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Abstract: Clinical trials of rare diseases commonly enlist several centers to achieve recruitment goals. The aim of this 
study is to examine the estimation of treatment effects for survival outcomes in multicenter clinical trials with varying 
numbers of centers and few patients per center for rarer disease outcomes (i.e. rare cancers). We modeled the 

heterogeneity between centers using Cox frailty models to account for the variability in patients and patient care between 
centers and examined measures of model fit via smoothed functions of a prognostic factor. Through a simulation study, 
we were able to examine the consequence of having only a few centers or a few patients per center on the treatment 

and prognostic factor effects and model performance indices. Overall, we found it is preferable to have more patients per 
site and more sites in a multicenter trial as expected. However, having a few patients per site is feasible if there are 
many sites in a trial. 
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1. INTRODUCTION 

For large-scale multi-center clinical trials, hospital-

based universities are often chosen as study sites and 

may only enroll a few patients. Due to the rarity of the 

disease some studies may need to find patients at as 

many potential centers as possible. As Matthews [1] 

noted, defaulting to multicenter often occurs, however, 

since each center is different due to variations in 

patients as well as provider care, this can introduce 

bias into the analysis, even after post-hoc adjustment 

for center as a fixed effect [2]. Despite the common 

practice of including many centers with few patients per 

center, little is known about the combined behavior of 

number of centers and number of subjects per center 

on the estimation of treatment effect in the survival 

model and the effect of this imbalance across centers. 

This is of particular relevance for cancers, such as 

breast cancer (inflammatory breast cancer, Paget 

disease, and phyllodes tumor), and rarer cancers, for 

which enough events are needed to have sufficient 

power for survival analysis. 

Cox proportional hazards models with random 

effects terms (frailty) are commonly used for survival 

data with censored outcomes that account for 

heterogeneity such as that between centers. It is noted 

that a traditional Cox model may have problems with 

estimation when there are few events overall such as in 

the case of rare diseases, however penalized likelihood  
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methods can aid in estimation [3]. Our model will be 

estimated by penalized methods, hence reducing the 

bias in estimation. Also, since the centers will be 

accounted for by a random effect, we can avoid the 

issue of fixed effects which can lead to biased 

estimation of the center effect [4].  

What is also of interest is how well the variance of 

the random effect is estimated in order to assess the 

model effect on the variability between centers. 

Duchateau [5, 6] have used a frailty model to model the 

heterogeneity between centers, as influenced by the 

number of centers and the number of patients through 

simulations. They assessed the change in variability by 

the frailty variance as a measure of the heterogeneity 

between centers. They found for a certain number of 

centers, either 15 or 30, there was little bias on 

treatment effect when increasing patient numbers. 

Although they varied numbers of centers and patients 

in those centers, they did not look at center size 

smaller than 20 nor patient size per center smaller than 

15. We have attempted to address this issue for rarer 

diseases. 

Smoothing techniques for modeling nonlinear 

relationships between one or more covariates and the 

response have been employed. Jeong and Constantino 

[7] used smoothing methods to evaluate treatment-

prognostic factor effects on breast cancer data 

obtained from clinical trials. Smoothing has been 

incorporated in similar applications. Silverman et al. [8] 

used locally weighted scatterplot smoothing with Cox 

modeling to estimating trends of breast cancer 

incidence.  
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In this study, using comprehensive simulation, we 

evaluate properties of the Cox frailty model with a 

smoothed prognostic factor when there is a very small 

number of patients per center or when there are only a 

few centers but with more patients per center. We 

examine bias and inferences about the main treatment 

effect. Unlike Duchateau et al. [5, 6], Ambler et al. [3], 

and Silverman et al. [8], we also model a smoothed 

curve of a prognostic factor, such as age, for each 

using natural splines, similar to previous work [9], and 

further assess the model fit. We use a comprehensive 

simulation study to examine these features: estimation 

and testing of the treatment effect and the nonlinear 

prognostic variable relationship under different patient 

sample sizes and different number of centers. We also 

demonstrate this on a real dataset. 

2. METHODS 

2.1. Estimating Model  

Survival models, such as the Cox proportional 

hazards (PH) model, are used to model time to an 

event. A random effect (frailty) term, incorporated as a 

shared frailty (frailty modeled between groups), 

accounts for the heterogeneity between centers. We 

incorporate a dichotomous treatment effect as a 

covariate and include a continuous prognostic variable. 

