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Abstract: Not accounting for clustering in data from multiple centers might yield biased estimates and their standard 
errors, potentially leading to incorrect inferences. We fit 15 different models with different correlation structures and 

with/without adjustment for small clusters, including unadjusted logistic regression, Population-averaged models 
(Generalized Estimating Equations), Cluster-specific models (linear and non-linear with random intercept) and Survey 
data analysis methods to study the association of variables with the probability of declining yellow fever vaccine among 

patients seeking pre-travel health consultations at 18 US practices in the Global TravEpiNet Consortium from 1 January, 
2009, to 6 June, 2012. Results varied by the method chosen. Generally, when the odds ratio estimates were similar, 
adjusting for clustering and the small number of clinics increased the standard errors. We chose the random intercept 

model with the Morel, Bokossa and Neerchal (MBN) adjustment to be the most preferable method for the GTEN dataset 
since this was one of the more conservative models that accounted for clustering, small sample sizes and also the 
random effect due to site. Investigators should not ignore clustering and consider the appropriate adjustments necessary 

for their studies. 
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INTRODUCTION 

Clinical trials, observational studies, and health 

services research give rise to clustered data when 

information is collected repeatedly on a single unit of 

analysis (e.g., clinics). Examples can be found in 

longitudinal studies with repeated measurements taken 

on the same individual (e.g., before and after an 

intervention, subjects followed over time), multi-center 

studies (data collected at various sites/clinics), or data 

with a hierarchical structure (e.g., patients nested 

within physicians nested within clinics). Such data are 

inherently correlated, and failing to account for this 

could bias estimates and their standard errors, 

potentially leading to incorrect inferences. 

A number of approaches can account for clustering 

in data analysis [1-3]. Some require the covariance 

structure of the clusters to be specified, while others 

require the clustering variable to be entered in the  
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model as a random effect. It is well known that if the 

number of clusters is large ( 30) and they are balanced 

in size, all the approaches are robust even when the 

covariance structure is misspecified. Although such 

approaches are being increasingly used to design 

studies, calculate statistical power, analyze data, and 

interpret results from studies involving clustering, 

careful attention is not always paid to the number or 

size of clusters and/or whether the clusters are 

balanced. 

Investigators need greater guidance and awareness 

of approaches to address non-ideal situations, such as 

small numbers of clusters and/or imbalanced clusters, 

in multi-center studies. Although this manuscript is 

neither an exhaustive review of methods nor a tutorial, 

it demonstrates the effect of choosing different data 

analysis approaches. We discuss the various clustering 

adjustment methods and the effect of a small number 

of clusters and an imbalance in the size of those 

clusters on the estimates and their standard errors. We 

describe the methods briefly; an in-depth discussion of 

the technical details can be found elsewhere [1-13]. We 

compare numerical results obtained from 15 different 
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models to study the association of variables with the 

probability of declining the yellow fever vaccine among 

patients who had pre-travel health consultations at 18 

US practices in the Global TravEpiNet Consortium 

(GTEN) from 1 January, 2009, to 6 June, 2012. The 

number of patients at sites ranged from as small as 16 

patients to as large as 6782 patients. The analysis 

sample consisted of 4815 patients who were 

recommended to receive the yellow fever vaccine. This 

restricted sample was distributed among the 18 

practices in sizes of 5 to 1579 (Table 1). 

METHODS 

Study Population  

GTEN is a national consortium of travel medicine 

practices across the United States that care for 

international travellers seeking pre-travel health 

consultation. The consortium was established in 2009 

and has been described in detail elsewhere [14]. The 

GTEN data collection protocol was approved by the 

institutional review board of all participating sites. 

Data collected from patients include demographics 

(e.g., age, gender), travel information (e.g., date, 

duration, destination, purpose of travel, and type of 

accommodation), and health information (e.g., medical 

history, medication usage, immunizations, vaccines 

administered, and reasons for not administering 

vaccines if indicated). These data are collected by 

using a secure online tool.  

Regarding country-specific yellow fever (YF) risk, 

certain countries are considered to be entirely endemic 

for YF, while others are deemed partially endemic. 

