
384 International Journal of Statistics in Medical Research, 2014, 3, 384-391  

 
 E-ISSN: 1929-6029/14  © 2014 Lifescience Global 

Avoiding Inferential Errors in Public Health Research: The 
Statistical Modelling of Physical Activity Behavior 

Ann O. Amuta1,* and Dudley Poston Jr.2 

1
Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843, USA 

2
Department of Sociology, Texas A&M University, College Station, TX, 77843, USA 

Abstract: Background: A review of the health behavior literature on the statistical modeling of days of physical activity 
(PA) indicates that in many instances linear regression models have been used. It is inappropriate statistically to model a 
count dependent variable such as days of physical activity with Ordinary Least Squares (OLS). Many count variables 
have skewed distributions, and, also, have a preponderance of zeroes. Count variables should not be treated as 
continuous and unbounded. If OLS is used, estimations of the regression will frequently turn out to be inefficient, 
inconsistent and biased, and such outcomes could well have incorrect impacts on health programs and policies. 

Methods: We considered three statistical methods for modelling the distribution of days of PA data for respondents in the 
2013 Health Information Trends Survey (HINTS). The three regression models analyzed were: Ordinary Least Squares 
(OLS), Negative Binomial (NBRM), and Zero-inflated Negative Binomial (ZINB). We used the exact same predictor 
variables in the three models. Our results illustrate the differences in the results. 

Results: Our analyses of the PA data demonstrated that the ZINB model fits the observed PA data better than either the 
OLS or the NBRM models. The coefficients and standard errors differed in the zero-inflated count models from the other 
models. For instance, the ZINB coefficient for the association between income and PA behavior was not statistically 
significant (p>0.05), whereas in the NBRM and in the OLS models, it was statistically significant (p<0.05). 

Conclusions: The inappropriate use of regression models could well lead to wrong statistical inferences. Our analyses of 
the number of days of moderate PA demonstrated that the ZINB count model fits the observed PA data much better than 
the OLS model and the NBRM.  

Keywords: Count Regression, Inference error, Measurement, physical activity, Health behavior. 

BACKGROUND  

Much of the research in health behavior seeking to 

understand the variation among individuals in their 

amount of physical activity (PA) operationalizes the PA 

variable as the number of days in a typical week in 

which the person engages in PA. For instance, the 

Health Information National Trends Survey (2013) 

(HINTS), a nationally representative survey that has 

been administered every several years since 2003 by 

the National Cancer Institute, asked in the cycle 

conducted between October 2012 and January 2013 

the following question: “In a typical week, how many 

days do you do any physical activity or exercise of at 

least moderate intensity, such as brisk walking, 

bicycling at a regular pace, and swimming at a regular 

pace?” Participants answered this question with values 

ranging from 0 to 7 days. Such data are referred to by 

statisticians as “count” data; the respondent’s answer 

to a question such as the above is a count of the 

number of days he/she engages in physical activity in a 

typical week.  

There are several examples in the health behavior 

literature of research analyzing a count PA dependent  

 
 

*Address correspondence to this author at the Texas A&M University, Texas 
A&M University, Department of Health & Kinesiology, College Station, TX 
77843, USA; Tel: 979.845.9280; Fax: 979.847.8987;  
E-mail: aamuta@hlkn.tamu.edu 

variable measured in the same or in a similar way as 

the PA variable in the Health Information National 

Trends Survey [1-5]. Often studies such as these 

analyze the count dependent variable by estimating 

ordinary least squares (OLS) regression equations. 

However, it is inappropriate statistically to model a 

count dependent variable with OLS. For many count 

variables, the distribution is heavily skewed with a long 

right tail and is thus far from being normally distributed. 

This is certainly the case with the PA variable from the 

HINTS dataset because, as we will see later, many 

people in the HINTS data, almost 30 percent, engage 

in no activity, with just a few having 6 or 7 days of 

physical activity of moderate intensity. Moreover, even 

if the count data were normally distributed, OLS is still 

an incorrect statistical method to use because OLS can 

produce predicted counts that are negative, which is an 

impossible outcome for a count variable. 
 

Count variables should not be treated as though 

they are continuous and unbounded. Count data are 

usually not independently and identically distributed. 

