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Abstract: Background: Existing prognostic tools for patient selection for ventricular assist devices (VADs) such as the 

Destination Therapy Risk Score (DTRS) and newly published HeartMate II Risk Score (HMRS) have limited predictive 
ability, especially with the current generation of continuous flow VADs (cfVADs). This study aims to use a modern 
machine learning approach, employing Bayesian Networks (BNs), which overcomes some of the limitations of traditional 

statistical methods. 

Methods: Retrospective data from 144 patients at Allegheny General Hospital and Integris Health System from 2007 to 
2011 were analyzed. 43 data elements were grouped into four sets: demographics, laboratory tests, hemodynamics, and 

medications. Patients were stratified by survival at 90 days post LVAD.  

Results: The independent variables were ranked based on their predictive power and reduced to an optimal set of 10: 
hematocrit, aspartate aminotransferase, age, heart rate, transpulmonary gradient, mean pulmonary artery pressure, use 

of diuretics, platelet count, blood urea nitrogen and hemoglobin. Two BNs, Naïve Bayes (NB) and Tree-Augmented 
Naïve Bayes (TAN) outperformed the DTRS in identifying low risk patients (specificity: 91% and 93% vs. 78%) and 
outperformed HMRS predictions of high risk patients (sensitivity: 80% and 60% vs. 25%). Both models were more 

accurate than DTRS and HMRS (90% vs. 73% and 84%), Kappa (NB: 0.56 TAN: 0.48, DTRS: 0.14, HMRS: 0.22), and 
AUC (NB: 80%, TAN: 84%, DTRS: 59%, HMRS: 59%). 

Conclusion: The Bayesian Network models developed in this study consistently outperformed the DTRS and HMRS on 

all metrics. An added advantage is their intuitive graphical structure that closely mimics natural reasoning patterns. This 
warrants further investigation with an expanded patient cohort, and inclusion of adverse event outcomes. 
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INTRODUCTION 

Ventricular Assist Devices (VADs) have made great 

progress over the past 25 years in demonstrating 

clinical benefit and durability, and are steadily gaining 

traction in the treatment of advanced HF [1]. They 

provide alternatives for patients awaiting transplant 

(Bridge to Transplant – BTT), for those ineligible for 

transplant (Destination Therapy – DT) or in patients 

where the eventual transplant candidacy is unknown 

(Bridge to Decision – BTD). Current estimates of 

potential VAD candidates in the US ranges from 80,000 

to 200,000 per year [1]. However, high incidence of 

adverse events diminishes the enthusiasm for this 

therapy, and hence stifles the rate of growth of its 

acceptance. Likewise the resulting hospital 

readmissions of VAD patients –currently exceeding 

50% within the first six months of initial discharge – 

negates potential cost-savings [2]. As VAD use steadily 

increases [3-5], this has become an increasingly 

apparent obstacle to widespread application of this 

therapy. 
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This problem can be ameliorated by more judicious 

selection of patients and by implanting patients earlier 

in the progression of disease [6, 7]. This has motivated 

the development of risk scores to stratify patients 

based on the probability of clinical outcome. The most 

commonly cited of such scores for left ventricular assist 

device (LVAD) therapy is the Destination Therapy Risk 

Score (DTRS). However, it has demonstrated mediocre 

performance [8] in estimating mortality when applied to 

modern continuous flow LVAD (cfLVAD) populations. 

This is in part due to its derivation from a patient cohort 

with first generation pulsatile flow pumps [9]. 

Accordingly, a more recent risk score was derived 

exclusively from patients receiving the HeartMate II, the 

most widely used cfVAD. This HeartMate II Risk Score 

(HMRS), however, demonstrated only marginal 

improvement over the DTRS. This score was able to 

predict 90-day survival based on five variables with an 

AUC of 70%, but only when applied to the same data 

from which it was derived. Furthermore, the predictors 

of long term (1 year) survival was limited to only two 

variables, age and implant center experience [10]. We 

hypothesize that this is due to the shortcomings of 

traditional multivariate analysis, which cannot take into 

account nonlinear inter-relationships between 

significant clinical variables. 
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The purpose of this study was therefore to explore 

the use of modern Machine Learning methods, 

specifically Bayesian Networks (BNs) to provide a 

superior prognostic model for survival of LVAD 

recipients. The advantages of this algorithm include: its 

intuitive structure, efficient statistical pattern 

recognition, and tolerance of missing or erroneous data 

elements.  

