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Abstract: The information obtained by magnetic resonance imaging (MRI) is considered to possess great potential for 
providing the prognosis of cancer patients, although not been established. The goal of this study was to evaluate the 
covariates of the texture patterns obtained from MRI scans of patients with breast cancer brain metastases, which 
influence the survival time prognosis. The data of forty patients were analyzed using 29 covariates. Twenty-six 
covariates, which are focused on the texture patterns, were calculated from the gray-level co-occurrence matrix and 
wavelet coefficients obtained by transform of preoperative T1-weighted MRI scans. The remaining three covariates were 
age, Karnofsky Performance Scale, and the indicator of whether solitary or multiple metastases were present. These 
covariates are commonly used as the prognostic factors in medical research. The tree structure prognosis models were 
constructed by applying the survival tree method to these covariates. The obtained survival trees separated the patients 
into two or three groups between which there was a statistically significant distance. For the purpose of comparison, Cox 
regression analyses were performed to determine which covariates showed significant predictive values. All the 
covariates selected in the Cox analysis and survival tree method were texture features only. In particular, the energy of 
the gray-level co-occurrence matrix and wavelet coefficients showed a high performance in tree structure analysis. From 
these results, we conclude that the features obtained from simple medical images can be used to estimate the prognosis 
of brain metastases patients. 
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1. INTRODUCTION 

In 10% of cancer patients, the probability of brain 
metastases occurring within a year is high and the 
survival time of these patients is approximately 1 year 
[1]. The typical prognostic factors that were determined 
by recursive partitioning analysis (RPA) are as follows: 
the Karnofsky Performance Scale (KPS), primary 
lesion (controlled vs. uncontrolled), age, and 
extracranial systemic metastases (present or absent) 
[2]. According to this classification, patients with a KPS 
score lower than 70 (RPA III) have the worst survival 
prognosis. The patients with the best survival prognosis 
have a KPS of at least 70, are under 65 years of age, 
and have a controlled primary tumor (RPA I). This RPA 
classification is commonly used in clinical situations 
involving brain metastases. In a more recent research 
study, the effectiveness of the factors postoperative 
systemic therapy, controlled or uncontrolled extra-
cranial malignancy, and postoperative KPS was shown 
from the aspect of early death [3]. Recently, the 
Graded Prognostic Assessment (GPA), which is a 
prognostic index for patients with brain metastases, 
was published [4]. This index, which comprises 
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diagnosis-specific prognostic indices based on age, 
KPS, presence of extracranial systemic metastases, 
the number of brain metastases, and primary cancer 
site, can be used for the assessment of patients. 
Although these factors are used to estimate the 
survival time of cancer patients, there are many 
covariates that can potentially be used for this purpose. 
Recently, several studies on estimating the prognosis 
of patients with gliomas that used covariates obtained 
through magnetic resonance imaging (MRI) have been 
reported [5, 6]. MRI is necessary for the diagnosis of 
and treatment decision for patients with brain 
metastases. 

To identify novel prognostic factors, we used the 
survival tree method based on the classification and 
regression tree (CART) algorithm [7]. This method 
constructs the tree structure prognosis model by 
recursive partitioning. The constructed model classifies 
the patients into groups with similar covariates and 
prognosis. Although some authors used this algorithm 
to construct tree models for brain tumor patients [2-5], 
there are some differences in the goodness of split 
criterion function used in the algorithm. Because there 
is no gold standard for this criterion, we used criteria 
based on the results of comparative research using 
simulation [8]. 
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The aim of this research study was to evaluate the 
covariates of texture patterns obtained from 
preoperative T1-weighted MRI scans of patients with 
breast cancer metastatic brain tumor. Texture is a 
feature that is typically used for identifying images; we 
used the gray-level co-occurrence matrix (GLCM) and 
wavelet transformation to obtain it. Ten statistical 
features, such as mean and variance, extracted from 
the GLCM were used as covariates. Sixteen features, 
such as energy and entropy, were used as covariates 
by wavelet transformation using the Daubechies D6 
and D20 wavelets, which have been shown to be 
effective for classifying images [9-10]. Moreover, age, 
KPS score, and the indicator of whether solitary or 
multiple metastatic are present were used as the 
covariates. 

This paper is orgnized as follows. The detail of the 
patients, the methods of image analysis, and the 
methods of statistical analysis are described in the next 
section. In Section 3, we show the experimental 
results. The discussion is described in Section 4. 

2. PATIENTS AND METHODS 

2.1. Patients 

The data of forty patients with breast cancer brain 
metastases were analyzed in this study. All patients 
had at least a single metastasis, whose diameter was 
greater than 3 cm. The patients underwent surgery as 
an initial treatment. The analysis in this study was 
approved by the local institutional review board of the 
national cancer center. 

