 0.382 

  
H

0

 

0.60653 

  
H

0

 

 
[0.2,0.6]  

 
0.65  

 
0.15  

  
H

0
 

Bothe 

No one 

1 1.21306 0.5481 0.45186 

  
H

0

 
 
H

A
 

No decision 0.382 0.382 

  
H

0

 

0.36788 

  
H

0

 

 
[0.3,0.45]

 
0.5  

 
0.25  

  
H

0
 

Bothe 

No one 

1.38629 1 0.5 0.5 

 
H

A

 
 
H

A
 

 
H

A
 

0.382 0.382 

  
H

0

 

0.2500 

  
H

0

 

 
0.375  

 
> 0.375  

No one 

Bothe 

1.5 0.94473 0.6 0.4 
H
A

 
 
H

A
 

 
H

A
 

0.382 0.382 
H
A

 

0.22313 
H
0

 

 
[0.35,0.4]

 
0.45  

 
0.3  

 
H

A
 

Bothe 

No one 

2 0.73576 0.42388 0.5761 

 
H

A

 
 
H

A
 

 
H

A
 

0.382 0.382 

 
H

A

 

0.13534 

  
H

0

 

 
[0.25,0.5]

 
0.55  

 
0.2  

 
H

A
 

Bothe 

No one 

*)
Accepted Hypothesis. 

1)
Both hypotheses are identically impossible to be true. 

2)
Both hypotheses are identically possible to be true. 

 

Table 4: Computed Values of Thresholds and Error Probabilities for Example 2 

  
 
1 /    0( , B)  

  A
( , B)  

  0( , B)  
  A

( , B)  

0 2.1121 0.47346 1 0.76327 0 0.05604 

0.001 2.1085 0.47427 1 0.76286 0 0.05623 

0.005 2.094 0.47755 1 0.76122 0 0.05701 

0.01 2.076 0.4817 1 0.75915 0 0.05801 

0.02 2.0401 0.49017 1 0.75491 0 0.06007 

0.03 2.0044 0.4989 1 0.75055 0 0.06223 

0.04 1.969 0.50787 0.96924 0.74606 0.0155 0.06448 

0.05 1.9337 0.51714 0.9348 0.74143 0.03315 0.06686 

0.06 1.8987 0.52668 0.90127 0.73666 0.05065 0.06935 

0.07 1.8639 0.53651 0.86853 0.73175 0.06805 0.07196 

0.08 1.8294 0.54663 0.83668 0.72669 0.0853 0.0747 

0.09 1.7952 0.55704 0.80569 0.72148 0.1024 0.07757 

0.1 1.7612 0.56779 0.77546 0.7161 0.1194 0.0806 

0.15 1.5962 0.62649 0.63696 0.68676 0.2019 0.09812 

0.2 1.4408 0.69406 0.51898 0.65297 0.2796 0.12043 
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(Table 4). Continued. 

  1 /  0( ,B)  
A
( ,B)  0( ,B)  

A
( ,B)  

0.25 1.2972 0.77089 0.42068 0.61455 0.3514 0.14857 

0.3 1.1671 0.85682 0.34053 0.57159 0.41645 0.18354 

0.35 1.0519 0.95066 0.27662 0.52467 0.47405 0.22594 

0.37 1.0101 0.99 0.25508 0.505 0.49495 0.24503 

0.375 1 1 0.25 0.5 0.5 0.25 

0.4 0.9519 1.05053 0.22653 0.47473 0.52405 0.2759 

0.45 0.8663 1.15433 0.18762 0.42283 0.56685 0.33312 

0.5 0.7937 1.25992 0.15749 0.37004 0.60315 0.39685 

0.55 0.7323 1.36556 0.13407 0.31722 0.63385 0.46619 

0.6 0.6803 1.46994 0.1157 0.26503 0.65985 0.54018 

0.65 0.636 1.57233 0.10112 0.21384 0.682 0.61805 

0.7 0.598 1.67224 0.0894 0.16388 0.701 0.6991 

0.75 0.5652 1.76929 0.07986 0.11536 0.7174 0.78259 

0.8 0.5366 1.86359 0.07198 0.06821 0.7317 0.86824 

0.85 0.5115 1.95503 0.06541 0.02248 0.74425 0.95554 

0.9 0.4892 2.04415 0.05983 0 0.7554 1 

0.95 0.4694 2.13038 0.05508 0 0.7653 1 

0.99 0.455 2.1978 0.05176 0 0.7725 1 

1 0.4516 2.21435 0.05099 0 0.7742 1 

 

make a decision in general or to make a concrete 
decision (to choose one of tested hypotheses). When 
the observation result is   x = 1, the CBM accepts the 

  
H

0
 hypothesis for [0.3,0.45]  and does not make a 

decision for other . When the likelihood ratio is equal 

to 1 (  x = 1.38629 ), none of the hypothesis is accepted. 