METHODS 

Patient Cohort 

The dataset was derived retrospectively from a 

cohort of 144 patients who received an LVAD at 

Allegheny General Hospital (AGH) (n=88) and Integris 

Health System (IHS) (n=56) from January 2007 to 

December 2011. The inclusion criteria were: known 

device implant date, a minimum of 90 day post-op 

follow up information, at least 50% completeness of 

medical history and the use of a cfLVAD.  

Pre-Operative Variable Selection and Data 
Preprocessing 

The machine learning methods used for the present 

study were built upon techniques used previously by 

our group for decision support of optimal VAD weaning 

[11] and the need for right ventricular support due to 

right ventricular failure in LVAD recipients [12-14]. 

Retrospective data elements were grouped into four 

sets (total of 43 elements): demographics (n=9), 

laboratory tests (n=12), hemodynamics (n=15) and 

medications (n=7). The predictive class value was 90-

day outcome and the patients were divided into two risk 

groups: low risk, defined as those who survived at least 

90 days post LVAD implant; and high risk, those who 

died within 90 days. A subsequent pre-processing step 

was performed to fill in any missing data elements and 

discretize continuous variables. Data were extracted 

from preoperative day 14 to 1. For variables with 

multiple values, the value closest to the time of surgery 

was used. In circumstances where data elements were 

missing, data imputation techniques were 

implemented: mean for the continuous variables, mode 

for the category variables.  

Bayesian Networks 

One technique within the broad field of data mining 

is the Bayesian Network (BN) [15] classifier, which is 

an efficient algorithm that can recognize causal 

relationships or correlations among complex clinical 

variables, as well as relationships between each 

variable and the outcome (i.e. survival). BNs are 

acyclic directed graphs representing joint probability 

distributions over sets of variables. Every node is the 

graph represents a random variable. Lack of an arc 

between two nodes represents conditional 

independence between the variables that these nodes 

represent. Nodes are quantified by means of 

conditional probability tables (CPTs) associated with 

each node, describing the likelihood of the variable’s 

values conditioned upon the values of adjacent nodes. 

For each node in the graph network, mutually exclusive 

and cumulatively exhausted states were defined and 

the CPT embedded. The joint probability is expressed 

as: 

 

P(X1, X2,…, Xn ) = P(Xi parents(Xi ))
i=1

n

 

Where P(Xi parents(Xi ))  represents the conditional 

probability of variable Xi. given the occurrence of its 
parent nodes. 

The Naïve Bayes (NB) [16] classifier seen in Figure 

1 is a simplified Bayesian classifier that uses Bayes 

theorem to predict which class a patient belongs to. Let 

C denote the class (mortality in this case) of the 

instance (patient), where c1=alive and c2=dead, and let 

X={x1,x2,…x3} be a vector of pre-operative variables 

(demographics, laboratory tests etc.) denoting the 

observed variable values (e.g. female or blood 

pressured of 90). For a patient with pre-operative 

variables X, NB uses the following equation to 

calculate the probability of the patient belonging to c1 or 

c2:  

 

Pr* (c) = argmax
c {c1, c2}

p(C = c x1, x2 ,…xn ) =

argmax p(C = c) p(Xi = xi C = c)
i=1

n  

Where p(Xi = xi C = c)  represents the conditional 

probability of the pre-operative variable Xi in specific 
states xi in the different classes c1 and c2. 

 

Figure 1: Representation of a Naïve Bayes classifier.  
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In this study, we investigated both the NB and Tree-

Augmented Naïve Bayes (TAN) [17, 18] (Figure 2), 

where the former allows for only a single parent node 

and the latter allows two or more arrows to any single 

node. For example, NB could have INR connected to 

(associated with) survival and TAN could have INR 

connected to (associated with) both survival and age. 

