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Abstract: Two Level (TL) models allow the total variation in the outcome to be decomposed as level one and level two 

or ‘individual and group’ variance components. Two Level Mixture (TLM) models can be used to explore unobserved 
heterogeneity that represents different qualitative relationships in the outcome.  

In this paper, we extend the standard TL model by introducing constraints to guide the TLM algorithm towards a more 

appropriate data partitioning. Our constraints-based methods combine the mixing proportions estimated by parametric 
Expectation Maximization (EM) of the outcome and the random component from the TL model. This forms new two level 
mixing conditional (TLMc) approach by means of prior information. The new framework advantages are: 1. avoiding trial 

and error tactic used by TLM for choosing the best BIC (Bayesian Information Criterion), 2. permitting meaningful 
parameter estimates for distinct classes in the coefficient space and finally 3. allowing smaller residual variances. We 
show the benefit of our method using overweight and obesity from Body Mass Index (BMI) for students in year 6. We 

apply these methods on hierarchical BMI data to estimate student multiple deprivation and school Club effects.  

Keywords: Parametric Expectation Maximization, Multilevel Mixture, Conditional Multilevel Mixture Known Mix, 

Overweight and Obesity Data. 

1. INTRODUCTION 

In this paper we present methodology which is 

related to the common statistical method for the 

analysis of data with heterogeneous outcomes in 

nested and non-nested structures, for example, see [1]. 

Traditional approaches fail to appropriately estimate 

the mixed pattern in the data. Alternatively, the mixture 

model, overcomes these lacks and delivers appropriate 

results.  

The term two level mixture (TLM) can have two 

meanings. The first refers to latent class models in 

which the probability of class membership is predicted 

by some covariates, i.e. the class membership is a 

function of the predictors. However, in other contexts, 

TLM is also used to refer to some specified number of 

latent classes as part of estimating the regression 

model; that is, the class membership is a function of 

the covariates see [2]. Wedel & DeSarbo (2002) [3] 

categorize the outcome and run separate regression on 

each class. Muthén & Asparouhov (2009) [2] 

developed an efficient TLM Model that is more general 

and Vermunt (2008) [4] illustrated TLM with three 

applications. 
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We focus on exploring outcome heterogeneity using 

the parametric Expectation Maximization (EM) method. 

Dempster et al. (1977) [5] have proposed these 

methods for the exponential family. In order to 

maximize the latent class model log-likelihood function 

the EM algorithm is used. Our methods rely on user-

provided constraints to guide the TLM algorithm 

towards a more appropriate data partitioning. We 

assume that some pre-existing knowledge about the 

desired partitioning is available and we provide this 

knowledge in the form of constraints. The conditional 

two level mixture (TLMc) model is implemented in two 

stages; in the first stage we generated class indicators 

for each observation by using parametric EM and, in 

the second stage, we ran the hierarchical multilevel 

using prior information provided by the indicator 

(labels) generated in the first stage.  

The Bayesian Information Criterion (BIC) that 

Schwarz (1978) [6] used for TLM attains optimality by 

trial and error. For example, we may run the marginal 

model three times: the first run includes two latent 

classes; then we add another latent and examine the 

BIC; and finally we use four latent clases and again 

examine the BIC. The BIC concludes that three latent 

classes are optimum, see [2]. 

It is well known that overweight or obesity represent 

the upper class of the continuous Body Mass Index 
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(BMI) distributions. Excessive BMI is defined as obese 

when it exceeds the upper cut off point. A major 

problem in BMI research is to determine the degree to 

which patients react under different BMI level. 

Investigators have long struggled with the problem of 

differentiating subject heterogeneity. A drawback to 

these approaches is that they do not accommodate the 

possibility that subjects may belong to different class 

memberships. The problem of identifying class 

membership can be formulated in terms of medically 

meaningful interpretations. One approach is to cluster 

the data. A closely related methodology is model-based 

clustering using a finite mixture model (EM algorithm); 

see [7]. 