Depending on the value of the averaged error 
probability, both hypotheses are suspected to be true 
or both are rejected. The critical value of  is 0.375, to 

which the error probabilities of Types I and II equal to 
0.25 and 0.5, respectively, correspond (analogously of 

the N-P test for C = 1). In this case,  = 1/ = 1  (see 

Table 4) and the CBM is formally similar to the classical 
Bayes and N-P tests, though the decisions are 
absolutely different in these tests. From Figure 4 it is 
seen that the more significantly differs the likelihood 
ratio from 1 or, that is the same, the more information is 
contained in the observation result in favor of one of 
the tested hypothesis, the more is the quantity of 
possible values of the averaged error probability for 
which the true hypothesis is accepted.  

(Part II. Sequential Methods) 

4. COMPARISON OF SEQUENTIAL HYPOTHESES-
TESTING METHODS  

The specific features of hypotheses testing regions 

of the Berger’s   T
*

 test and CBM (see Part I of this 
paper), namely, the existence of the no-decision region 

in the   T
*

 test and the existence of regions of 
impossibility of making a unique or any decision in 
CBM give the opportunities to develop the sequential 
tests on their basis. Using the concrete example taken 
from [5], below these tests are compared among 
themselves and with the Wald sequential test [55]. For 
clarity, let us briefly describe these tests.  

The sequential test developed on the basis of   T
*

 
test is as follows [5]:  

if the likelihood ratio 
  
B(x) r , reject 

  
H

0
 and report the 

conditional error probability 
  

(B(x)) = B(x) / (1+ B(x)) ;  

if 
  
r < B(x) < a , make no decision; 

if 
  
B(x) a , accept 

  
H

0
 and report the conditional error 

probability 
  

(B(x)) = 1/ (1+ B(x)) . 

Here  r  and  a  are determined by ratios (2) 
(formulae up to (14) see in Part I of this paper).  

The sequential test developed on the basis of CBM 

consists in the following [35, 37]. Let 
i

n  be the H
i
 

hypothesis acceptance region (5) on the basis of n  

sequentially obtained repeated observation results; 
 
R

n

m  

is the decision-making space in the sequential method; 

m  is the dimensionality of the observation vector; I
i

n  is 
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the population of sub-regions of intersections of 

hypotheses H
i
 acceptance regions 

 i

n  
  
(i = 1,...,S )  with 

the regions of acceptance of other hypotheses 
 
H

j
, 

j = 1,...,S , j i ; E
n

m
= R

n

m

i

n

i=1

S

 is the population 

of regions of space 
 
R

n

m  which do not belong to any of 

hypotheses acceptance regions. 

The H
i
 hypotheses acceptance regions for  n  

sequentially obtained observation results in the 
sequential method are: 

  
R

n,i

m
=

i

n
/ I

i

n , i = 1,...,S ;        (14)  

the no-decision region is: 

R
n,S+1

m
= I

i

n

i=1

S

E
n

m ,       (15) 

where  

i

n
={x : p(x | H

i
) > i

p(x | H )
=1, i

S
} ,       (16) 

   
0

i
< + , = 1,...,S . Coefficients 

   

i
=

p(H )

p(H
i
)

 are 

defined from the equality in the suitable restriction (4).  

This test is called the sequential test of Bayesian 
type [35, 37]. Such tests could be considered for all 
constrained Bayesian methods offered in [38] and 
differing from each other in restrictions.  