The patients underwent MRI examinations prior to 
surgery. The data were collected from the years 2000 
to 2011. All patients were female, and their cancer 
onset age ranged from 37 to 79 years. They underwent 
surgery and standard radiation therapy. The 
observation period for analysis was defined as the time 
between surgery and death, when the date of death 
could not be confirmed, it was defined as the time until 
the final confirmation of survival. MRI data were 
acquired approximately 1 week before surgery. 

All images were obtained using T1, T2, FLAIR 
(fluid-attenuated inversion recovery) and T1+Gd-DTPA 
(gadolinium with diethylenetriamine-pentaacetic acid) 
imaging. Among these images, we focused on T1 
images, which were obtained using the following 
settings: axial plane, acquisition matrix (256-512) 

(256-512), 19-27 slices (in the case of one patient, 
only 10 slices). 

2.2. Image Analysis 

All images were skull stripped images and were 
processed by using the fast 2D watershed transform 
technique, semiautomatically [11]. The unnecessary 
regions to the study like eye, skull, and cerebral fluid, 
are removed from the images by this processing. As 
the result, the images that include the cerebral, 
midbrain, cerebellum, and oblongatal are obtained for 
the analysis. Two types of texture features were 
extracted from the skull stripped images: statistical 
texture features extracted from the GLCM of the image 
matrix and texture features extracted by using the 
wavelet transform of the image matrix. 
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To calculate the GLCM for each image, we used 
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energy, and mean. 

In this study, we have obtained one signal 
approximation coefficient and three wavelet coefficients 



342     International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 4 Shimokawa et al. 

Table 1: Summary Statistics of the Covariates 

Covariates   Mean Standard deviation Cox p-value 

Commonly used covariates 

 age  52.375 9.981 0.432 

 KPS 60 4 7.232 0.154 

  70 22   

  80 12   

  90 2   

 S/M metastatic single 29 0.452 0.573 

  multiple 11   

GLCM      

 contrast  539.892 243.121 0.815 

 correlation  0.429 0.099 0.158 

 energy  0.001 0.001 0.400 

 homogeneity  0.200 0.031 0.717 

 entropy  7.516 0.390 0.186 

 mean  85.904 16.827 0.923 

 deviation  21.089 4.552 0.382 

 entropy of dif.  3.555 0.225 0.845 

 mean of dif.  0.046 0.011 0.982 

 energy of dif.  13.981 3.328 0.778 

wavelet transform      

 energy of app. (D6)  8252.027 3481.806 0.643 

 energy of hor. (D6)  14.940 9.863 0.026 

 energy of ver. (D6)  16.968 9.674 0.492 

 energy of dia. (D6)  4.775 3.812 0.100 

 energy of app. (D20)  7489.638 3134.975 0.600 

 energy of hor. (D20)  11.813 8.512 0.015 

 energy of ver. (D20)  13.294 8.181 0.521 

 energy of dia. (D20)  3.761 3.154 0.087 

 entropy of app. (D6)  3.583 0.181 0.113 

 entropy of hor. (D6)  2.793 0.221 0.046 

 entropy of ver. (D6)  2.789 0.215 0.051 

 entropy of dia. (D6)  2.644 0.171 0.051 

 entropy of app. (D20)  3.584 0.181 0.112 

 entropy of hor. (D20)  2.901 0.205 0.044 

 entropy of ver. (D20)  2.890 0.183 0.042 

 entropy of dia. (D20)  2.789 0.151 0.062 

 

from the image matrix by single-level two-dimensional 
wavelet transformation. The Daubechies D6 and D20 
wavelets were selected for use in wavelet 
transformation, following the method used in a previous 
study [10]. Sixteen features were obtained by wavelet 
transformation: energy and entropy from one signal 
approximation coefficient and three wavelet 
coefficients. All features were extracted from each 

slice, and the mean values were defined as covariates. 
The details of the extraction methods are described in 
[12]. 

2.3. Statistical Analysis 

All patients were classified according to the 
covariates, which were age, KPS score, solitary or 
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multiple brain metastases indicator, and the 26 texture 
features described in the previous section. The 
summary statistics of these covariates are shown in 
Table 1. To identify effective prognostic factors and 
seek their splitting point for grouping, we used the 
survival tree method. The survival tree method is a 
statistical tool that constructs a tree model according to 
the goodness of splits in terms of covariates and 
prognosis. The resulting model differs according to the 
splitting criteria, which were proposed in various papers 
[13-20]. We performed the comparative study of the 
splitting criteria by using simulations as previous 
research [8]. Based on the research, three patterns of 
splitting criteria were used in this study: exponential 
log-likelihood loss (EL), deviance residual under the 
proportional hazard model (PD), and the logrank test 
statistic (LR). 
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In this study, each setting for constructing survival 
trees was defined as follows. The minimum number of 
events in nodes as the stop condition of the splitting 
step was set to 5 or less and the optimal size of the 
trees was determined based on the 10-fold cross-
validation results [7]. 