Thus, the use of OLS to predict count outcomes will 

often result in incorrect results if one or more of the 

OLS assumptions are not met. Hence statisticians have 

noted that while “the linear regression model has often 

been applied to count outcomes, this can result in 

inefficient, inconsistent and biased estimates ... It is 
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(thus) much safer to use models specifically designed 

for count outcomes.”[6] 

In this paper we analyze physical activity (PA) data 

from Cycle 2 of the 4
th

 Iteration of HINTS. We show 

that the use of an OLS model to estimate PA is 

statistically inappropriate, and that count regression 

models are preferred. We show specifically that a zero-

inflated negative binomial count model is the 

statistically best and preferred model for modeling the 

PA data. We turn now to a more detailed statement of 

the methodology for estimating count models. 

METHODS 

The most basic approach for predicting a count 

variable, such as PA, is the Poisson regression model 

(PRM). The Poisson model is fundamental for 

understanding count regression models. In the PRM, 

the dependent variable, namely, the number of events, 

i.e., in the case of this paper, the number of days in a 

typical week in which the respondent engages in PA, is 

a nonnegative integer and has a Poisson distribution 

with a mean that depends on the characteristics (the 

independent variables) of the respondents [6,7]. The 

PRM incorporates observed heterogeneity according to 

the following structural equation: 

μi = exp (a + X1i b1 + X2i b2 + ... + Xki bk )         (1) 

where:  

μ i is the expected number of days in a typical week in 

which the i
th

 respondent engaged in PA; X1i, X2i ... Xki 

are the characteristics of the i
th

 respondent; and a, b1, 

b2 ... bk are the Poisson regression coefficients.  

The PRM is appropriate when the mean and the 

variance of the count distribution are similar, and is 

inappropriate when the variance of the distribution 

greatly exceeds the mean, that is, when there is a 

significant amount of over-dispersion in the count data. 

If this occurs, the estimates from the PRM will tend to 

be consistent, but inefficient. “The standard errors in 

the Poisson regression model will be biased downward, 

resulting in spuriously large z-values and spuriously 

small p-values” [6,8], which could lead the investigator 

to make incorrect statistical inferences about the 

significance of the independent variables.  

This situation is addressed by adding to the PRM “a 

parameter that allows the conditional variance of (the 

count outcome) to exceed the conditional mean”
7
. This 

extension of the Poisson regression model is known as 

the negative binomial regression model (NBRM). The 

NBRM adds to the Poisson regression model the error 

term  according to the following structural equation: 

μi = exp (a + X1i b1 + X2i b2 + ... + Xki bk + i
)        (2) 

However, sometimes there are many more zeroes 

in the count dependent variable than are predicted by 

the PRM or by the NBRM, resulting in an overall poor 

fit of the model to the data. Zero-inflated count 

regression models respond to this problem of excess 

zeroes “by changing the mean structure to allow zeroes 

to be generated by two distinct processes” [6].  

Consider two examples of excess zeroes. Suppose 

one wishes to survey visitors to a national park to 

predict the number of fish they caught. Suppose that 

data were not available about the visitors to the park 

who did and who did not fish. The data gathered hence 

would likely have a preponderance of zeroes, some of 

which would apply to persons who fished and caught 

no fish, and others to persons who did not fish [9].  

Or consider the issue of predicting the number of 

days in a typical week a person engages in physical 

activity. Some persons will never engage in PA either 

because they have chosen not to do so, or, perhaps, 

because they are not permitted for medical and other 

reasons to do so; in other words they would have a 

zero probability of ever engaging in PA. Conversely, 

some other persons would report zero days of PA 

because they were unable to do so; they had planned 

and wished to engage in one or more days of PA but 

for various reasons were not able to do so; their 

probability of engaging in PA is not always-zero.  

In such a situation, there will likely be many zeroes 

in the dataset, and they will be two kinds of zeroes. 

Some of the zeroes will apply to respondents who tried 

to engage in one or more days of PA, but for one 

reason or another were not successful; and the other 

zeroes would apply to respondents who neither 

intended nor tried to engage in PA. When modelling 

PA, the researcher should be including in the sample 

persons with zero days of PA who tried to engage in 

PA.  