The essence of the Wald’s sequential test consists 
in the following [55, 56]: compute the likelihood ratio 

   
B(x) = p(x

1
, x

2
,..., x

n
| H

0
) / p(x

1
, x

2
,..., x

n
| H

A
)  for  n  

sequentially obtained observation results, and, if  

   
B < B(x) < A ,          (17) 

do not make the decision and continue the observation 
of the random variable. If  

   
B(x) A ,          (18) 

accept the hypothesis 
  
H

0
 on the basis of  n  

observation results. If  

B(x) B , (19) 

accept the hypothesis 
 
H

A
 on the basis of  n  

observation results.  

The thresholds A  and B  are chosen so that  

  

A =
1

 and 
  

B =
1

.        (20) 

Here  and  are the desirable values of the error 

probabilities of Types I and II, respectively.  

It is proved [55] that in this case the real values of 
the error probabilities of Types I and II are close 
enough to the desired values, but still are distinguished 
from them. 

Example 3 [5]. Consider the scenario of Example 1, 
but suppose the data are observed sequentially. As we 
are agreed above, the hypotheses are identically 
probable. 

The sequential test developed on the basis of   T
*

 
test for this concrete example is as follows [5]: 

if 
  
x

n
g(n) , where n  is the number of sequentially 

obtained observations, stop experimentation, reject 
  
H

0
 

and report the conditional error probability 

  
(B

n
) = 1/ [1+ exp(2nx

n
]) ; 

if 
  
x

n
< g(n) , stop experimentation, accept 

  
H

0
 and 

report the conditional error probability 

(B
n
) = 1/ [1+ exp( 2nx

n
]) . 

The choice 

g(n) =
1

2n
ln

1
1          (21) 

guarantees that the reported error probability will not 
exceed  (Berger, Brown & Wolpert, 1994). 

The sequential test developed on the basis of CBM 
in this case is as follows: 

if x <min 1( ) / n +1( ), 1( ) / n +1( ){ } , stop 

experimentation, accept 
  
H

0
 and report the conditional 

error probability 
  CBM

( ,n) = P(x < B
CBM

| H
A

) =  

  

n B
CBM

1( )( ) ;  

if 
  
x > max 1( ) / n +1( ), 1( ) / n +1( ){ } , accept 

 
H

A
 and report the conditional error probability 

  
CBM

( ,n) = P x > A
CBM

| H
0( ) = 1 n A

CBM
+1( )( ) .  

Otherwise do not make the decision and continue 
the observation of the random variable. 
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Here  is the desired value of restriction in (4),  

is the standard normal c.d.f. and 

  
A

CBM
= max

1 ( ) / n +1( ), 1 ( ) / n +1( ){ } , 

B
CBM

= min
1 ( ) / n +1( ), 1 ( ) / n +1( ){ } . 

The Wald’s sequential test for this concrete 
example is as follows: 

if 
  

x <
1

2n
ln

1
, stop experimentation, accept H

0
; if 

x >
1

2n
ln
1

, stop experimentation, accept 
 
H

A
; 

otherwise do not make the decision and continue the 
observation of the random variable. The error 
probabilities of Types I and II computed similarly to the 
previous case are: 

W
( , ,n) = P x > A

W
| H

0( ) = 1 n A
W
+1( )( )  and 

  
W

( , ,n) = P(x < B
W

| H
A

) = n B
W

1( )( )   

respectively. Here 
  

A
W
=

1

2n
ln

1
 and 

  

B
W
=

1

2n
ln

1
. 

It is obvious that, when =  in the Wald’s test and 

 of the Berger’s test from (21) are equal, the 

hypotheses acceptance thresholds in both these tests 
are the same. That means that these tests become 
identical.  

Let us consider the case when, for the Wald’s test, 

 
= = 0.05 , for the Berger’s test, 

 
= = 0.05 , and, 

for the sequential test of Bayesian type, 
 
= 0.05 . The 

dependences of the thresholds on the number of 
observations in the considered tests for chosen error 
probabilities are shown in Figure 5. The computed 
values are given in Table 5. The dependence of error 
probabilities on the number of observations in the 
sequential test of Bayesian type and in the Wald’s test 
(that is the same, in the Berger’s test) is shown in 
Figure 6, and the computed values are given in Table 
6. From these data, it is seen that, in the sequential test 
of Bayesian type, the probability of incorrect 
acceptance of a hypothesis when other hypothesis is 
true at increasing  n  decreases more significantly than 

 

ACBM and BCBM - the upper and lower thresholds of the sequential test of Bayesian type; 

AW and AB - the upper thresholds of the Wald and Berger’s sequential tests, respectively; 

BW and BB - the lower thresholds of the Wald and Berger’s sequential tests, respectively. 