Even though the YF vaccine is recommended for 

patients traveling to these countries, some patients 

refuse the vaccine for themselves and/or for their 

children. We were interested in identifying the factors 

associated with YF vaccine refusal among patients 

recommended to receive the vaccine. The independent 

variables assessed included age (continuous), duration 

of travel (dichotomous; <29, 29 days), VFR status 

(whether the patient was visiting family and relatives in 

the region of origin of self or family in a low or low-

middle income country as defined by the World Health 

Table 1: Distribution of Patients by Site 

Site Number Number of Patients Number of Patients Recommended Yellow Fever Vaccine 

1 6782 1579 

2 16 5 

3 240 67 

4 3718 921 

5 967 257 

6 558 378 

7 1448 193 

8 269 83 

9 138 43 

10 996 227 

11 781 165 

12 688 177 

13 192 52 

14 262 72 

15 674 184 

16 550 254 

17 86 26 

18 526 132 

Total 18891 4815 
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Organization’s 2011 Human Development Index) [15-

17]) (dichotomous), and the destination country 

endemic for YF (dichotomous). We obtained adjusted 

odds ratio estimates and associated standard errors 

from 15 different multivariable logistic regression 

models fit to the GTEN data, using SAS 9.3 (SAS 

Institute, Cary, NC) or SUDAAN 11.0.0 (RTI 

International, Cary, NC). 

Analysis Methods 

The correlation in our data arises from the subjects 

being clustered within clinics rather than due to 

repeated observations on the same subject. Cluster-

specific models using random effects, population-

averaged models using Generalized Estimating 

Equations (GEE), and survey data analysis methods 

are some of the popular methods to analyze clustered 

data. We applied these models with and without 

appropriate adjustments to evaluate the association of 

covariates to the probability of a patient’s refusing the 

yellow fever vaccine. 

1. Standard Logistic Regression Model 

We define a binary outcome variable Y by Yij= 1 if 

the j
th

 subject within the i
th

 site declines the vaccine and 

Yij= 0 otherwise, where i=1,2,…,K and j=1,2,…, ni. Let 

X be the vector of m covariate predictors and Xij be the 

matrix of X values observed for the j
th

 subject within the 

i
th

 site.  

Let 
  ij

= P(Y
ij
= 1),   

   

log
ij

1
ij

=
0
+ X

ij
, i = 1,2,…, K; j = 1,2,…,n

i
      (1) 

where, o is the intercept and  is the regression 

coefficient vector corresponding to the predictor vector 

X. This regression model was first fit using SAS’s 

LOGISTIC procedure [18]. Although the data are 

defined within clusters, the use of the LOGISTIC 

procedure does not account for possible correlations 

within clusters, i.e., all observations within and between 

clusters are assumed to be independent. 

2. Generalized Estimating Equations 

The GEE model is similar to the standard logistic 

regression described in (1) above but accounts for the 

clustering by defining a covariance structure [1, 2]. 

GEE methodology applied in a Generalized Linear 

Model (GLM) setting requires a model with a link 

function (logit for binary response variable as in our 

case) and a covariance structure (working correlation 

matrix, e.g., independent, exchangeable/compound 

symmetry, unstructured, autoregressive, m-dependent) 

to describe the correlation of the measurements in a 

cluster. In these models, the parameters of the working 

covariance/correlation structure are estimated. SAS’s 

GENMOD procedure (accounting for only fixed effects) 

can accommodate 6 types of covariance structures. 

The choice of correlation structure is typically not clear-

cut and essentially requires consideration of a variety 

of factors (see Kleinbaum and Klein [4]). Nevertheless, 

Horton and Lipsitz [5] recommend the use of an 

unstructured matrix if the cluster size is small and 

balanced; an auto-regressive or m-dependent structure 

if the measurements are obtained over time and the 

correlation might be associated with time, and an 

exchangeable structure if there is no logical ordering 

for observations within a cluster. Also, GEE models 

allow for robust standard errors (described below under 

“multiplicative adjustments”) to be computed to correct 

for possible misspecification of the working correlation 

structure. 

We considered the following covariance structures 

in our analyses using PROC GENMOD in SAS: 

(i) Independent  

  

1 0… 0

0 1… 0

0 0 1

 

(ii) Exchangeable (compound symmetry) – correlation 

is constant over time. 

  

1

1…

1

 

(iii) Unstructured – every correlation term is different. 