TAN computes the conditional mutual information 

between pre-operative variables: 

I(Xj, Xk C) = P(Xj, Xk , ci
x j, xk , ci

) log2
P(x j, xk ci )

P(x j xi )P(xk ci )
 

Where Xj and Xk are pre-operative variables with 
the values xj and xk, respectively; C is the class node; 

P(x j, xk , ci )  is the joint probability of Xj = xj and Xk = xk; 

C = ci in the dataset; P(x j, xk ci ) , P(x j xi )  and P(xk ci )  

are the corresponding conditional probabilities. This 
measures the mutual dependence between two pre-
operative variables given the class variable. Building 
the maximum weighted spanning tree using this index, 
TAN represents the dependences among the pre-
operative variables, as well as the class variable. 

 

Figure 2: Representation of a TAN classifier with four  
pre-operative variables. 

The example provided in Figure 2 would be 

represented as: 

p(c x1, x2 , x3, x34 ) p(c)p(x1 c, x2 )p(x2 c)p(x3 c, x1)p(x4 c, x3)  

The addition of edges between nodes allows for 

dependence between the variables, which is often the 

case in medical datasets. For additional details of the 

underlying BN theory and derivation, please refer to 

[19]. The final NB and TAN models were based on a 

subset of clinical variables (called features) out of the 

original 43. This was done by a process known as 

feature selection, which reduces the total number of 

clinical variables to avoid over-fitting the model to the 

dataset. Using this method, the set of pre-operative 

variables was first ranked by Chi-Square ( 2) analysis:  

2
= (Oij Eij )

2 / Eijij
 

Where O=observed outcome and E=expected 

outcome. Once the variables are ranked, the top 10 

most predictive variables were included in the model. 

A two-step process was used to train and test the 

model to avoid overfitting to the data. First, a ten-fold 

cross validation was used for optimization of the 

algorithm parameter and model comparison. To 

perform this step, the data is subdivided into 10 sets of 

size n/10, where the model is trained on 9 of the sets 

and tested on 1. This is repeated 10 times and the 

mean accuracy is used to assess the final model’s 

performance. In the second step, the resulting 

classifier/model was then evaluated on an independent 

testing/holdout dataset that has not been observed by 

the model. A training set was comprised of 66% of the 

data records while the testing set used the remaining 

33%. The models were derived, built and implemented 

using an open-source machine learning software library 

(WEKA, Waikato Environment for Knowledge 

Analysis). 

Calculation of HMRS and DTRS 

The DTRS uses a sum-of-points to calculate the 

weighted risk score and identify patients as low, 

medium or high risk. The risk factors are: platelet count 

 148 x 10
3 

/ L (7 points) + serum albumin  3.3 g/dL 

(5 points) + international normalized ratio > 1.1 (4 

points) + vasodilator therapy (4 points) + mean 

pulmonary artery pressure  25 mmHg (3 points) + 

aspartate aminotransferase > 45 U/mL (2 points) + 

hematocrit  34% (2 points) + blood urea nitrogen > 51 

U/dL (2 points) + no intravenous inotropes (2 points). 

Presence of a risk factor is coded as 1 and absence as 

0, which is then multiplied by the associated points and 

summed to give the final score. Low = 0 to 8 points, 

medium = 9 to 16, high = 17 to 19 and very high  19 

where the predicted 90-day mortality rate was <10%, 

10-50%, 50-70% and >70%, respectively.  

The HMRS is calculated by the following simple 

equation: center experience (0 if 15 VADs/year, 1 if 

15 VADs/year), age (per 10 years), Albumin, 

Creatinine, and INR. The HMRS equation = (0.0274 x 

[age in years]) – (0.723 x [albumin]) + (0.74 x 

[creatinine]) + (1.136 x [INR]) + (0.807 x [center LVAD 

volume < 15]). Patients are then categorized into low 
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risk (HMRS < 1.58), medium risk (HMRS: 1.58-2.48) 

and high risk (HMRS > 2.48), where the 90-day 

mortality rate is predicted as 8%, 11% and 25%, 

respectively.  

Statistical Analysis 

The differences between groups (high vs. low risk) 

were evaluated by chi-square test. The comparison of 

continuous variables between the high and low risk 

patients was performed using either the Student t-test 

when normally distributed or the Wilcoxon rank sum 

test when distributed otherwise using SAS (version 9.3, 

Cary North Carolina). Categorical variables were 

compared using the Fisher exact test [20] with a 

commercial software package (MedCalc, version 

9.5.0.0, Mariakerke, Belgium). Odds ratios (OR) and 

confidence intervals (CI) were also computed for both 

the high and low risk patients.  