Long and Freese (2006: 394) have noted that in 

zero-inflated models it is assumed that “there are two 

latent (i.e., unobserved) groups. An individual in the 

Always-0 Group (Group A) has an outcome of 0 with a 

probability of 1, while an individual in the Not Always-0 

Group (Group ~A) might have a zero count, but there is 
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a nonzero probability that he or she has a positive 

count.”  

The estimation of zero-inflated count regression 

models involves three steps: 1) predicting membership 

in the two latent groups, Group A and Group ~A; 2) 

estimating the number of counts for persons in Group 

~A; and 3) computing the observed probabilities as a 

“mixture of the probabilities for the two groups weighted 

by the proportion in each group” [6] 

To analyze the count of days of PA in a typical week 

for a group of survey respondents, one would follow 

these steps: [6, 9] 

In Step 1, use a logistic regression model to predict 

the respondent’s group membership in Group A (never 

engage in PA) or Group ~A (may or may not engage in 

PA). The independent variables used in the logistic 

equation are “referred to as inflation variables since 

they serve to inflate the number of 0s” [6].  

In Step 2, for respondents in Group ~A (may or may 

not engage in PA), depending on whether or not there 

is over-dispersion in the CEB dependent variable, use 

either a Poisson regression model or a negative 

binomial regression model to predict the probabilities of 

counts 0 to y (where y in our analysis will equal 7, the 

maximum number of days in a typical week in which 

the subject engages in PA).  

In Step 3, the results from the preceding steps are 

used to determine the overall probability of 0’s, which is 

“a combination of the probabilities of 0’s from each 

group, weighted by the probability of an individual 

(survey respondent) being in the group” [7]. The 

probabilities of counts other than 0 are adjusted in a 

similar way. 

RESULTS 

As already noted we use data in this paper from the 

2
nd

 Cycle of the 4
th

 Iteration of Health Information 

National Trends Survey (2013) (HINTS), a nationally 

representative survey administered every several years 

since 2003 by the National Cancer Institute; the data 

for this cycle were gathered via a single mail-mode 

survey in the period between October 2012 and 

January 2013. The survey is a sample of the U.S. adult 

civilian non-institutionalized population aged 18 or 

older. The final HINTS 4 Cycle 2 sample contains data 

for over 3,600 respondents. Owing to issues of missing 

data, we have responses for analysis in this paper for 

3,422 subjects [10]. 

Table 1 reports descriptive data for the dependent 

variable of the count of days of physical activity and for 

the independent variables used in the analysis as 

predictors of the count (all four of the independent 

variables are dummy variables). The independent 

variables reflect the socioeconomic and demographic 

characteristics of the respondents that have been 

shown in the literature to be related to one’s days per 

week of physical activity [11-15]. 

The respondents had a mean count of days of PA in 

a typical week of 2.61, with a standard deviation of 

2.38, and a variance of 5.20; thus there is extensive 

overdispersion in the PA data. Figure 1 is a graph 

showing the percentage distribution of the respondents 

by their respective counts of PA, from 0 to 7. Almost 

30% of the respondents reported they had zero days of 

PA in a typical week, and 8% had one day, 13% had 

two days, and so forth. The PA distribution is far from 

normally distributed. 

Regarding the independent variables we use in our 

regressions to predict each person’s count of PA days, 

over 61% of the participants were female, and 17% had 

annual incomes of $100,000 or more. Almost 62% of 

the participants had at least some college attained, and 

27% were of age 65 or older (Table 1).  

We first estimate an equation predicting the count of 

PA days using ordinary least squares regression 

Table 1: Descriptive Data: Count of Days of Physical Activity, and Four Independent Variables, 3,422 Respondents: 
Cycle 2 of the 4

th
 Iteration of the Health Information National Trends Survey, 2013 

Variable Mean Standard Deviation 

Count of Days of Physical Activity 2.62 2.38 

Gender (Female = 1) 0.61 0.46 

Income ($100,000 or more = 1) 0.17 0.38 

College (some college or more = 1) 0.62 0.49 

Old Age (age 65+ = 1) 0.27 0.45 
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(OLS). We do so even though it is neither the preferred 

nor the statistically correct method for predicting count 

variables. We later compare the OLS regression effects 

and fit with the results from models especially designed 

for predicting count variables. 