We use a natural spline smoothing function of the 

prognostic variable to model potential non-linear 

relationships. 

In a Cox PH regression model this gives: 

hij (t) = h0 (t)exp(xij + s(yij )+wi )          (1) 

where h0(t) is the baseline hazard rate, i=1,…,c centers 

and j=1,….,pi patients per center, xij is a dichotomous 

treatment variable, yij is the prognostic variable, which 

we will use as age, and s(yij) is a smoothed function of 

yij. In addition, we include a log-normal frailty density 

for the center effect, similar to that employed by 

Duchateau et al. [5], where we estimate a given 

number of random center effects, with a particular 

number of patients per center.  

While many options exist for smoothing the 

prognostic variable, such as restricted cubic splines, 

penalized splines, and fractional polynomials, due to 

their ease of implementation and behavior in previous 

simulation studies [9] we opted to use a natural spline 

(NS) function to model the non-linearity in s(yij). As 

implemented in the ns function of R software, natural 

splines are essentially restricted cubic splines which 

uses B-splines in a basis expansion of s(yij): 

s(yij ) = 0yij + h Bh (yij )
h=1

H 2

 

for Bh(yij) the B-spline basis functions. These are 

described in further detail [9]. We used the ns function 

in R with a default degrees of freedom (df), i.e. 

smoothness of df = 4. We employed penalized 

likelihood to estimate the frailty models [10]. 

2.2. Data Generation 

We generated survival data using methods similar 

to those in Bender et al. [11], and described in more 

detail [9, 12], but adjusted to incorporate a center effect 

in the model. We use as the true generating model, the 

Cox PH model,  

h(t | xij, yij ,wi ) = h0 (t)exp( T xij + s(yi j )+wi ) .       (2) 

As in the previous section, the subscripts i and j 

represent the center and patient respectively. The 

coefficient T corresponds to the dichotomous 

treatment effect xij, and we examined three treatment 

scenarios, T =1, T =0, and T = -1. The treatment 

group assignment, xij, was generated so that 84% were 

treated, on average. The s(yij)=log(yij) to allow for non-

linearity in the prognostic factor, yij, using a true 

logarithmic association or s(yij)=yij to allow for linearity. 

We sampled yij randomly with replacement from a 

range of 30 to 66 to mimic a reasonable age 

distribution of subjects enrolled. The center effect, wi,, 

was generated from a N(0,
2
) distribution, with values 

2
 = 1 and 

2
= 0.25

2
 used in the simulations. 

Bender et al. [11] discussed the use of different 
distributions for generating survival times. We allowed 
for a baseline Weibull hazard [11, 13], so that 

h0 (t) = t -1 , depending on parameters  and , are 

chosen to generate realistic survival data. Survival 
times are found from this generating distribution by 
using the relationship between the hazard function, 
survival function, S(t), and cumulative distribution 
function (CDF), F(t), of the survival time random 
variable, T.  

Given the baseline hazard function, h0 (t) , the CDF 

is found through the relationship 
 
F(t) = 1- S(t) = 1 e H (t )

 
where H(t) is the cumulative hazard function. This in 

turn is given by H (t) = eg(x,y,w) h0 (u)du = e
g(x,y,w)vt

0

t
, 

where g(x,y,w) = T x + s(y)+w  
is the true log hazard 
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ratio defined in (2) above. Using the probability integral 
transformation, for a given t, the CDF, F, has a Uniform 
distribution on the interval from 0 to 1. Generating U1 
from a Uniform (0,1) distribution and solving for t gives 

the simulated survival time, 

 

t =
-e g(x,y,w) log(1 U1)

1/

  

for given values of x, y, w,  and .  

For added realism, we also incorporate a competing 
risk into the simulations. Competing risk times were 
generated in a similar manner based on an exponential 

distribution with scale parameter , giving, 

 

tcr =
log(1-U2)

 where U2 ~ Uniform(0,1). The observed 

survival time was taken to be the minimum of t0, tcr, and 

a pre-specified end-of-study time, . An observation 

was considered censored if t0 was larger than the 

minimum of tcr and . The user-specified parameters, , 

, , and  were set to generate realistic survival time 

distributions. We used  = 20 years of follow-up time 

and =5 which is considered typical of many types of 

cancer [14, 15]. The parameters,  and , were chosen 

to control the amount of censoring in the simulated 
data. We had 71 cases on average in the dataset 
where the average number of cases increased across 
the scenarios from 47 to 91. The final simulated 
datasets contain: (x, y, t, d, c): treatment, the 
prognostic factor (age), survival time, event indicator, 
and center number. 