Sensitivity was defined as the ratio of true positives 

to the sum of true positives and false negatives (i.e. 

high risk patients correctly predicted as high risk). 

Specificity was defined as the ratio of true negatives to 

the sum of true negatives and false positives (i.e. low 

risk patients correctly predicted as low risk). Standard 

receiver operator characteristic (ROC) curves were 

constructed to illustrate overall sensitivity and 

specificity. The area under the ROC curve (AUC %) 

was calculated as an index of overall performance. 

These three metrics in addition to the Kappa statistic 

was used for comparison to the DTRS and HMRS. 

Survival Analysis 

Patient survival estimates were plotted using 

Kaplan-Meier curves. Differences between stratified 

groups was compared using log-rank statistics [21]. 

The plots were created using JMP (Version 10. SAS 

Institute Inc., Cary, NC). Survival was calculated from 

the day of implant. Patients were censored if they 

received a heart transplant or device explant, which 

excluded 16 patients from the 144 cohort.  

RESULTS 

A summary of the pre-implant patient characteristic 

statistics can be seen in Tables 1 and 2. The overall 

accuracy, Kappa statistic and AUC % of both the NB 

and TAN models (Figure 3) exceeded the DTRS and 

HMRS in all three parameters (Table 3). The 

associated ROC curves (Figure 4) reveal the dramatic 

difference in performance between the Bayesian 

models (Figure 3) and traditional scores (NB: 79.5% 

and TAN: 83.6% vs. the DTRS: 59% and HMRS: 59%) 

when each was applied to our patient cohort. Likewise, 

the confusion matrix (Table 4) reveals the clear 

superiority of the NB and TAN (80% and 60%, 

respectively) at correctly identifying high risk patients 

as compared to the DTRS and HMRS (40% and 25%, 

respectively). Similarly, the false negatives (high risk 

patients inaccurately predicted as low risk) were much 

lower for the NB and TAN (20% and 40%) than both 

the DTRS and HMRS (60% and 75%). Although the NB 

and TAN (90.9% and 93.2%) performed similar to the 

HMRS (93.5%) in terms of specificity, they all 

outperformed the DTRS (78.2%). The NB, TAN and 

HMRS had similar frequency of false positives (9.1%, 

6.8% and 6.4%), while the DTRS (21.4%) had a much 

higher percentage of incorrectly classified low risk 

patients.  

Both the NB and TAN BN models were built from 

datasets using 10 most predictive variables, which 

emerged from feature selection based on their 

predictive power. The features listed in order from 

highest to lowest predictive power: hematocrit (%), 

aspartate aminotransferase (IU/liter), age, heart rate 

(beats/min), transpulmonary gradient (mm Hg), mean 

pulmonary artery pressure (mm Hg), use of diuretics, 

platelet count (10
9
/liter), blood urea nitrogen (mg/dl) 

and hemoglobin (g/dl). Many of the predictive features 

identified overlap with the DTRS (platelet count, mean 

pulmonary artery pressure, aspartate aminotrans-

ferase, hematocrit %, and BUN), yet only one 

overlapped with the HMRS (Age). There was no 

common variable that was included in all four predictive 

models.  

Survival Outcome 

The Kaplan Meier survival curves are provided in 

Figures 5-8 and summary in Table 5 for the DTRS, 

HMRS, NB, and TAN, with the patient population 

stratified into high and low risk. (The Kaplan Meier 

curve for the actual survival is provided in Figure 9 for 

reference). Both the DTRS and HMRS curves were 

derived from 136 patients (16 of the 144 were censored 

due to heart transplant within 90 days of VAD implant) 

and the NB and TAN were derived from 43 patients 

since the model performance was evaluated on the test 

set (48 patients, 5 of which were censored due to heart 

transplant within 90 days of VAD implant). The 

difference between the two groups was statistically 

significant for all models (log ranks: DTRS = 0.008, 

HMRS = 0.006, NB = <0.0001, TAN = 0.001).  
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Table 1: Baseline Characteristics 

Patient Characteristics All Data mean ± SD  

(n=144) 

High Risk 

(n=20) 

Low Risk 

(n=124) 

p-value  

OR (95% CI) 

Demographics 

Age 58.4 ± 12 65 ± 7.4 57.4 ± 12.3 0.01 

1.08 (1.02-1.14) 