In the first panel of Table 2, we report the OLS 

results of regressing the PA count variable on the four 

independent variables of gender, high-income, college, 

and old-age. All four of the independent variables are 

dummy variables (see Table 1 for their 0-1 coding 

specifics). Of the four independent variables, three of 

them have statistically significant effects on the count 

of PA days. On average, females have about one-third 

of a PA day less than males, controlling for the effects 

of the other variables. Persons reporting high incomes 

($100,000+) have about .37 more days of PA per week 

than persons without high incomes; and persons with 

at least some college have about .45 more days of PA 

than persons with no college. The old-age variable has 

no statistically significant effect on the count of PA 

days. Even though the adjusted value of R
2
 is low (a 

value of 0.021), the F-test of the OLS model is 

statistically significant, (p<0.001).  

How well does the OLS model fit the distribution of 

the PA count data? Figure 2 is a histogram of the 

predicted probabilities of the respondents at each PA 

 

Figure 1: Showing Percent Distribution of Exercise Days. 

Table 2: Ordinary Least Squares (OLS) Regression Model, Negative Binomial Regression Model (NBRM), and Zero-
inflated Negative Binomial Regression Model (ZINB), 3,422 Respondents, Health Information Trends Survey, 
2013  

 OLS  NBRM  ZINB  

Independent Variable b t b z b z 

 Panel 1    Panel 2  Panel 3 

X1 Gender (female =1) -.342 -4.31 -.132 -3.77 -.088 -3.88 

X2 High Income .371 3.51 .130 2.83 .029 1.03 

X3 College .446 5.40 .176 4.73 -.007 -0.28  

X4 Old Age .077 0.88 .039 0.62 .119 4.70  

Constant 2.811 18.99 1.031 15.82 1.396 33.30  

F-test 19.02, P = 0.00      

Likelihood Ratio 
2
     55.22, P = 0.00  40.05, P = 0.00 

Alpha (over-dispersion 
parameter) 

  0.623    

Likelihood Ratio 
2 
test 

of Alpha 
  1296.39, P = 0.00    

Vuong Test of ZINB vs. 
NBRM 

     95.00, P = 0.00 
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count from 0 to 7. The OLS model performs very poorly 

predicting the actual counts of days of PA (compare the 

predicted counts in Figure 2 with the actual counts in 

Figure 1). The OLS model has predicted counts for all 

3,422 respondents within the narrow range of 2.1 to 

3.4. To illustrate, Person #1 in the sample reports 5 PA 

days; the OLS model predicts 2.6 PA days for this 

person. Person #6 reports 0 PA days; the OLS model 

predicts 2.2 PA days for this person. The OLS model 

does a very poor job predicting the range of PA counts 

for the respondents.  

We noted earlier that irrespective of the fit of the 

OLS model with the count data, it is inappropriate 

statistically to model a count dependent variable with 

OLS. For one thing, many count variables have skewed 

distributions, and, also, many of them have a 

preponderance of zeroes. Count variables should not 

be treated as though they are continuous and 

unbounded. Count data are usually not independently 

and identically distributed. Also, even if the count data 

were normally distributed, OLS would still be an 

incorrect statistical method to use because OLS can 

produce predicted counts that are negative. Hence it is 

preferred to use a regression model specifically 

designed for count data. 

We noted above that the most basic model for count 

data is the Poisson regression model (PRM). But it is 

only appropriate when the mean and the variance of 

the count distribution are similar, and is less 

appropriate when the variance of the distribution 

exceeds the mean, that is, when there is over-

dispersion in the count data. We noted above that the 

mean number of PA days among the respondents in 

our sample is 2.61 and the variance is 5.20. This 

indicates over-dispersion in the PA count data. There 

are several formal ways for determining if there is over-

dispersion in the count data (see Poston, 2002)[16], 

and one test will be discussed and shown below. For 

now we conclude that there is a significant amount of 

over-dispersion in the count data, so that a negative 

binomial regression model is preferred over a Poisson 

model.  