Figure 5: Dependence of the thresholds on the number of observations in the considered tests (Kulback’s divergence between 

the considered hypotheses J (1: 2) = 2 ). 
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in Wald’s test, but the probability of no acceptance of a 
true hypothesis in the Wald’s test decreases more 
significantly at increasing  n  than in the sequential test 
of Bayesian type. Though, it should be noted that 
Berger computed the error probabilities in the similar 
manner as Fisher had for the given value of the 
statistics [5]. These probabilities given in Table 6 were 
computed as the averaged possibilities of occurrence 

of such events in the manner similar to the Neyman’s 
principle.  

The computation results of the sequentially 

processed sample generated by N (1,1)  with 17 

observations are given in Table 7, where the arithmetic 

mean of the observations x
k
,...,x

m
 is denoted by x

k ,m
. 

Table 5: The Computed Values of the Thresholds Depending on the Number of Observations in the Considered Tests 

n   
A

CBM
 

 
B

CBM
 

 
A

W
 and 

 
A

B
 

 
B

W
 and 

 
B

B
 

 1 0.64485 -0.64485 1.47222 -1.47222 

2 0.16309 -0.16309 0.73611 -0.73611 

3 0.05034 -0.05034 0.49074 -0.49074 

4 0.17757 -0.17757 0.36805 -0.36805 

5 0.2644 -0.2644 0.29444 -0.29444 

6 0.32849 -0.32849 0.24537 -0.24537 

7 0.3783 -0.3783 0.21032 -0.21032 

8 0.41846 -0.41846 0.18403 -0.18403 

9 0.45172 -0.45172 0.16358 -0.16358 

10 0.47985 -0.47985 0.14722 -0.14722 

11 0.50406 -0.50406 0.13384 -0.13384 

12 0.52517 -0.52517 0.12268 -0.12268 

13 0.5438 -0.5438 0.11325 -0.11325 

14 0.56039 -0.56039 0.10516 -0.10516 

15 0.5753 -0.5753 0.09815 -0.09815 

16 0.58879 -0.58879 0.09201 -0.09201 

17 0.60106 -0.60106 0.0866 -0.0866 

18 0.6123 -0.6123 0.08179 -0.08179 

19 0.62264 -0.62264 0.07749 -0.07749 

20 0.6322 -0.6322 0.07361 -0.07361 

21 0.64106 -0.64106 0.07011 -0.07011 

22 0.64932 -0.64932 0.06692 -0.06692 

23 0.65702 -0.65702 0.06401 -0.06401 

24 0.66425 -0.66425 0.06134 -0.06134 

25 0.67103 -0.67103 0.05889 -0.05889 

26 0.67742 -0.67742 0.05662 -0.05662 

27 0.68345 -0.68345 0.05453 -0.05453 

28 0.68915 -0.68915 0.05258 -0.05258 

29 0.69456 -0.69456 0.05077 -0.05077 

30 0.69969 -0.69969 0.04907 -0.04907 

40 0.73993 -0.73993 0.03681 -0.03681 

50 0.76738 -0.76738 0.02944 -0.02944 

60 0.78765 -0.78765 0.02454 -0.02454 

70 0.8034 -0.8034 0.02103 -0.02103 

80 0.8161 -0.8161 0.0184 -0.0184 

90 0.82662 -0.82662 0.01636 -0.01636 

100 0.83551 -0.83551 0.01472 -0.01472 
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Figure 6: Dependence of the error probabilities on the number of observations in the sequential test of Bayesian type.  