Female, % 28 (20) 7 (35) 21 (17) (female) 0.06 

2.6 (0.94-7.41) 

Ischemic etiology, % 81 (56) 12 (60) 69 (55) (ischemic) 0.72 

1.20 (0.46-3.13) 

Weight (kg) 94.5 ± 21.2 94.2 ± 21.6 94.5 ± 21.2 0.96  

0.99 (0.98-1.02) 

BMI (kg/m
2
) 30.7 ± 6.2 31.7 ± 6.8 30.5 ± 6.1 0.46 

1.03 (0.95-1.11) 

Implant Urgency*, %  Elective 60 (42) 

Emergent 33 (23) 

Urgent 51 (35) 

Elective 9 (45) 

Emergent 5 (25) 

Urgent 6 (30) 

Elective 51 (41) 

Emergent 28 (22) 

Urgent 45 (36) 

0.86† 

LVAD indication, % BTT 84 (58) 

DT 43 (30) 

BTD 17 (12) 

BTT 14 (70) 

DT 4 (20) 

BTD 2 (10) 

BTT 70 (56) 

DT 39 (31) 

BTD 15 (12) 

0.51‡ 

Laboratory values 

HGB (g/dl) 11 ± 1.9 10.2 ± 1.8 11.1 ± 1.9 0.04 

0.74 (0.56-0.99) 

WBC (*10E+09/L) 9.6 ± 3.7 9.6 ± 3.9 9.6 ± 3.6 0.75 

1.02 (0.90-1.16) 

HCT (%) 33.9 ± 5.4 31.4 ± 5.9 34.2 ± 5.2 0.03 

0.90 (0.81-0.99) 

Albumin (g/dl) 3.2 ± 0.5 3.1 ± 0.4 3.2 ± 0.6 0.31  

0.63 (0.26-1.52) 

ALT (IU/L) 108.9 ± 350.1 71.4 ± 106.8 114.9 ± 374.9 0.72  

1.00 (0.99-1.00) 

Total Bilirubin (mg/dl) 1.3 ± 1.1 1.7 ± 1.9 1.3 ± 1 0.09 

1.34 (0.9-1.9) 

INR 1.5 ± 0.9 1.5 ± 0.3 1.5 ± 1 0.83 

0.93 (0.51-1.71) 

BUN (mg/dl) 29.9 ± 18.3 37.8 ± 24.8 28.6 ± 16.8 0.04  

1.03 (1.00-1.05) 

Creatinine (mg/dl) 1.4 ± 0.7 1.6 ± 1 1.4 ± 0.6 0.13 

1.54 (0.87-2.71) 

AST (IU/L) 154.1 ± 799.8 69.7 ± 75.4 167.7 ± 861.1 0.66 

1.00 (0.99-1.00) 

Platelet Count (*10E+09/L) 189.8 ± 78.7 164.6 ± 95.8 193.8 ± 75.2 0.12 

0.99 (0.99-1.00) 

Sodium (MEQ/L) 134.9 ± 5.1 133.6 ± 5.7 135.1 ± 5 0.22 

0.94 (0.86-1.04) 

IABP, % 55 (38) 8 (40) 47 (38) 0.72 

1.20 (0.46-3.13) 
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(Table 1). Continued. 

Patient Characteristics All Data mean ± SD  

(n=144) 

High Risk 

(n=20) 

Low Risk 

(n=124) 

p-value  

OR (95% CI) 

Hemodynamics 

PA systolic (mmHg) 55.7 ± 15.9 54.6 ± 12.8 55.8 ± 16.4 0.76 

0.99 (0.96-1.03) 

PA diastolic (mmHg) 26 ± 8.2 23.5 ± 6.5 26.4 ± 8.4 0.34 

0.97 (0.90-1.03) 

PA mean (mmHg) 38.1 ± 10.6 36.1 ± 7.2 38.4 ± 11 0.41 

0.98 (0.93-1.03) 

RV systolic (mmHg) 56.3 ± 14.1 54 ± 11.8 56.6 ± 14.5 0.47 

0.99 (0.95-1.02) 

RV diastolic (mmHg) 10.2 ± 6.2 8.9 ± 6 10.5 ± 6.2 0.39 

0.92 (0.76-1.11) 