2.3. Performance Measures 

To assess the performance of the Cox model under 

the different simulation conditions, we examined a 

number of measures: 1) bias in the treatment 

coefficient estimate, 2) bias in the non-linear prognostic 

effect, 3) power to detect a treatment effect, 4) power 

to detect the treatment and prognostic effects 

simultaneously, 5) power to detect the prognostic effect 

on a nonlinear scale, and 6) the estimated variance 

between centers. We describe each of these in more 

detail.  

The bias in the treatment coefficient estimate is the 
difference in the true generating coefficient, T, in 
model (2) and the estimate of the coefficient, , in 
model (1). Bias in the estimated smoothed curves of 
the prognostic variable are summarized using mean-
squared error [9, 12]. This computed as 

rMSE = s(yij ) ŝk (yij )
2

k=1

K

 where ŝk (yij )  is the 

estimated curve for patient j at center i in the k
th

 

simulated data and s(yij ) = log(yij )  or s(yi j ) = yij  is the 

corresponding true value of curve. The distribution of 
rMSE is presented in boxplots and the median of the 

rMSE was used to summarize model fit to reduce the 
influence of the tails.  

We also examined two hypothesis tests related to 

the natural spline fit. The first is a test of the overall 

model and the second is a test of a regression effect of 

age as estimated by NS. Both tests were conducted 

using likelihood ratio test statistics. We present the 

proportion of significant tests (p-values less than or 

equal to 0.05) over all simulated data sets. 

3. RESULTS 

3.1. Simulations 

All simulations were performed in R software 

Version 3.1.1. Table 1a gives the number of patients 

per site and number of sites that were used in the 

simulation study. These were selected to conform to 

what has been seen in practice with multicenter trial 

designs. We simulated K = 1000 data sets per each of 

96 scenarios defined by the number of sites, the 

number of patients per site (as given in Table 1a), the 

treatment effect ( T = -1,1, and 0), the variance 

between centers (
2
 = 1 and 0.25

2
), and the choice of 

parameters,  and , from the generating distributions 

described in Section 2.2. The parameters,  and , 

impact the amount of censoring in the simulated 

survival data and we thus list the number of resulting 

cases, on average, per scenario. Table 1b gives these 

quantities for each of the 96 scenarios.  

Overall, the 25
th

, 50
th

 and 75
th

 percentiles for the 

prognostic factor, age, were 39, 48, and 57, 

respectively. Cases were only slightly older than non-

cases but in general very close. In Table 2a, the test of 

no effect of treatment nor age is rejected most often for 

the scenarios which consist of five sites or for true 

linear age with either low number of cases and no 

treatment or positive treatment or high number of cases 

and least often for scenarios consisting of ten sites for 

true nonlinear age. The test for the regression age 

effect on the natural spline scale was rejected most 

often for those scenarios where the frailty variance was 

1.0 as compared to those with variance of 0.25
2 

and 

the p-value increases as number of sites increase, 

holding other parameters constant. Once there was a 

true linear age and high number of cases, then it was 

always rejected which is expected. NS curves started 

fitting better for scenarios 17-32 and 65-96; the median 

and IQR of the rMSE appears to be lower for these 

scenarios, and therefore, better fitting, while they were 

worse fitting for true linear age with treatment 
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Table 1a: Number of Sites and Number of Patients/Site for Simulations Scenarios 

Number of sites 
Sites 

3 5 10 20 

Number of patients per site for a 
given scenario 

Site 1=16 

Site 2=32 

Site 3=64 

Site1=10 

Site2=15 

Site3=20 

Site4=27 

Site5=40 

Site1=4 

Site2=4 

Site3=8 

Site4=8 

Site5=12 

Site6=12 

Site7=16 

Site8=16 

Site9=16 

Site10=16 

Site1=3 

Site2=3 

Site3=3 

Site4=3 

Site5=3 

Site6=3 

Site7=5 

Site8=5 

Site9=5 

Site10=5 

Site11=5 

Site12=5 

Site13=8 

Site14=8 

Site15=8 

Site16=8 

Site17=8 

Site18=8 

Site19=8 

Site20=8 

 