Kaplan-Meier curves were plotted for each group of 
patients, categorized by the terminal nodes in the tree 
model. Moreover, logrank tests were performed to 
compare the relationship between the groups. 

To determine which covariates showed significant 
predictive values, individual Cox regression analyses 
were also performed separately [21]. Moreover, the 
covariates that were considered to be useful for 
estimating a prognosis were included in a second Cox 
analysis. 

All the image and statistical analyses were 
performed in MATLAB (Version R2013a, Mathworks 
Inc., Natick, MA, USA). 

3. RESULTS 

The overall Kaplan-Meier curve for all patients is 
displayed in Figure 1. The median survival time was 
414 days, while the five-year survival rate was only 
9.2%. The results of the Cox regression analysis of 

 

Figure 1: Kaplan-Meier survival curve for all patients. 
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individual covariates are shown in Table 1. According 
to the p-values, which were calculated by a Wald test, 
the covariates commonly used in medical research are 
not statistically significant for prognosis nor are the 
covariates extracted from the GLCM. However, the five 
covariates obtained by wavelet transformation showed 
p-values lower than 0.05. By stepwise selection with an 
entry parameter of 0.05-1.0 and stay parameter of 
0.02-0.09, the energy of the horizontal and vertical 
wavelet coefficients (D20) were included in the Cox 
regression model, with a p-value of 0.013 and 0.002 for 
the horizontal and vertical coefficients, respectively. If 
the stay parameter is set to 0.09-0.20, then the entropy 
of the vertical wavelet coefficients (D6) was additionally 
included in the Cox regression model, with a p-value of 
0.095. 

Survival trees were constructed using the 29 
covariates described in Table 1. First, we used the 
result of the Cox regression analysis of individual 
covariates to reduce the number of covariates which 
are used in the survival tree analysis. In this study, the 
texture features that the p-value is greater than 0.5 are 
not used in the analysis. As the result, survival trees 
were constructed using the 20 covariates. The EL, PD, 
and LR criteria yielded different results. For the EL 
criterion, the obtained tree structure is shown in Figure 
2. The circle and squares in the figure represent the 
internal nodes and terminal nodes, respectively. The 
values in the shapes represent the number of samples 
in the node, and the values in parentheses represent 
the number of events. The tree has only one split and 
two terminal nodes; the covariate used in the tree was 
the energy extracted from the GLCM. The Kaplan-

Meier survival functions for each terminal node 
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are shown in Figure 3. The patients in node t
1
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includes patients having a lower GLCM energy, had a 

higher risk of death than those in node t
2

. The median 

survival of the patients in node 
  
t
1
 was 323 days, and 

their five-year survival rate was 0%. However, the 

median survival of patients in node 
  
t

2
 was 593 days, 

and their five-year survival rate was 12.6%. The p-

value of the logrank test for nodes t
1
 and t

2
 was 

0.0091, showing that a statistically significant difference 
in prognosis existed between the two groups of 
patients. 

 

Figure 3: Kaplan-Meier survival curves for the terminal nodes 
in Figure 2. 

For the PD criterion, the obtained tree structure is 
given in Figure 4. The tree has two splits and three 
terminal nodes. The covariates used in the tree were 
the energy of the horizontal wavelet coefficient (D20) 
and the energy of the diagonal wavelet coefficient (D6). 
The Kaplan-Meier survival functions for each terminal 

node 
  
(t

1
,t

3
)  are shown in Figure 5. The patients in 

node 
  
t
3
, which includes patients whose energy of 

horizontal wavelet coefficient (D20) was higher, had the 

highest risk of death; those in node t
2

, which includes 

patients whose energy of horizontal wavelet coefficient 
(D20) was lower and energy of diagonal wavelet 
coefficient (D6) was higher, had the lowest risk of 
death. The median survival time of the patients 

 

Figure 2: Survival tree by EL criterion. 

 

Figure 4: Survival tree by PD criterion. 
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included in nodes t
1
, t

2
, and t

3
 was 323 days, 672 

days, and 114 days, respectively. The five-year survival 
rate of patients included in these nodes was 0%, 
12.89%, and 0%, respectively. The p-values of the 
logrank tests for each combination of nodes showed 
that statistically significant differences in prognosis 

existed between the groups: p-value 
  
t
1

t
2
= 0.0003 ; p-

value (t2 t
3
) < .0001; p-value (t3 t

1
) = 0.0037.

 

 

Figure 5: Kaplan-Meier survival curves for the terminal nodes 
in Figure 4. 