The second panel of Table 2 reports the results of a 

negative binomial regression (NBRM). The same 

independent variables are used in this regression 

equation, as were used in the OLS regression shown in 

the first panel of Table 2. 

The same three independent variables have 

statistically significant negative binomial regression 

coefficients (panel 2 of Table 2) as had statistically 

significant OLS regression coefficients (panel 1 of 

Table 2), namely, gender, high-income, and college. 

Thus, even if the researcher were to use the less 

appropriate OLS model instead of the more appropriate 

NBRM, there would be no differences in statistical 

inference. Moreover, the likelihood ratio chi-square test 

(analogous to the global T-test in the OLS model) 

indicates that the NBRM is statistically significant, 

(p<0.001).  

The dependent variable in the negative binomial 

regression model (NBRM) shown above in equation #2 

is the predicted count of PA days; it is related 

nonlinearly to the right-hand side variables. Another 

way, therefore, to gauge the fit of the NBRM is in terms 

of predicted probabilities. Figure 3 shows the NBRM 

 

Figure 2: Showing Percent Distribution of Exercise Days Predicted by OLS Regression. 
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predicted probabilities compared with the empirical 

distribution of the PA count data. The predicted 

probabilities from the NBRM fit the empirical PA data in 

a fair way for counts 2 through 7, but not well for counts 

0 and 1.  

We concluded above that the NBRM was preferred 

over a Poisson model because there was over-

dispersion in the PA count data. One of the formal 

statistical tests for appraising the presence of 

dispersion in the count data is the alpha parameter 

shown at the base of the NBRM results (panel 2 of 

Table 2). Alpha has a value of .623, indicating the 

presence of over-dispersion in the count data; the 

likelihood-ratio 
2 

test of alpha (bottom of panel 2, 

Table 2) has a high value of 1296.4, with a probability 

of .000, indicating that the probability that one would 

observe these data if the process was Poisson, i.e., if 

alpha = 0, is virtually zero. The PA count data are 

clearly not Poisson [6, 17]. 

We showed in Figure 1 that there is a very large 

number of zeroes in the PA count data. Indeed almost 

30% of the respondents in the 2013 HINTS data 

reported they had zero PA days in a typical week. 

Given this preponderance of zeroes in the PA data, we 

estimated a zero-inflated negative binomial regression 

model (ZINB) to see if the model fit would be improved 

over that of the NBRM. The ZINB results in the third 

panel of Table 2 may be compared to those of the 

NBRM shown in the second panel of Table 2, and to 

the OLS coefficients in the first panel. 

But let us first determine if the zero-inflated negative 

binomial model in panel 3 is preferred over the straight-

forward negative binomial model in panel 2. There is a 

formal test statistic, the Vuong test [18], which 

determines statistically whether the ZINB model is a 

significant improvement over the NBRM. The Vuong 

statistic is asymptotically normal; if its value is > 1.96, 

the ZINB model is preferred over the NBRM, and if not, 

the NBRM is preferred. The Vuong test statistic is 

shown at the base of the third panel of Table 2; Vuong 

= 95.0. This is clear evidence that the zero-inflated 

negative binomial regression results are preferred over 

the straight-forward negative binomial regression 

results. 

The ZINB coefficients predicting PA counts of the 

respondents (panel 3 of Table 2) are very different from 

those from the NBRM (panel 2 of Table 2). Note first 

that although the magnitude of the gender coefficient in 

the ZINB model is less than that in the NBRM, in both 

instances the z values are above 2.0, indicating the 

statistical significance of gender on PA counts. This is 

also a conclusion indicated by the gender coefficient in 

the OLS model. In all three models females are 

reported on average to have less PA days than males.  

However, and very importantly, the ZINB 

coefficients in panel 3 for two of the remaining three 

independent variables, namely high-income and 

college are not statistically significant, whereas in the 

NBRM and in the OLS model, these coefficients are 

significant. Thus were a researcher to predict the count 

of PA days with an OLS model or with a negative 

binomial model, he/she would conclude that high 

income people and people with at least some college 

have on average more PA days in a typical week than 

persons without high income or without some college 

 

Figure 3: Showing Distributions of Exercise Days & Negative Binomial. 
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years. But this is exactly the opposite of the ZINB 

results. In the zero-inflated model, there are no 

statistically significant effects, on average, of having 

high income or of having at least some college on the 

count of the number of PA days. Were the researcher 

to predict PA days with an OLS model or with a NBRM, 

he/she would end up making statistical inference 

errors. In the statistically preferred and correct model, 

the ZINB model, these two variables do not have a 

statistically significant effect on the count of PA days. 