Table 1b: Simulation Parameter Settings for all Scenarios 

Scenario # # of sites for each 
respective scenario 

Treatment effect 

T 
Frailty 

variance 
Average number of cases 

across scenarios 
True age effect 

1,2,3,4 3,5,10,20 -1 0.25
2
 31 log 

5,6,7,8 3,5,10,20 -1 1 39 log 

9,10,11,12 3,5,10,20 1 0.25
2
 59 log 

13,14,15,16 3,5,10,20 1 1 58 log 

17,18,19,20 3,5,10,20 -1 0.25
2
 88 log 

21,22,23,24 3,5,10,20 -1 1 82 log 

25,26,27,28 3,5,10,20 1 0.25
2
 98 log 

29,30,31,32 3,5,10,20 1 1 95 log 

33,34,35,36 3,5,10,20 0 0.25
2
 43 log 

37,38,39,40 3,5,10,20 0 1 46 log 

41,42,43,44 3,5,10,20 0 0.25
2
 97 log 

45,46,47,48 3,5,10,20 0 1 91 log 

49,50,51,52 3,5,10,20 -1 0.25
2
 29 linear 

53,54,55,56 3,5,10,20 -1 1 32 linear 

57,58,59,60 3,5,10,20 0 0.25
2
 39 linear 

61,62,63,64 3,5,10,20 0 1 41 linear 

65,66,67,68 3,5,10,20 1 0.25
2
 53 linear 

69,70,71,72 3,5,10,20 1 1 53 linear 

73,74,75,76 3,5,10,20 -1 0.25
2
 79 linear 

77,78,79,80 3,5,10,20 -1 1 76 linear 

81,82,83,84 3,5,10,20 0 0.25
2
 89 linear 

85,86,87,88 3,5,10,20 0 1 85 linear 

89,90,91,92 3,5,10,20 1 0.25
2
 94 linear 

93,94,95,96 3,5,10,20 1 1 90 linear 
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Table 2a: Properties of Estimated Natural Spline Curve in 1000 Simulated Datasets Generated for each of 96 Scenarios 

Test Number of sites 

Scenarios 3 5 10 20 

proportion of times test for no effect of both treatment and age is rejected 

1-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

0.981  

0.997  

0.997  

0.999  

1.000  

1.000  

1.000  

1.000 

0.867 

0.967 

0.949 

0.995 

0.999 

0.995 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.999 

1.000 

1.000 

1.000 

1.000 

1.000 

0.989 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.827 

0.982 

0.979 

1.000 

0.992 

1.000 

0.998 

1.000 

0.588 

0.983 

0.819 

0.998 

0.962 

0.997 

0.994 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.859 

0.989 

0.983 

0.999 

0.999 

1.000 

0.998 

1.000 

0.648 

0.993 

0.855 

1.000 

0.990 

0.998 

0.999 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

proportion of times test for age effect from NS fit is rejected 

1-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

0.423  

0.887  

0.593  

0.896  

0.715  

0.952  

0.746  

0.962  

0.495 

0.865 

0.735 

0.964 

0.957 

0.964 

0.992 

0.985 

1.000 

0.997 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.512 

0.923 

0.705 

0.979 

0.790 

0.985 

0.815 

0.993 

0.596 

0.961 

0.815 

0.992 

0.974 

0.990 

0.995 

0.996 

0.998 

0.997 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.565 

0.961 

0.684 

0.993 

0.815 

0.998 

0.834 

0.998  

0.636 

0.982 

0.833 

0.998 

0.923 

0.995 

0.995 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.637 

0.981 

0.750 

0.997 

0.839 

0.999 

0.864 

0.999 

0.678 

0.994 

0.866 

0.999 

0.979 

0.997 

0.996 

1.000 

0.999 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 
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(Table 2a). Continued. 