In our BMI example, an EM algorithm was used to 

estimate the distinct number of latent class and the 

mixture proportion for the estimated classes before 

parameter estimation of TLMc. However, the number of 

latent classes and the mixture proportion for TLM were 

estimated together at the same stage. This means that 

the two methods use different class memberships and 

we have different membership probability. We observe 

these hugely discrepant results between the two 

methods, with the TLM method showing huge group 

and individual residual variance compared to TLMc. 

Unlike the TLM model, the conditional TLMc offers 

medically meaningful coefficient space at student and 

school levels and these provide reasons to consider 

TLMc.  

Our new approach is to build a student level 

screening device to uncover distributions within mixture 

models. Hence we shall be looking for a hidden latent 

class first, which could manifest itself as a 

heterogeneous element of the data. Since the 

preliminary examination of the whole data distribution 

could not show heterogeneity, any prior assumptions 

will not be made with regard to the nature of the 

possible heterogeneity. A mixture of normal 

distributions to the BMI is attempted to be fit as a 

mixture of numerous normal variables using the 

parametric EM method. Then, using the TL, TLM and 

TLMc, covariate association with BMI at individual 

student level and group school level will be assessed.  

The rest of the paper is organized as follows: 

Section 2 discusses the normal mixture model, its 

likelihood and its prior structure. In Section 3, we 

consider a two level mixture model and its likelihood. 

We present and illustrate our method using real dataset 

in Section 4. Finally, we give a brief summary and 

conclusion in Section 5. 

2. ESTIMATING THE MIXTURE PROPORTIONS BY 
EM ALGORITHM 

In clustering analysis, mixture probability densities 

are commonly used; the standard algorithm for learning 

clusters from the data is the EM method. Searching for 

and identifying clusters can be used in the classification 

of a new data point or for predicting missing data. A 

useful and popular class of models is mixture model; 

see [8]. Typically the EM model components are 

Gaussian density function and assumed to be 

generated by hypothetical Gaussian mixture. Because 

of their probabilistic nature, Gaussian mixtures are in 

principle preferred over models that partition a data set 

into discrete parts. In most applications where a new 

data item needs to be classified, it is more desirable to 

calculate the probability that this item belongs to a 

certain cluster than to assign it to strictly one specific 

cluster. We will use the parametric EM method to 

capture the unobserved heterogeneity of possible 

classes in Gaussian mixture measurement by 

estimating the mixture proportions in the form of 

categorical latent variables and estimate the first two 

moments in each class assuming bimodal distribution.  

Let the random variable S be a mixture of several m 

 2 normal distributions. That is Si ~ N(μ , ) for  = 1, 

2, …, m then we may write  

  

S = R  . S

=1

m

,           (1)  

where Rt  {0, 1} with p(Rt = 1) = t such that  t = 1 

and the joint distribution of the binary vector (R1….Rm) 

is multinomial. If we generate multinomial variables (R1, 

…,Rm) with p(R  = 1) = t then the density of S is 

 P(S | ) = t p(S | t )
t=1

m

,           (2) 

where t is the mixing proportion and p(. | t) is a 

normal density with the parameter t = (μt, t) for t = 1, 

2, …, m.  

Fraley & Raftery (2002) [9] use the mixture in 
Gaussian clustering with m components, where the 
following likelihood,  

  

L(
1
,...,

m
;

1
,...,

m
| s) =

k
f

k
(s

i
|

k
)

k=1

m

i=1

n

,        (3) 

has the density f
k
 and parameters 

k
 of the kth 

component in the mixture
  k

, which is the probability  

 



300     International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 3 Hussain et al. 

that an observation belongs to the kth component 

  

(
k

0;
k
= 1)

k=1

m

. 