Table 6: The Values of Error Probabilities Depending on the Number of Observations 

n  

  
P(x > A

CBM
| H0) = 

  
P(x < B

CBM
| H

A
)  

Error II probability 
in CBM 

  
P(x < A

CBM
| H

A
) = 

  
P(x > B

CBM
| H0)  

Error I probability 
in CBM 

  
P(x > A

W
| H0) = 

  
P(x < B

W
| H

A
)  

Error II probability 

for Wald’s test 

  
P(x < A

W
| H

A
) = 

  
P(x > B

W
| H0)  

Error I probability 
for Wald’s test 

1 0.05 0.36124 0.68161 0.00671 

2 0.05 0.11829 0.3545 0.00704 

3 0.03444 0.05 0.18887 0.00491 

4 0.00926 0.05 0.10313 0.00311 

5 0.00235 0.05 0.05732 0.0019 

6 0.00057 0.05 0.03227 0.00114 

7 0.00013 0.05 0.01834 0.00068 

8 0.00003 0.05 0.0105 0.00041 

9 0.00001 0.05 0.00605 0.00024 

10 0 0.05 0.0035 0.00014 

11 0 0.05 0.00203 0.00008 

12 0 0.05 0.00119 0.00005 

13 0 0.05 0.00069 0.00003 

14 0 0.05 0.00041 0.00002 

15 0 0.05 0.00024 0.00001 

16 0 0.05 0.00014 0.00001 

17 0 0.05 0.00008 0 

18 0 0.05 0.00005 0 

19 0 0.05 0.00003 0 

20 0 0.05 0.00002 0 

21 0 0.05 0.00001 0 

22 0 0.05 0.00001 0 

23 0 0.05 0 0 



194     International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 2 K.J. Kachiashvili 

Table 7: The Results of Testing of a Normal Sample 

n  Observation 
results 

 
x

i
 

x
k ,m

 

 

The Berger’s 
test 

The 

Wald’s 
test 

x
k ,m

 

for sequential test of 
Bayesian type 

The sequential teat of 
Bayesian type 

1  1.201596 

  
x
1,3

= 0.6347  H
A

,  H
A

 x
1
= 1.2016  H

A
 

2  0.043484   
 

= 0.0217 ,    

3 0.658932  
 

= 0.9783 .  x
2,3

= 0.3512  H
A

 

4 0.039022 

  
x

4,6
= 0.8942  

 
H

A
, 

 
H

A
 

  
x

4,5
= 0.3280  

 
H

A
 

5 0.616960   
 

= 0.0047 ,    

6 2.026540   
 

= 0.9953 .  
  
x
6
= 2.02654  

 
H

A
 

7 -0.422764  x
7,11

= 0.2992  H
A

,  x
7,9

= 0.1643  H
A

 

8 0.562569   
 

= 0.0478 , 
 
H

A
   

9 0.353047   
 

= 0.9522 .  

  
x
10,11

= 0.5015  
 
H

A
 

10 -0.123311      

11 1.126263       

12 1.521061  
  
x
12

= 1.521061  
 
H

A
, 

 
= 0.0456 , 

 
= 0.9544 . 

 
H

A
 

  
x
12

= 1.521061  
 
H

A
 

13 1.486411  
  
x
13

= 1.4864  
 
H

A
, 

 
= 0.0487 . 

 
= 0.9513 . 

 
H

A
 

  
x
13

= 1.486411  
 
H

A
 

14 -0.578935 

  
x
14,16

= 0.5536  
 
H

A
, 

 
= 0.0348  

 
= 0.9652 . 

 
H

A
 

  
x
14,16

= 0.55362  
 
H

A
 

15 0.623006       

16 1.616669       

17 1.754413 x
17

= 1.7544  
 
H

A
, 

 
= 0.0291 , 

 
= 0.9709 . 

H
A

 x
17

= 1.754413  H
A

 

 n    2.43 2.43  1.7 

 

From here it is seen that the Wald and Berger’s tests 
yield absolutely the same results, though the reported 
error probabilities in the Berger’s test are a little less 
than in the Wald’s test for the reason mentioned above 
(Berger computed the error probabilities for the given 
value of the statistics). Out of 17 observations, correct 
decisions were taken 7 times on the basis of 3, 3, 5, 1, 
1, 3 and 1 observations in both tests. The average 
value of observations for making the decision is equal 
to 2.43. In the sequential test of Bayesian type for the 
same sample correct decisions were taken 10 times on 

the basis of 1, 2, 2, 1, 3, 2, 1, 1, 3 and 1 observations. 
The average value of observations for making the 
decision is equal to 1.7.  