Median (IQR) root mean-square error 

1-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

4.81 (6.17) 

4.09 (4.58) 

4.06 (4.28) 

4.03 (4.56) 

3.73 (3.70) 

3.72 (3.74) 

3.71 (3.56) 

3.82 (3.44) 

4.33 (5.08) 

4.35 (4.60) 

3.76 (3.58) 

3.77 (3.59) 

6.81 (9.99) 

6.31 (9.34) 

4.97 (7.27) 

4.84 (6.28) 

3.77 (5.10) 

3.78 (5.08) 

2.79 (3.31) 

2.66 (3.29) 

2.47 (2.93) 

2.49 (2.89) 

2.21 (2.71) 

2.21 (2.80) 

5.08 (6.17) 

5.11 (6.16) 

4.03 (4.44) 

4.09 (4.57) 

3.75 (3.85) 

3.75 (4.06) 

3.75 (3.85) 

3.73 (3.93) 

4.47 (5.08) 

4.50 (5.11) 

3.71 (3.86) 

3.70 (3.95) 

6.91 (10.86) 

5.89 (8.12) 

5.32 (7.32) 

4.85 (6.46) 

3.97 (5.00) 

3.79 (5.16) 

2.88 (3.36) 

2.97 (3.43) 

2.53 (3.13) 

2.53 (3.11) 

2.32 (2.82) 

2.37 (2.73) 

5.15(5.93) 

4.82 (5.63) 

4.23 (4.45) 

4.29 (4.79) 

3.78 (3.80) 

4.03 (4.02) 

3.87 (3.64) 

3.92 (4.02) 

4.58 (5.42) 

4.37 (5.41) 

3.89 (3.61) 

3.91 (3.91) 

6.60 (9.73) 

6.10 (8.14) 

5.40 (6.78) 

4.90 (6.05) 

3.93 (4.81) 

4.16 (5.00) 

2.92 (3.46) 

2.97 (3.48) 

2.47 (2.95) 

2.64 (3.15) 

2.30 (2.75) 

2.50 (2.94) 

5.11 (5.68) 

4.79 (5.46) 

3.83 (4.22) 

4.13 (4.30) 

3.65 (3.76) 

3.65 (3.99) 

3.65 (3.67) 

3.67 (3.67) 

4.09 (4.90) 

3.76 (3.58) 

3.70 (3.60) 

3.63 (3.86) 

7.11 (10.47) 

6.08 (9.00) 

5.37 (6.81) 

4.70 (6.26) 

4.19 (5.29) 

4.02 (4.86) 

2.77 (3.45) 

2.86 (3.47) 

2.40 (3.05) 

2.60 (3.29) 

2.28 (2.77) 

2.35 (3.01) 
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(Figure 1). Continued. 
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(Figure 1). Continued. 
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(Figure 1). Continued. 

 

 

Figure 1: Boxplots of natural logarithm of rMSE of fitted natural spline curve. 

coefficients of -1 or 0 and low number of cases. Also, 

the rMSE appeared lower for scenarios with 20 sites in 

general. Boxplots in Figure 1 have natural log-

transformed MSE for better visualization. According to 

the boxplots, there is not much variability in rMSE 

across varying number of sites, although there does 

appear to be slightly more variability as seen in the 

boxplots for the early scenarios, 1-4 and 5-8, which 

have the fewest cases and for all scenarios with true 

linear age effect.  

The proportion of times the treatment effect was 

rejected does appear to increase across the 96 

scenarios and is the highest for the later scenarios but 

where treatment coefficient was 0, there was still some 

rejection up to 10% for 20 sites so the type I error rate 

almost doubled for these (Table 2b). The median 

treatment coefficient and the average frailty variance 

appeared consistent with the corresponding scenarios 

in terms of parameter settings although the variability 

(frailty variance) appears to be lower for scenarios with 

more sites. Across scenarios, the models were better 

able to fit a frailty variance of 1.0 than of 0.25 and were 

underestimating the frailty variance in scenarios set for 

0.25.  

Figures 2a-2f demonstrate the log-hazard curve that 

generated the median rMSE as a function of age. For 

each scenario, the solid line is the truth and the dashed 

curve is the NS spline curve that represents the one 

that has the minimum median rMSE amongst the 1000 

simulated datasets. It appears that the curves in Figure 

2b in general show the NS curve more closely 

approximating the truth than in Figure 2a, where there 

is a lower proportion of cases. It does not appear that 

there is a definitive trend by number of sites, although 

the scenarios with 20 sites and the lowest number of 

patients per site seemed to have the more deviant 

curves. This trend appeared to follow for the true linear 

age affect (Figures 2d-2f), where the estimated curves 

were closer to the truth for high number of cases. 