The data can be viewed as consisting of n 

multivariate observations with ri recoverable part of the 

(si, zi) in which si is observed and zi is unobserved. The 

likelihood  

  

L(r
i
| ) = f (r

i
| )

i=1

n

,           (4) 

is then maximized to obtain the estimate of . If the 

probability of a particular variable is unobserved 

depends only on the observed data s and not on z, 

then the observed data likelihood can be obtained by 

integrating z out of the complete data likelihood, 

  
L(s | ) = L(r | )dz .            (5) 

The EM algorithm alternates between two steps, an 

‘E’ step and an ‘M’ step, see [9].  

The EM mixture model considers the complete data 

set ri = (Si, zi), where zi = (zi1, …, zim) and is the 

unobserved portion of the data with 

z
ik
=

1      if r
i
 belongs to group k

0      otherwise.
 

Assume that each z
i
 is independently and 

identically distributed according to a multinomial 
distribution of one draw from m categories with 

probabilities ( 1, 2... m), and that the density of an 

observation Si given zi is given by fk (Si | k )
zik

k=1

m

, the 

resulting complete data loglikelihood is 

l( k , k ,zik | x) =  
i=1

n

 zik  log[ k fk (Si | k )]
k=1

m

. 

In fact the coding of the allocation estimate in the E-

step follows  

ẑik
ˆ
k fk (Si | k )

ˆ
t ft (Si | t )

t=1

m           (6) 

and the M-step involves maximizing the loglikelihood in 

terms of k and k with zik fixed at the values computed 

in the E step, ẑik . For an extensive discussion of the 

available implementation of the EM method for a 
variety of different parametric mixture models, see [8].  

3. MULTILEVEL MIXTURE WITH UNKNOWN MIXING  

We start by writing a simple empty (no covariates) 

multilevel model  

  
y

ij
= +

0 j
+ e

ij
,           (7) 

where yij denotes the outcome for the i
th

 individual of 

level one in the j
th

 group of level two, represents the 

grand mean, 
  0 j

 is a random variable representing 

‘between-units’ variability and 
 
e

ij
 is a random variable 

representing ‘within-units’ variability.  

The distributions of the random variables are 
assumed to be 

0 j
 N(0, 

b

2 )  e
ij

 N(0, 
e

2 ) ,          (8) 

where 
  b

2  and 
  e

2  are the variances of the between 

items (level two) and within items (level one) effects, 
respectively. 

The model in (7) may include some covariates xij at 
level one  

  
y

ij
= +

0 j
+

1
x

ij
+ e

ij
,           (9) 

and other covariates j at level two 

  0 j
=

00
+

01 j
+

j
,         (10) 

where 00 and 01 are group level intercept and slope 

coefficients and both eij and j are normals with mean 

zero and variances 
2
e and 

2
. 

With a heterogeneous population and when 

regression of yij on xij vary across some latent class 

variable C with m categories, the residual ij in  

  
y

ij|C
ij
=c
=

c
+

0cj
+

1cj
x

ij
+

ij
       (11) 

may distributed as ij ~ N(0, c), with covariance matrix 

c reflecting the heterogeneity of residual variances at 

individual level, intercept and slope at group level and 

there covariance.  

The probability of being in a given latent class with 

respect to a base class may vary as a function of a 

two-level multinomial logistic regression. For level one 

the probability of class membership presented in 12 

below 
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p(Cij = c | xij ) =
exp( cj + bcxij )

exp( vj + bvxij )
=1

m         (12)  

where cj stands for the random intercepts and xij 
represent the covariates. 

In level two we have the following three equations, 

the random intercept, the random slope of equation 

(11) and the random intercept of equation (12): 

  0cj
=

00c
+

01c 0 j
+ u

0 j
        (13) 

  1cj
=

10c
+

11c 1 j
+ u

1 j
        (14) 

  cj
=

20c
+

21c 2 j
+ u

2cj
,        (15) 

The covariates ( 0j, 1j, and 2j) at group level are 

independent of the residuals (u0j, u1j and u2cj). 

Since TLM considers (12) as part of the optimization 

progression, sample allocations will be one element of 

the likelihood maximization procedure. The sample 

membership will not be constant and we may have 

different class membership estimate in TLM and in 

TLMc.  