Also, in the NBRM and in the OLS model, there is 

no statistically significant effect of old age on the count 

of PA days. That is, both of these models indicate that 

on average the predicted count of PA days for old 

people is not different from the predicted count for 

people who are not old. But in the statistically preferred 

and correct ZINB model (panel 3 of Table 2), persons 

of old age are shown on average to have more PA 

days than person who are not old. Thus a researcher 

predicting PA days with an OLS model or with a 

NBRM, instead of with the statistically correct ZINB 

model, would make another error of statistical 

inference.  

Finally, we inquire about the fit of the predicted 

probabilities of the ZINB model with the empirical 

distribution of the PA count data. We also ask about 

how does the ZINB fit compare with the fit of the NBRM 

predicted probabilities? Figure 4 shows the ZINB and 

NBRM sets of predicted probabilities compared with 

the empirical distribution of the PA count data. We 

conclude that the predicted probabilities from the ZINB 

fit the empirical PA data considerably better –- indeed 

much better -- than NBRM sets of predicted 

probabilities. The amount of over- and under-prediction 

of the PA counts with the ZINB predicted probabilities 

is at a minimum. This provides even more support for 

the ZINB results compared to the NBRM results.  

DISCUSSION 

This paper discussed statistical methods for 

modelling the distribution of days of physical activity 

(PA) data for respondents in the Health Information 

Trends Survey of 2013. We first showed that the 

distribution of the PA data was not normal (Gaussian), 

but, rather, skewed with a right tail, and also, with a 

preponderance of zeroes. Given such a distribution, a 

linear regression (OLS) model is inappropriate for 

statistical modeling. Four socioeconomic and 

demographic variables were then used as independent 

variables to model the counts of PA days for the 

respondents. We estimated an ordinary least squares 

(OLS) regression model, a negative binomial 

regression model (NBRM), and a zero-inflated negative 

binomial (ZINB) regression model. We showed that the 

ZINB model was by far the statistically preferred and 

correct model to predict the count of PA days. We 

showed also that three of the four slope coefficients in 

the OLS model and in the NBRM would have resulted 

in major errors of statistical inference had their 

interpretations been based only on the results of these 

models rather than on the basis of the more correct 

ZINB model. 

The health behavior literature on the statistical 

modeling of days of physical activity indicates that in 

many instances linear regression models have been 

 

Figure 4: Showing Distributions of Exercise Days, Negative Binomial & ZINB Regressions. 
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used. The decision to use a linear model to predict a 

count variable such as PA days, however, is almost 

always wrong. Health researchers should not treat 

such a dependent variable as an interval variable, but 

as a count, i.e., as a non-negative integer. We echo the 

observation of Long and Freese (2006: 349) that while 

“the linear regression model has often been applied to 

count outcomes, this can result in inefficient, 

inconsistent and biased estimates ... It is (thus) much 

safer to use models specifically designed for count 

outcomes.” 

Our analysis of the HINTS 2013 survey of the 

number of days of moderate physical activity (PA) in a 

typical week clearly demonstrated that the zero-inflated 

negative binomial count model fits the observed PA 

data much better than the OLS model and the NBRM. 

The coefficients were so very different in the ZINB 

count model compared to the other two models that 

there would be several errors of statistical inference 

were the researcher to rely only on the results of the 

OLS model and the negative binomial regression 

model.  

The authors wish to acknowledge Texas A&M 

University for providing office space and statistical 

software to run all the analysis presented in this paper. 