RAP (mmHg) 13.9 ± 6.8 14.2 ± 4.9 13.9 ± 6.9 0.55 

0.96 (0.84-1.09) 

PCWP (mmHg) 25 ± 9.4 24.1 ± 8.5 25.1 ± 9.6 0.80 

0.99 (0.93-1.05) 

TPG (mmHg) 13.4 ± 7 11.7 ± 6.1 13.6 ± 7.1 0.41 

0.95 (0.84-1.07) 

PVR (WU) 155.5 ± 214.2 155.1 ± 204.9 155.5 ± 216.2 0.90 

1.00 (0.99-1.00) 

PA sat (%) 52 ± 11.6 53.3 ± 13.6 51.8 ± 11.4 0.62 

1.01 (0.97-1.06) 

CO (liters/min) 4.4 ± 1.6 4.6 ± 1.5 4.4 ± 1.6 0.68 

1.06 (0.79-1.42) 

CI (liters/min/m
2
) 2.06 ± 0.7 2.3 ± 0.6 2 ± 0.7 0.17 

1.59 (0.82-3.11) 

HR (bmp) 89.2 ± 17.7 85.5 ± 13.7 89.8 ± 18.2 0.32 

0.99 (0.96-1.01) 

Medication, % 

Digoxin 76 (53) 9 (45) 67 (54) 0.45 

0.70 (0.27-1.80) 

Diuretic 84 (58) 6 (30) 78 (63) 0.008 

0.25 (0.09-0.70) 

ACE inhibitors or A-II 

antagonists 
55 (38) 5 (25) 50 (40) 0.20 

0.49 (0.17-1.44) 

-blockers 74 (51) 10 (50) 64 (52) 0.89  

0.94 (0.36-2.41)  

Vasodilators 31 (21) 4 (20) 27 (28) 0.86 

0.90 (0.28-2.91) 

Antiarrhythmic 48 (33) 7 (35) 41 (33) 0.86 

1.09 (0.40-2.94) 

Inotrope 99 (69) 12 (60) 87 (70) 0.36 

0.64 (0.24-1.70) 

BMI: body mass index, BTT: bridge to transplant, BTD: bridge to decision, DT: destination therapy, HGB: hemoglobin, WBC: white blood cell count, HCT: hematocrit, 
ALT: Alanine Aminotransaminase, INR: international normalized ratio, BUN: blood urea nitrogen, AST: Aspartate Aminotransferase, IABP: intra-aortic balloon pump, 
PA: pulmonary artery, RV: right ventricular, RAP: right atrial pressure, PCWP: pulmonary capillary wedge pressure, TPG: transpulmonary pressure gradient, PVR: 
pulmonary vascular resistance, CO: cardiac output, CI: cardiac index, HR: heart rate. 
*Elective – LVAD scheduled as an outpatient, Urgent – LVAD scheduled same admission as heart failure decompensation, Emergent – following extracorporeal 
membrane oxygenation, IABP, acute coronary syndrome or ventricular tachycardia.  
†Compared elective vs. urgent and emergent. 
‡Compared BTT vs. DT.        
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Table 2: LVAD Devices 

Device N (%) 

HeartMate II 128 (88) 

Levacor  5 (3.4) 

Duraheart 8 (5.5) 

Jarvik 1 (0.7) 

Ventrassist  2 (1.4) 

The DTRS (Figure 5) predicted 32 high risk and 96 

low risk patients. Survival for high and low risk groups 

was 94% and 93%, respectively, at 30 days post-

LVAD, 72% and 84% at 90 days, 50% and 71% at 180 

days, and 22% and 40% at 1 year.  

The HMRS (Figure 6) predicted 11 high risk and 

117 low risk patients. Survival for high and low risk 

groups was 73% and 92%, respectively, at 30 days 

 

Figure 3: (right) Naïve Bayes model for 90-day survival using the top 10 most predictive features (left) Tree-Augmented Naïve 
Bayes model. Clinical variables: HGB: hemoglobin, HCT: hematocrit, BUN: blood urea nitrogen, AST: Aspartate 
Aminotransferase, PAP: pulmonary artery pressure, TPG: transpulmonary pressure gradient, HR: heart rate, PLT: platelet 
count. 