If the EM algorithm shows that the outcome is 

homogeneous and does not comprise distinct sub-

populations then one can use TL rather than TLM or 

TLMc. 

4. INTRODUCING THE CONDITIONAL TLMc 
METHOD  

The individual latent class generated by parametric 

EM algorithm presented in Section 2 

  

f (s) =
k

f
k
(s)

k=1

m

,    the   E-step k
f

k
(s

i
|

k
)  

f (s
i
| )

=1

m
,  

gives a fixed number of classes, m, probability density 

function, fk, and k the probability that an observation 

comes from the kth mixture ( k  (0,1) and

   
k
= 1

k=1

m

). 

Equation (12) becomes constant and no estimation for 
Cij is carried out; this is highlighted in  

  

p(C
ij
= c | x

ij
) =

exp(a
cj
+ b

c
x

ij
)

exp(a
sj
+ b

s
x

ij
)

s=1

K
=

k
f

k
(s

i
|

k
)  

f (s | )
=1

m
.  

where the right hand side was determined in the early 
stage in Section 2.  

This provides labels (class membership for each 
observation) or constraints to guide the algorithm 
towards a more appropriate data partitioning. The 
conditional TLMc format for m known classes with 

probability ( 1, 2... m) is: 

  

y
ij|C

ij
=1
=

01 j
+

11
x

ij
+

1ij
   with probablilty 

1

y
ij|C

ij
=2
=

02 j
+

12
x

ij
+

2ij
  with probability 

2

    .     .     .      .      .      .       .      .       .       .      .   

y
ij|C

ij
=m

=
0mj

+
1m

x
ij
+

mij
  with probability 

m

 

and the format of the random intercepts for m classes is:

01 j
=

01
+

11
u

1 j
+

j

02 j
=

02
+

12
u

2 j
+

j

.    .      .      .     .      .      .      .      .      .      .      .      .

0mj
=

0m
+

1m
u

mj
+

j
.

 (16) 

4.1. TL, TLM and TLMc Models for Overweight Data 

As application, we are interested in two questions: 

1) which individual level factors significantly predict 

overweight and obesity, and to what extent do they 

explain the observed level 1 variance and; 2) do any of 

the measured school level physical activity variables 

explain the observed level 2 variance, and to what 

extent?  

Year 6 data will be used to illustrate our method. 

Student level variable, IMD and school level variable 

and proportion of pupils who participated in a club 

(Club) will be considered. Here, a single covariate is 

used for simplicity of illustration, but further covariates 

can clearly be added. A total of 5566 students in 147 

schools make individual and group level sample sizes. 

The data and the MPLUS code for TLM and TLMc 

models are available from the author upon request. 

We fit a sequence of a mixture of normal 

distributions with increasing numbers of latent class 

using the parametric EM algorithm to BMI 

measurements for students in Year 6. A best model 

can be estimated by fitting with different 

parameterization and/or a different number of classes 

and then applying a statistical criterion for model 

selection. Table 1 gives the estimates and the BIC.  
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Note that the estimated means differ by four BMI 

units and the BIC is (-29072) for the two-latent class, m 

= 2 model.  

For m = 3, the mean estimate differs by 3 and 4 with 

BIC reduced by (150). When m = 4, the mean estimate 

differs by (1.9, 2.6, 3.2) and BIC increased by (12). The 

three latent classes are distinguished by the level of the 

first and second moments.  

Monotone increase in the variance (1.95, 4.45, 

17.85), and maximum BIC is attained for three latent 

classes. The plot of the BIC in Figure 1 indicates a best 

fit with m = 3 classes. The above prior information will 

be used as a constraint to run the conditional TLMc 

model.  

The parameters estimated by the EM method 

indicate heterogeneity of the data, which seems to 

consist of three different types of BMI. This is, 

obviously, related to a high volume of BMI in the 

interval (11.89 to 41.52) for class three ‘overweight or 

obese’, for class two ‘moderate’ and for class one 

‘normal’.  