The reported error probabilities in the sequential 
test of Bayesian type and the Wald’s test decrease 
depending on the number of observations used for 
making the decision (see Table 6). By the Type II error 
probability it strongly surpasses the Wald’s test. While 
these characteristics for the Berger’s test have no 
monotonous dependence on the number of 
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observations (for the reason mentioned above). They 
basically are defined by the value of the likelihood ratio. 
For example, the value of the Type I error probability 

for 5 observations ( x
7
,...,x

11
) surpasses the analogous 

value for 3 observations 
  
x

14
, x

15
, x

16
 and both of them 

surpass the same value for 1 observation 
  
x

17
.  

Example 4. Let us briefly consider example 7 from 
[5]. The sequential experiment is conducted involving 

i.i.d. 
  
N ( ,1)  data for testing H

0
: = 0  versus H

A
: = 1  

under a symmetric stopping rule (or at least a rule for 

which = ). Suppose the report states that sampling 

stopped after 20 observations, with 
  
x

20
= 0.7 .  

In this case, the likelihood ratio 

  

B
20

= [ f (x
i
| 0) / f (x

i
|1)] = exp 20 x

20
0.5( ){ }

i=1

20

= 0.018 . 

T
*  test. Compute 

  
F

0
(1) = 0.8413 . Therefore, a = 1  

and   r = 0.3174 . Because B
20

= 0.018 < r = 0.3174 , the 

basic hypothesis 
  
H

0
 is rejected and the associated 

conditional error probability 

  
(B

20
) = B

20
/ (1+ B

20
) = 0.01768  is reported.  

Wald test. Choosing  = 0.05  and 
 

= 0.05  the 

thresholds are computed   A = 19  and   B = 0.0526 . 

Because 
  
B

20
= 0.018 < B = 0.0526 , the alternative 

hypothesis H
A

 is accepted. Error probabilities are 

  
= P(B

20
< 0.0526 | H

0
) = 0.001899  and 

= P(B
20

>19 | H
A
) = 0.001899 . 

CBM test. The results of computation obtained by 

CBM for the data 
  
x

20
= 0.7 , 

  
2 (x

20
) = 1/ 20 = 0.05  and 

 
= 0.05  are the following: = 3.141981 and 

 1 / = 0.31827 . Because 

  
B

20
= 0.018 < B

CBM
= 1/ = 0.31827 , the alternative 

hypothesis 
 
H

A
 is accept and error probabilities 

  
= P(B

20
< 0.31827 | H

0
) = 0.00635  and 

  
= P(B

20
> 3.141981| H

A
) = 0.00635 . 

If 
 
= 0.01  is chosen the computation results are the 

following: accept the alternative hypothesis H
A

 with 

error probabilities  = 0.01  and 
 

= 0.015945 . 

It is obvious that, for this example, by error 

probabilities CBM surpasses the T
*

 and the Wald’s 
method surpasses the CBM. Though, for the sake of 

justice, it is necessary to note that the error 
probabilities of CBM are also quite small. 

5. CONCLUSION 

The offered CBM method is a more general method 

of hypotheses testing than the existing classical 

Fisher’s, Jeffreys’, Neyman’s and Berger’s methods. It 

has all positive properties of the mentioned methods. 

Namely, it is a data-dependent measure like Fisher’s 

test, for making the decision it uses a posteriori 

probabilities like Jeffreys’ test and computes Type I and 

Type II error probabilities like Neyman-Pearson’s 

approach. Like the Berger’s methods, it has no-

decision-making regions. Moreover, the regions of 

making decisions have new, more general properties 

than the same regions in the considered methods. 

These properties allow us to make more well-founded 

and reliable decisions. Particularly, do not accept a 

unique hypothesis or do not accept any hypothesis 

when the information on the basis of which the decision 

must be made is not enough for distinguishing the 

informationally close hypotheses or for choosing a 

hypothesis among informationally distant ones. The 

computed results, presented in the paper, confirm the 

above-mentioned reasoning and clearly demonstrate 

positive properties of CBM with comparison of the 

existing methods.  

The sequential test of Bayesian type is universal 

and without modification can be used for any number of 

hypotheses and any dimensionality of observation 

vector. It is simple and very convenient for use and 

methodologically practically does not depend on the 

number of tested hypotheses and dimensionality of the 

observation space. The computed results, presented in 

the paper, clearly demonstrate high quality of the 

sequential test of Bayesian type. 
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