   

1
1,2 1,n

1,2
1…

2,n

1,n 2,n
1
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3. Random Effects Models 

Random effects models are used in situations when 

it is of interest to allow one’s model to incorporate 

heterogeneity among responses within different 

clusters, and/or when data have a hierarchical structure 

(e.g., patients nested within providers nested within 

clinics). These models, known as Generalized Linear 

Mixed Models (GLMM), are a generalization of the 

GEE approach to include random effects as predictors 

along with the fixed effects [3, 6]. As with fixed effect 

models, random effects models do not assume 

observations within a cluster to be independent and 

adjust for the amount of correlation due to the 

clustering effect. In these models, the parameters of 

the covariance structure of the random effects are also 

estimated, in addition to the parameters of the 

covariance structure of the errors associated with the 

fixed effects part of the model. In addition, robust 

standard errors can be computed for random effects 

models to correct for misclassification of the working 

correlation structure. 

Again, we define a binary outcome variable Y by 
Yij= 1 if the j

th
 subject within the i

th
 site declines the 

vaccine and Yij= 0 otherwise, where i=1,2,…,K and 
j=1,2,…, ni. Let X be the vector of m covariate 
predictors and Xij, considered to be the matrix of the 
fixed effects, be the matrix of X values observed for the 

j
th

 subject within the i
th

 site. Letting 
  ij

= P(Y
ij
= 1),  and 

uj be the random effect due to the clinic (the effect of 
patients clustering within clinics on the outcome 
variable), 

   

log
ij

1
ij

=
0
+ X

ij
+ u

j
,

i = 1,2,…, K; j = 1,2,…,n
i
; u

j
N (0,

u

2 )

 

We fit both linear and non-linear mixed models with 

random intercepts, using PROC GLIMMIX and PROC 

NLMIXED, respectively, in SAS. 

4. Survey Logistic Regression Models 

Models designed to analyze data from surveys 

account for the complex designs of the survey and 

adjust for the clustering of data within units (e.g., sites, 

clinics). We obtained robust standard errors and 

variances computed by using Taylor Linearization 

methods (a form of GEE) using PROC 

SURVEYLOGISTIC with the option varmethod=Taylor 

(in SAS) and PROC RLOGIST with the option 

semethod=zeger (in SUDAAN [19]) [1]. 

Having a small number of clusters limits the use of 

large sample tests and confidence intervals based on 

an approximate normal distribution. The estimation of 

the variance-covariance matrix (also known as the 

“sandwich” estimator) was derived by Binder (1983) [7], 

and Liang and Zeger (1986) [1], using a Taylor series 

expansion. Liang and Zeger [1] further derived the 

same for the GEE model for various response variables 

from the exponential family. These adjustments are 

available in SAS. 

Multiplicative Adjustments 

The classical sandwich estimator and the 

associated covariance matrix are biased if the number 

of independent sampling units is small. In “Over 

dispersion Models in SAS” [8], Morel and Neerchal 

briefly describe the adjustments available to correct for 

the small sample bias. Several investigators have 

proposed multiplicative adjustments to correct for this 

small sample bias by making adjustments to the middle 

term of the sandwich estimator: first-order Taylor series 

approximation on the residuals involved in the 

computation of the middle term [9, 10], using the F-

distribution (or t-distribution) instead of the chi-square 

(or normal) with an adjustment to the degrees of 

freedom [10], an adjustment to provide confidence 

intervals to attain nominal coverage probabilities [11] or 

an approximate F-test (or t-test) to allow for 

simultaneous testing of more than one parameter. The 

general form of the “sandwich” estimator is given by: 

   

Var( ) = c x A
i
D

i
i=1

m

i

1

F
i
e

i
e

i
F

i i

1

Di A
i

       (2) 

where, 

  

E(Y ) = μ;Var(Y ) = ; D =
μ

 

  
= (D

1
D)  is the generalized inverse 

   
e

i
= ( y

i
μ

l
)  

m is the number of independent sampling units 

This estimator is biased if m is small. The following 

table from “Over dispersion Models in SAS” [8], (page 

325) displays the multiplicative small sample bias 

corrections to the sandwich estimator available with 

PROC GLIMMIX in SAS. 
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where, 

  
H

i
= D

i
D

i i

1  

Q = D
i i

1

D
i
; 0<=r<1 = is a constant defined by the 

user to provide an upper bound on the correction factor 
(default r = 0.75); 

The classical adjustment computes the estimator 

defined in equation (2) above. We can obtain the same 

by setting r=0 in the FIROEEQ adjustment. These 

adjustments can be made by specifying them in the 

option empirical=(classical, firores, fioroeeq) in the 

procedure statement of PROC GLIMMIX. 