The box plot in Figure 2 shows the parameter 

estimate of the three mixtures. The three latent classes 

are ordered from low to high BMI: 16.55 (class 1, 39%), 

19.56 (class 2, 41%) and 23.59 (class 3, 20%). The 

mean differences correspond to (3 to 4) standard 

deviations of the BMI. Significant number of outlier 

points appears at third latent class when BMI goes 

above 31.  

Table 1: EM Estimate of BMI for 5566 Students in 147 Schools 

Parameter m=2 m=3 m=4 

μ1 

μ2 

μ3 

μ4  

17.27 

21.81 

16.55 

19.56 

23.59 

15.81 

17.73 

20.30 

23.52 

1

2

2

2

3

2

4

2

 

3.12 

15.07 

1.95 

4.45 

17.85 

1.29 

1.34 

4.51 

18.39 

1 

2 

3 

4 

0.57 

0.43 

0.39 

0.41 

0.20 

0.25 

0.24 

0.31 

0.20 

BIC -29072 -28922 -28934 

2 4 6 8

-3
0
2
0
0

-2
9
8
0
0
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4
0
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-2
9
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0
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number of components

B
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Figure 1: BIC for BMI; E curve stands for equal variance and V for unequal variance.  
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The density estimate zik in equation (6) for 

membership in latent class k is presented in Figure 3; 

this density show a right skewed normal distribution 

and it allows complete data representation with 3 

distinct latent classes.  

Heavy tail density shows for class 3 ‘overweight’. 

This may lead to high residual variance. The class 

indicator generated by parametric EM will be used for 

the TLMc model next. The other two densities are not 

heavy tailed; they may come from proper normal 

distributions.  

The overweight or obesity study raises two main 

questions: which individual level predictors predict 

being obese; and does any of the measured school 

level predictors explain being obese?  

This study focuses on nested sources of variability: 

students nested within schools. Group and individual 

level predictors will be considered. 

In the initial Bayesian TL model we wish to fit 

y
i
~ N (

j[i]
+ x

i
,

y

2 ),    for i =  1,...,5566

j
~ N (

0
+

1
u
j
, 2 ),     for j =  1,...,147

,      (17) 

where 
  
(

y

2  and  2 )  are individual and group residual 

variances and the individual and group covariates are 
(xi and uj), respectively. 

The Bayesian approach to the TL model in 17 adds 

flexibility to standard modelling. Prior information allows 

results of a previous model to be used to inform the 

Normal 39% Moderate 41% Overweight 20%

1
5

2
0

2
5

3
0

3
5

4
0

Latent BMI level

B
M

I

 

Figure 2: Box plot of the three class parameter estimate. 

 

Figure 3: BMI densities of three latent classes.  
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current model. The Markov Chain Monte Carlo 

(MCMC) method uses exact estimation instead of 

approximate and Bayesian inference via MCMC allow 

more complicated models that frequentists are unable 

to estimate.  

We follow Gelman & Hill (2007) [10] and consider 

the non-informative prior distribution as “reference 

models” to be used as a standard of comparison or 

starting point in place of the proper, informative prior 

distribution. Uniform distribution is given to individual 

and group standard deviation y and . A uniform 

distribution means that the posterior distribution has the 

same shape as the likelihood function, which in turn 

means that the resulting Bayesian intervals and 

estimate will essentially match the traditional results. 

The normal distribution assigned to  and 0 and 1 can 

be thought of as prior distributions for these intercept 

and slope. The BUGS code to compute posterior 

estimates from the TL model is presented below.  

model 

{ 

for (i in 1:n){ 

BMI[i] ~ dnorm (y.hat[i], tau.y) 

y.hat[i] <- a[ID[i]] + b*IMD[i] 

} 

b ~ dnorm (0, .0001) 

tau.y <- pow(sigma.y, -2) 

sigma.y ~ dunif (0, 100) 

for (j in 1:J){ 

a[j] ~ dnorm (a.hat[j], tau.a) 

a.hat[j] <- g.0 + g.1*Club[j] 

} 

g.0 ~ dnorm (0, .0001) 

g.1 ~ dnorm (0, .0001) 

tau.a <- pow(sigma.a, -2) 

sigma.a ~ dunif (0, 100) 

} 

Summary statistics provided by WinBUGS are 
presented in Table 2 below. For detailed discussion 
see [11].  