The tree structure obtained by the LR criterion is 
given in Figure 6. The tree has one split and two 
terminal nodes; the covariate used in the tree was the 
energy of the horizontal wavelet coefficient (D6). The 
Kaplan-Meier survival functions for each terminal node 

  
(t

1
,t

2
)  are shown in Figure 7. The patients in node 

  
t
1
, 

which includes the patients whose energy of horizontal 
wavelet coefficient (D6) was lower, had a lower risk of 

death than those in node 
  
t

2
. The median survival time 

of the patients in node 
  
t
1
 was 431 days, and their five-

year survival rate was 7.02%. In contrast, the median 

survival time of the patients in node 
  
t

2
 was 114 days, 

and their five-year survival rate was 0%. The p-value of 

the logrank test was <.0001, showing that a statistically 
significant difference in prognosis existed between the 
two groups. 

 

Figure 7: Kaplan-Meier survival curves for the terminal nodes 
in Figure 6. 

4. DISCUSSION 

The prognosis of patients with brain metastases 
depends on various factors. In the previous studies, the 
KPS, primary lesion, age, extracranial systemic 
metastases, controlled or uncontrolled extra-cranial 
malignancy, postoperative KPS, the number of brain 
metastases, and primary cancer site have been 
considered as effective to estimate the prognosis of 
brain metastases patients [2, 3, 4]. We focused on the 
more objective features obtained from MRI and 
searched the factors that affect survival. The texture 
patterns of images, which were obtained by GLCM and 
wavelet transformation, were proven to be useful in this 
study. The Cox proportional hazard model and the 
survival tree methods were used to evaluate the 
covariates. The results showed that the objective 
features obtained from simple medical images can be 
used effectively to obtain a prognosis. 

To identify which covariates show significant 
predictive values, 26 covariates relevant to texture 
pattern and three covariates that are commonly used in 
medical research for the purpose of prognosis were 
investigated using Cox regression analyses. Three 
commonly used covariates, age, KPS, and solitary or 
multiple brain metastases indicator, did not yield 
statistically significant results for prognosis in this 

 

Figure 6: Survival tree by LR criterion. 
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study. As regards the texture patterns, 10 features 
obtained from GLCM also did not yield statistically 
significant results. In contrast, some of the 16 features 
obtained by wavelet transformation yielded significant 
results. Moreover, the model that includes two or three 
features obtained by wavelet transformation was 
selected as the optimal regression model by the 
stepwise selection method. 

Next, we performed an additional analysis using the 
survival tree method, which is assumed to be a 
nonparametric model. The survival tree method based 
on the CART algorithm segregates patients into groups 
with similar covariates and prognosis. There are 
various proposed criterion functions for the splitting 
step in the algorithm [13-20]. The modified wilcoxon 
criterion has been used as the splitting criterion in the 
study of [2]. On the other hand, the Log-rank statistics 
has been used in the study of [5]. However, it is known 
that the resulting model differs according to the splitting 
criteria. Therefore, we used three criteria based on 
previous simulation results. The trees obtained based 
on each criterion show different results. The covariates 
selected in the final trees are texture features obtained 
from MRI images: energy extracted from GLCM, 
energy of horizontal wavelet coefficient (D20), energy 
of diagonal wavelet coefficient (D6), and energy of 
horizontal wavelet coefficient (D6). The Kaplan-Meier 
survival curves for each group were well separated, 
and the p-values of the logrank tests show statistically 
significant differences between the groups.  

Although age and KPS, in particular, are considered 
effective prognostic factors for brain metastases 
patients according to a previous large scale survey, we 
could not find evidence that these covariates are 
effective for estimating the survival time of patients with 
breast cancer brain metastases. In contrast, texture 
features obtained from MRI were determined to be 
effective prognosis factors in Cox analysis and survival 
tree analysis. In particular, the energy of GLCM and 
wavelet coefficients showed high-level performance in 
tree structure analysis.  

Finally, the Cox proportional hazard model is an 
effective, powerful, and widely used tool in the analysis 
of survival data. However, this model requires several 
assumptions and its interpretation is not easy when this 
model includes many covariates. The survival tree 
method, which recursively partitions the data into 
groups with similar covariates and prognosis, can 
determine the relationship between covariates and 
hazards easily. Moreover, a new patient can easily be 

incorporated into the model. In the previous 
comparative study [22], it is shown that the survival tree 
can give the another aspect of the data compared to 
the Cox model. In this study, we demonstrated the 
application of the survival tree method and the 
effectiveness of using this method for survival analysis. 
According to the results obtained using the Cox model 
and the survival tree method, texture patterns obtained 
by simple preoperative MRI can be considered valid 
prognosis factors for patients with brain metastases 
from breast cancer. 
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