 

Table 3: Performance on AGH and Integris Dataset 

 NB TAN DTRS HMRS 

Accuracy (%) 89.8 89.8 72.9 84.0 

Kappa 0.56 0.48 0.14 0.22 

AUC (%) 79.5 83.6 59.0 59.0 

NB: Naïve Bayes, TAN: Tree-Augmented Naïve Bayes, DTRS: Destination Therapy Risk Score, HMRS: HeartMate II Risk Score. 

 

 

Figure 4: Receiver operating characteristic curve of the HeartMate Risk Score (AUC 59%), Destination Therapy Risk Score 
(AUC 59%), Naïve Bayes model (AUC 79.5%), TAN model (AUC 83.6%) and line of unity (50%).  
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Table 4: Confusion Matrix 

 Predicted High Risk  Predicted Low Risk 

True High Risk  True Positive (Sensitivity) 

NB (80 %) 

TAN (60) 

DTRS (40) 

HMRS (25) 

False Negative  

NB (20 %) 

TAN (40) 

DTRS (60) 

HMRS (75) 

True Low Risk  False Positive  

NB (9.1 %) 

TAN (6.8) 

DTRS (21.8) 

HMRS (6.4) 

True Negative (Specificity) 

NB (90.9 %) 

TAN (93.2) 

DTRS (78.2) 

HMRS (93.5) 

NB: Naïve Bayes, TAN: Tree-Augmented Naïve Bayes, DTRS: Destination Therapy Risk Score, HMRS: HeartMate II Risk Score. 

 

 

Figure 5: Kaplan Meier survival curve for the Destination Therapy Risk Score. 

 

 

Figure 6: Kaplan Meier survival curve for the HeartMate II Risk Score. 
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Figure 7: Kaplan Meier survival curve for the Naïve Bayes model. 

 

 

Figure 8: Kaplan Meier survival curve for the Tree-Augmented Naïve Bayes model. 

 

Table 5: Kaplan Meier Survival Curve Summary 

Risk Score Risk Group 

(N) 

Mean Time to 
Event 

30-Day Survival 

N (%) 

90-Day Survival 

N (%) 

1-Year Survival 

N (%) 

DTRS High (32) 

Low (96) 

177 days 

313 days 

27 (94%) 

89 (93%) 

23 (72%) 

83 (84%) 

7 (22%) 

39 (40%) 

HMRS  High (11) 

Low (117) 

80 days 

281 days 

8 (73%) 

108 (92%) 

6 (55%) 

100 (85%) 

2 (10%) 

44 (38%) 

Naïve Bayes High (4) 

Low (39) 

10 days 

311 days 

1 (25%) 

38 (97%) 

0 (0%) 

37 (95%) 

0 (0%) 

14 (36%) 

TAN High (5) 

Low (38) 

71 days 

305 days 

3 (60%) 

36 (95%) 

2 (40%) 

35 (92%) 

0 (0%) 

14 (37%) 

TAN: Tree-Augmented Naïve Bayes, DTRS: Destination Therapy Risk Score, HMRS: HeartMate II Risk Score. 

post-LVAD, 55% and 85% at 90 days, 45% and 67% at 

180 days, and 10% and 38% at 1 year.  

The NB model (Figure 7) predicted 4 high risk and 

39 low risk patients. Because of the precipitous death 
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rate of the NB high risk group, survival comparisons 

were made at 8 and 12 days, which were 75% and 

50%, respectively. No patient identified as high risk 

survived beyond 71 days, consistent with the Kaplan 

Meier for the actual outcomes (Figure 9). Survival for 

the low risk group was 97% at 30 days post-LVAD, 

95% at 90 days, 79% at 180 days, and 36% at 1 year.  

Finally, the TAN model (Figure 8) predicted 5 high 

risk and 38 low risk patients. Survival for the high risk 

group was 60% at 30 days post-LVAD, 40% at 90 

days, 20% at 180 days and 0% at 1 year. Survival for 

the low risk group was 95% at 30 days post-LVAD, 

92% at 90 days, 79% at 180 days, and 37% at 1 year.  

DISCUSSION 

Although Bayesian statistics were first introduced 

(by Bayes) over 300 years ago, their utility in the 

medical workflow was only recognized within the past 

25 years [22]. Over the past ten years decision support 

models based on BNs have been published for a wide 

variety of medical disciplines [23-28]. This study is 

however the first application of such models on a 

cohort of LVAD recipients.  