The mean and the standard deviation (SD) are 

simply the empirical average and the standard 

deviation of the sampled values, the MC (Monte Carlo) 

error provide an assessment of the sampling error on 

the mean attributable to the number of iterations 

performed. The 2.5%, median, and 97.5% are the 

empirical percentiles, while start is the iteration at 

which monitoring began and sample indicates the total 

number of iterations contributing to the summary 

statistics.  

The TL model recognizes that the student level 

covariate IMD has a positive significant effect on all 

students’ BMI. This suggests that a 100-unit difference 

in IMD causes almost a unit increase in student BMI. 

For group level covariates, Club is not significant. 

Interclass correlation of the two variances is 

0.1764/(0.1764 + 13.1044) = 0.01328233. This 

indicates that the variance accounted for by school 

level is 1.33%. This indicates that school contribution is 

minor. 

Detection of deviance convergence is presented in 

Figure 4. The continuous line joining successive 

realisations of the deviance plotted against Gibbs 

iteration number. A Markov chain shows a random 

scatter about a stable mean value. Three chains with 

three different colours presented in Figure 4 shows the 

fluctuation of each from the common mean.  

A summary of BUGS simulations for TL model is 

presented in Figure 5; R-hat is near 1 and below 1.5 for 

all parameters, indicating approximate convergence.  

The box plots in the top right panel presents the 

estimate of the random intercepts. The other TL model 

coefficients and variances are presented below.  

Table 2: Bayesian TL Model Estimate of BMI using the Model in 17 

node  mean  SD  MC error  2.5%  median  97.5%  start  sample 

Intercept  18.85  0.141  0.0108  18.58  18.8500  19.12  501  1500 

IMD  0.0102  0.003  2.6E-4  0.005  0.0100  0.016  501  1500 

Club  0.002  0.005  2.6E-4  -0.008  0.0017  0.011  501  1500 

sigma.a  0.42  0.071  0.0059  0.273  0.4217  0.570  501  1500 

sigma.y  3.62  0.036  8.9E-4  3.551  3.6200  3.687  501  1500 

deviance  3012  16.26  1.0040  301.0  3012  302.0  501  1500 
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Figure 4: Deviance convergence from 3 chains. 
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Figure 5: Bayesian TL model summary. 
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In what follows we apply two models: the first is the 

marginal TLM due to [2]  
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and the second is our proposed conditional TLMc 
model 
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In Table 3 we present the estimated results from 
these models, which have different memberships 

probabilities. For TLMc we use the estimate 
 
(

1
,

2
,

3
)  

from parametric EM in Table 4. When using the TLM 

model, the probability for most likely latent class 
membership is (0.778, 0.725 and 0.812); this shows 
clear shift in estimating individual class membership. 

The TL model makes the researcher believe that 

the individual variable (IMD) has significant effect on all 

students’ BMI. This is not true for the first latent class 

(normal level of BMI). The marginal TLM and the 

conditional TLMc dismiss this finding.  

The key result is that school level covariate ‘Club’ 

comes out negative and significant in latent class 2 

(moderate level of BMI) and class 3 (Overweight), with 

the conditional TLMc model only. In other words, our 

research using TLMc would conclude that increasing 

school percentage of club participation causes a 

reduction in BMI for two distinct classes “Moderate” 

and “Overweight”, but not for “Normal”.  

This means that there is a variation in the response 

between the latent classes. For the first latent class 

‘Normal’, no effect of Club is seen on student BMI; the 

magnitude of significant effects for class 2 to 3 is 16:32. 