REFERENCES 

[1] McCully SN, Don BP, Updegraff JA. Using the Internet to 
Help With Diet, Weight, and Physical Activity: Results From 
the Health Information National Trends Survey (HINTS). J 
Med Inter Res 2013; 15(8). 
http://dx.doi.org/10.2196/jmir.2612 

[2] Boone-Heinonen J, Diez Roux AV, Kiefe CI, Lewis CE, 
Guilkey DK, Gordon-Larsen P. Neighborhood socioeconomic 
status predictors of physical activity through young to middle 
adulthood: The CARDIA study. Soc Sci Med 2011; 72(5): 
641-9. 
http://dx.doi.org/10.1016/j.socscimed.2010.12.013 

[3] Sallis JF, Richard Hofstetter C, Faucher P, Elder JP, 
Blanchard J, Caspersen CJ, et al. A multivariate study of 
determinants of vigorous exercise in a community sample. 
Prevent Med 1989; 18(1): 20-34. 
http://dx.doi.org/10.1016/0091-7435(89)90051-0 

[4] Jago R, Fox KR, Page AS, Brockman R, Thompson JL. 
Parent and child physical activity and sedentary time: do 
active parents foster active children? BMC Public Health 
2010; 10(1): 194. 
http://dx.doi.org/10.1186/1471-2458-10-194 

[5] Vandewater EA, Shim M-s, Caplovitz AG. Linking obesity 
and activity level with children's television and video game 
use. J Adoles 2004; 27(1): 71-85. 
http://dx.doi.org/10.1016/j.adolescence.2003.10.003 

[6] Long JS, Freese J. Regression Models for Categorical 
Dependent Variables Using Stata. Second ed. College 
Station, Texas: Stata Press 2006. 

[7] Long JS. Regression Models for Categorical and Limited 
Dependent Variables. Thousand Oaks, California: Sage 
Publications 1997. 

[8] Cameron AC, Trivedi. PK. Econometric Models Based on 
Count Data: Comparisons and Applications of Some 
Estimators and Tests. J Appl Economet 1986; 1: 29-53. 
http://dx.doi.org/10.1002/jae.3950010104 

[9] Colin CA, Trivedi PK. Regression analysis of count data. 
Cambridge, UK: Cambridge Univ. 1998. 

[10] Health Information National Trends Survey [Internet]. 
National Cancer Institute 2013. 

[11] Carroll-Scott A, Gilstad-Hayden K, Rosenthal L, Peters SM, 
McCaslin C, Joyce R, et al. Disentangling neighborhood 
contextual associations with child body mass index, diet, and 
physical activity: The role of built, socioeconomic, and social 
environments. Soc Sci Med 2013; 95: 106-14. 
http://dx.doi.org/10.1016/j.socscimed.2013.04.003 

[12] Worsley A, Wang WC, Hunter W. Gender differences in the 
influence of food safety and health concerns on dietary and 
physical activity habits. Food Policy 2013; 41: 184-92. 
http://dx.doi.org/10.1016/j.foodpol.2013.05.011 

[13] Scheers T, Philippaerts R, Lefevre J. Compliance with 
different physical activity recommendations and its 
association with socio-demographic characteristics using an 
objective measure. BMC Public Health 2013; 13(136): 
10.1186. 

[14] Strong LL, Anderson CB, Miranda PY, Bondy ML, Zhou R, 
Etzel C, et al. Gender differences in sociodemographic and 
behavioral influences of physical activity in Mexican-origin 
adolescents. J Phys Activ Health 2012; 9(6): 829-39. 

[15] Lämmle L, Worth A, Bös K. Socio-demographic correlates of 
physical activity and physical fitness in German children and 
adolescents. Eur J Public Health 2012; 22(6): 880-4. 
http://dx.doi.org/10.1093/eurpub/ckr191 

[16] Poston Jr DL. The statistical modeling of the fertility of 
Chinese women. J Modern Appl Statist Method 2002; 1(2): 
47. 

[17] StataCorp [Internet]. StataCorp LP. 2013. 

[18] Vuong QH. Likelihood ratio tests for model selection and 
non-nested hypotheses. Econometrica: J Economet Soc 
1989: 307-33. 
http://dx.doi.org/10.2307/1912557 

 
Received on 21-07-2014 Accepted on 11-10-2014 Published on 06-11-2014 
 
http://dx.doi.org/10.6000/1929-6029.2014.03.04.7 

 
© 2014 Amuta and Poston; Licensee Lifescience Global. 
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in 
any medium, provided the work is properly cited. 

 