Nearly all the variables in the models have been 

previously cited as being predictive for mortality and 

morbidity of LVAD recipients, including hematocrit [9], 

aspartate aminotransferas e [9], age [10, 29], mean 

pulmonary artery pressure [9], platelet count [9] and 

blood urea nitrogen [9]. The two classifiers investigate 

here exhibited different strengths and weaknesses. 

Although the NB classifier is less sophisticated than the 

TAN, it performed the best of all four scores that were 

evaluated. However, as the number patients and 

variables increase, the performance of TAN is likely to 

improve, while the NB would likely plateau and then 

diminish. This is due to the unique characteristic of the 

TAN classifier that accounts for both the influence of 

each independent variable on other variables. For 

example, hemoglobin < 9.25 g/dL was found to 

decrease the chance of survival twofold irrespective of 

other variables; whereas the influence of platelet count 

on survival was dependent upon the mean pulmonary 

artery pressure. (Data not shown.) With mean PAP less 

than 45.5 mmHg, platelet count < 123 x 10
3
/ L 

decreased survival twofold; but with PAP greater than 

this cutoff, the platelet count decreased as much as 

four-fold. Hematocrit < 29% increased chance of death 

by 3.5 times, which was further amplified to nearly six-

fold when hemoglobin was also between 9.25 and 

10.35 g/dL. Blood urea nitrogen > 44.5 mg/dL 

increased risk of death twofold, but when platelet count 

> 258 x 10
3
/ L, mortality was reduced by nearly the 

same amount.  

The suboptimal performance of the DTRS when 

applied to a cohort of continuous flow devices has 

already been published [8]. The HMRS was published 

within the past year, and therefore has yet to be 

compared to other patient cohorts or against other risk 

scores. In contrast to the traditional Frequentist 

statistical methods comprised of weighted 

combinations of independent variables, BNs provide: 1) 

a rigorous probabilistic framework in which to perform 

inference on unknown or predictive variables, 2) a 

means of learning probabilistic information from data, 

3) the ability to capture the nonlinear inter-relationships 

 

Figure 9: Kaplan Meier survival curve for the actual clinical outcomes. 



Prognostic Bayesian Model for LVAD Survival International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 4      433 

amongst independent variables 4) the ability to 

accommodate missing data elements or sparse data 

records (common to medical datasets) and 5) a visual 

representation that is easy to interpret by human 

experts. Overall, these qualities provide more an 

accurate depiction of human decision making process 

and improved performance. Consequently they are 

more likely to be adopted into the clinical workflow than 

an anonymous “black box” type risk score.  

The primary limitation in this study was, the 

moderate size of patient cohort used to create the 

models. Another potential limitation was institutional 

bias by including only two clinical programs. Missing 

data elements is another major obstacle that is often 

unavoidable when performing retrospective studies 

using medical data. Although we were able to use 

WEKA to substitute the missing variables with suitable 

surrogates, there is no true replacement for actual 

measured/observed data. We will address these 

limitations in future planned studies that expand the 

number of patient, broaden the endpoints to include 

adverse events such as stroke and infection, and 

extend the timeline to 6-months and 1-year. This will 

also provide an opportunity to update our existing 

prognostic model for RV failure [12, 13]. 

Another important step towards translation of this 

model to clinical practice will be to incorporate it into a 

computer application that may be consulted at key 

decision points. This will also offer an opportunity to 

introduce expert knowledge and user customization – 

both features hopefully enhancing the ultimate utility of 

the model. 

BNs are able to more closely model the natural 

clinical decision-making process as compared to 

traditional risk scores and therefore offer a valuable 

tool for medical decisions such as identifying 

candidates most likely to benefit from VAD therapy. 

This study demonstrated a remarkable improvement 

over the existing risk scores (DTRS and HMRS) with 

respect to accuracy, Kappa, sensitivity, and specificity, 

also illustrated by predicted Kaplan-Meier survival 

curve that most closely resembles the actual outcomes. 

The BNs consistently outperformed the DTRS and 

HMRS due to (1) their abilities to learn from prior 

probability, (2) account for relationships between 

variables and (3) tolerate missing data elements. 

These results encourage continued validation and 

expansion of the models with a prospective, multicenter 

study.  
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