Additive Adjustments 

Morel developed an adjustment to the Taylor 

estimator of the covariance matrix obtained from a 

logistic regression model to analyze data from complex 

surveys [12]. Morel, Bokossa, and Neerchal (MBN) 

further developed an additive small sample bias 

correction that reduces as the number of clusters 

increases and disappears completely when the number 

of clusters is large [13]. This addition is applied to the 

entire estimator and not just to the middle term, as is 

the case with all the multiplicative adjustments. The 

MBN adjustment to the random effects models is 

shown below: 

Var( ) = c x D
i

i=1

m

i

1

e
i
e
i i

1

Di +
m

       (3) 

where, 

  

c =
(m* 1)

(m* k)

m

(m 1)
, m*  number of observations and m 

number of clusters 

m
=

k

(m k )
if m > (d +1)k

1

d
otherwise

, d 1(default d = 2),  and 

   

= max r,trace D
i

i=1

m

i

1

e
i
e

i i

1

D
i

/ k ,

0 r 1(default r = 1)

 

The Morel adjustment can be made by using the 

option vadjust=morel in the model statement of PROC 

SURVEYLOGISTIC (in SAS). The adjustment 

developed by Morel, Bokossa, and Neerchal can be 

made by using the option empirical=mbn in the 

procedure statement of PROC GLIMMIX (in SAS). 

The models, software procedures, and the software 

used for this analysis are displayed in Table 3. 

RESULTS 

As mentioned above, a total of 4815 patients were 

recommended to receive the yellow fever vaccine. Of 

these, 247 (5%) declined the vaccine when it was 

offered to them. This restricted sample was distributed 

in 18 clusters of sizes 5 to 1579.  

Odds ratios with 95% confidence intervals and p-

values obtained from the different regression models to 

evaluate the association of the variables with the 

probability of refusing the yellow fever vaccine are 

displayed in Table 4. The odds ratios and standard 

error estimates varied by the method chosen. 

Generally, when the odds ratio estimates were similar, 

models (#1-3) that did not adjust for clustering or for 

the small samples had lower standard errors (or 

smaller width of confidence intervals) and the standard 

errors increased by adjusting for the clustering (models 

4-10), which further increased when an additional 

adjustment was added for the small number of clinics 

(models 11-15). Among the models that adjusted for 

the clustering and for small samples, the MOREL 

adjustment in SAS SURVEYLOGISTIC procedure gave 

the most conservative standard errors (widest 

confidence intervals) for all variables except age 

(model 12 had the most conservative result), and the 

Table 2: Multiplicative Small Sample Bias Corrections to the Sandwich Estimator 

ADJUSTMENT C Ai Fi REFERENCE 

CLASSICAL 1 I I Liang and Zeger (1986); Zeger and Liang (1986) 

FIRORES 1 I (1 H
i
) 1  Mancl and DeRouen (2001) 

FIROEEQ (r) 1 

  

Diag 1 min{r,[Q] jj}( )
1

2  I Fay and Graubard (2001) 
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Table 3: Models, Procedures and Software Applied to the Data 

Model Number TYPE OF MODEL PROCEDURE SOFTWARE 

 No adjustment for Clustering or Small Samples 

1 Unadjusted Logistic Regression LOGISTIC SAS 

2 Linear - No Random Intercept GLIMMIX  SAS 

3 Non-Linear – No Random Intercept NLMIXED SAS 

 Adjustment for Clustering and No Adjustment for Small Samples 

 Generalized Estimating Equations – Different Covariance Structures 

4 Independent  GENMOD SAS  

5 Exchangeable GENMOD  SAS  

6 Unstructured GENMOD  SAS  

 Random Intercept 

7 Linear GLIMMIX SAS  

8 Non-Linear NLMIXED  SAS  

 Survey Methods 

9 Logistic Regression SURVEYLOGISTIC SAS 

10 Logistic Regression – Independent Covariance Structure RLOGIST SUDAAN 

 Adjustment for Small Samples 

 Random Intercept 

11 CLASSICAL GLIMMIX  SAS  

12 FIRORES GLIMMIX  SAS  

13 FIROEEQ GLIMMIX  SAS  

14 MBN GLIMMIX  SAS  

 SAS Survey Method 

15 MOREL SURVEYLOGISTIC  SAS  

 

random intercept model with the MBN was a close 

second. The variance of the random effect was highly 

significant in all these models (p<0.0001).  