The effects double for overweight students. 

It is interesting to note that the IMD and Club 

influence on BMI is different in the three latent classes. 

The latent classes are distinguished not only by the 

Table 3: Estimate of TLM and TLMc Models in 18 and 19 

Parameters Marginal TLM model 

Estimate (SD) P-value 

Conditional TLMc model 

 Estimate (SD) P-value 

Student Level 

Latent 1 

Intercept 

IMD score 

Residual Variance 

Latent 2 

Intercept 

IMD score 

Residual Variance 

Latent 3 

Intercept 

IMD score 

Residual Variance 

 

 

16.656 (0.144) 

0.0001 (0.002) 

2.136 (0.142) 

 

19.756 (0.281) 

0.013 (0.005) 

5.777 (0.456) 

 

23.307 (0.668) 

0.041 (0.012) 

17.148 (1.357) 

 

 

0.000 

0.814 

0.000 

 

0.000 

0.011 

0.000 

 

0.000 

0.001 

0.000  

 

 

16.267 (0.068) 

0.001 (0.001) 

1.254 (0.039) 

 

20.087 (0.104) 

0.006 (0.002) 

2.127 (0.046) 

 

25.982 (0.287) 

0.010 (0.006) 

8.349 (0.939) 

 

 

0.000 

0.535 

0.000 

 

0.000 

0.003 

0.000 

 

0.000 

0.076 

0.000 

School Level 

Latent 1 

Club 

Latent 2 

Club 

Latent 3 

Club 

Residual Variance 

 

 

0.014 (0.008) 

 

-0.014 (0.019) 

 

-0.040 (0.033) 

0.069 (0.024) 

 

 

0.100 

 

0.457 

 

0.223 

0.004 

 

 

0.002 (0.005) 

 

-0.016 (0.008) 

 

-0.032 (0.015) 

0.061 (0.014) 

 

 

0.657 

 

0.048 

 

0.038 

0.000 
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level of the BMI in the first part of our analysis, but also 

by the strength of the relation with IMD, (0.001, 0.006, 

0.010) and Club, (0.002, -0.016, -0.032) in Table 3. 

In the first stage of our method, the EM algorithm 

can identify distinct classes of BMI and in the second 

stage the conditional TLMc can discover association 

effects of covariates on each BMI latent class.  

The individual residual variances will be used for 

comparison of fit of the marginal TLM and the 

conditional TLMc models. 

In Figure 6, the residual variances estimate says 

that the marginal TLM is double the conditional TLMc in 

magnitude. The residual variance in latent class 3 is 

more than double that in latent class 2 for TLM, and is 

four times greater in TLMc. The level one variation is 

much larger than the level two variations, indicating 

greater unobserved heterogeneity on the individual 

student level. This analysis shows that TLMc 

outperforms TL and TLM models.  

5. CONCLUDING REMARKS 

This paper presents a constraints-based method for 

allowing information regarding mixing proportions to be 

used in multilevel mixture models. Our approach 

provides more flexibility than the standard multilevel 

mixture. This flexibility can offer medically meaningful 

BMI profile in group and individual coefficient space 

and allow smaller residual variances.  

For the conditional TLMc method to achieve its full 

potential objectives, the parametric EM algorithm was 

used to guide the TLM towards appropriate outcome 

partitioning “conditioned on the priori assumption based 

on the result of model-based clustering”. The marginal 

TLM method requires the user to run the model under 

different number of latent classes and choose the best 

model using the BIC, where the number of mixing is 

based on the BIC.  

We prefer the overall conclusions of the conditional 

TLMc analysis. Our proposed method clearly shows 

that the association between IMD score and Club with 

BMI varies between three medical latent classes. This 

feature is not accommodated in the TL model. Using 

known mixtures, the conditional TLMc model is able to 

detect significant differences with Club which are not 

detected by the marginal TLM. 
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Figure 6: Individual and school residual variances in 3 latent classes for TLM and TLMc models.  
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