Except for the VFR variable, which remained 

significant under all approaches, the significance of the 

other variables varied (as expected) with the chosen 

approach. Overall, they remained significant or 

insignificant under most approaches, except for the 

following: (i) Age was statistically significant at the two-

sided alpha level of 0.05 in the unadjusted models but 

was no longer significant when we adjusted for the 

clustering and the small sample size; (ii) travel duration 

was insignificant in all models except for GEE with 

unstructured covariance structure, and random 

intercept models with Classical, FIRORES and 

FIROEEQ adjustments; (iii) traveling to Africa was 

insignificant only in 2 models – GEE with unstructured 

covariance structure and the SAS Survey Method with 

the MOREL adjustment; and (iv) traveling to South 

America was significant only in the random intercept 

model fit with the GLIMMIX procedure in SAS.  

DISCUSSION 

Clustered observations often arise in research 

studies. Treating clustered observations as 

independent could bias the estimates and their 

standard errors. Several methods exist to adjust for 

clustering and they all work well, even when the 

covariance structures are misspecified, when the 

number of clusters is large (n 30), and the clusters are 

well-balanced. Small number of clusters limits the use 

of large sample tests and/or confidence intervals based 

on the normal approximation and could also possibly 

inflate the Type I error rates [8]. The imbalance within 

each cluster does not allow full flexibility in the choice 

of correlation structures due to nonconvergence with 

certain correlation structures. 
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We applied 15 different models to our data to 

assess the degree to which clustering and the small 

number of clinics affect the results of our analysis in 

predicting the refusal of yellow fever vaccine. Results 

varied with the method chosen and the assumptions of 

the covariance structure. In our analysis most of the 

variables that were statistically significant or 

insignificant in the unadjusted analysis remained so 

even after adjusting for the clustering and the small 

number of clusters. However, we also noticed that 

failing to adjust for the clustering would have led to 

incorrect inferences, especially about age being an 

important predictor for the refusal of the vaccine. The 

p-value for age ranged from as small as 0.03 in the 

unadjusted analysis to a nonsignificant 0.24 (GEE with 

an independent covariance structure) to 0.73 (GEE 

with an exchangeable covariance structure) when 

adjusted for clustering, to greater than 0.76 when an 

additional adjustment was made for the small sample.  

How does one choose a particular method as being 

the “correct” one when results vary by the chosen 

method? This difficult question can only be answered 

by conducting some sensitivity analyses. We chose 

one of the more conservative of approaches (GLIMMIX 

procedure in SAS with the MBN adjustment) for our 

analyses with this dataset, at least until we have a 

larger number of balanced clusters, since the variance 

of the random effect was significant and we wanted to 

adjust for the small number of clusters. 

The clustering effect should never be ignored. Our 

results may convince readers that adjustments for 

small number of clusters are necessary. Although we 

only discuss procedures in SAS and SUDAAN, other 

statistical software (e.g., STATA, SPSS, R) have 

appropriate procedures to account for clustering, and 

some have additional adjustments for the small number 

of clusters. These procedures are all easy to apply, 

even for investigators not proficient in data analysis. 

CONCLUSION 

Inferences do vary by the method chosen, and the 

“wrong” choice could lead to incorrect inferences. 

Although our analysis does not indicate the correct 

method or the extent of the bias of incorrect methods, it 

does show the implications of the choice of different 

methods. We chose the random intercept model with 

the Morel, Bokossa and Neerchal (MBN) adjustment to 

be the most preferable method for the GTEN dataset 

since this was one of the more conservative models 

that accounted for clustering, small sample sizes and 

also the random effect due to site. Different methods 

might work better for other datasets. Investigators 

should not ignore clustering and should pay attention to 

the number and size of clusters, be aware of the 

assumptions of the different models, and consider the 

appropriate adjustments necessary for their studies. 
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