3.2. Real Data Example 

We used a rare cancer dataset provided by Eastern 

Cooperative Oncology Group (COG) for which a clinical 

trial was conducted with a total of 644 subjects at 299 

sites for a mix of rare cancers (testicular, ovarian, or 

extragonadal) in which people on either treatment or 

placebo were followed forward for time to an event of 

death during the years of 2007 to 2010. We applied our 
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Table 2b: Properties of Estimated Treatment Effect in 1000 Simulated Datasets Generated for each of 96 Scenarios 

Test Number of sites 

Scenarios 3 5 10 20 

Proportion of times test of no treatment effect was rejected 

1-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

0.766  

0.900  

0.952  

0.912  

0.994  

0.986  

0.995  

0.995  

0.064  

0.058  

0.074  

0.071  

0.734 

0.729  

0.061  

0.065 

0.927 

0.895  

0.989  

0.984  

0.072  

0.073  

0.994  

0.991  

0.741 

0.762 

0.952 

0.946 

0.988 

0.986 

0.995 

0.994 

0.070 

0.063 

0.074 

0.060 

0.717 

0.721 

0.070 

0.072 

0.929 

0.919 

0.977 

0.973 

0.070 

0.067 

0.994 

0.992 

0.721 

0.748 

0.957 

0.943 

0.984 

0.974 

0.994 

0.996 

0.088 

0.082 

0.083 

0.076 

0.680 

0.725 

0.099 

0.087 

0.915 

0.922 

0.970 

0.968 

0.078 

0.080 

0.992 

0.991 

0.727 

0.791 

0.923 

0.934 

0.966 

0.979 

0.980 

0.982 

0.101 

0.097 

0.108 

0.095 

0.709 

0.748 

0.106 

0.107 

0.876 

0.895 

0.946 

0.960 

0.090 

0.084 

0.974 

0.982 

Median (sd) of treatment coefficient 

1-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

-1.08 (0.44) 

-1.08 (0.37) 

 1.03 (0.30) 

 1.04 (0.33) 

-1.08 (0.26) 

-1.07 (0.27) 

 1.04 (0.25) 

 1.03 (0.25) 

-0.01 (0.34) 

-0.01 (0.36) 

-0.02 (0.24) 

-0.02 (0.24) 

-1.08 (0.47) 

-1.15 (1.31) 

-0.01 (0.35) 

-0.01 (0.38) 

 1.04 (0.32) 

 1.04 (0.35) 

-1.07 (0.27) 

-1.07 (0.28) 

-0.02 (0.24) 

-0.03 (0.25) 

 1.03 (0.25) 

 1.03 (0.26) 

-1.06 (0.44) 

-1.06 (0.44) 

 1.06 (0.31) 

 1.06 (0.32)  

-1.06 (0.26) 

-1.04 (0.27) 

 1.06 (0.25) 

 1.05 (0.26)  

0.02 (0.34) 

 0.01 (0.35) 

 0.003 (0.23) 

 0.01 (0.24) 

-1.07 (0.46) 

-1.06 (0.56) 

 0.001 (0.35) 

 0.01 (0.38) 

 1.06 (0.33) 

 1.06 (0.34) 

-1.04 (0.27) 

-1.04 (0.28) 

 0.004 (0.24)  

 0.002 (0.25)  

 1.05 (0.25) 

 1.05 (0.26) 

-1.04 (0.45) 

-1.02 (0.44) 

 1.09 (0.31) 

 1.06 (0.32) 

-1.03 (0.26) 

-1.02 (0.27) 

 1.07 (0.24) 

 1.05 (0.25) 

 0.03 (0.35) 

 0.03 (0.35) 

 0.02 (0.23) 

 0.02 (0.24) 

-1.01 (0.44) 

-1.02 (0.45) 

 0.03 (0.37) 

 0.03 (0.38) 

 1.09 (0.34) 

 1.07 (0.35) 

-1.03 (0.27) 

-1.02 (0.28) 

 0.02 (0.23) 

 0.02 (0.25) 

 1.07 (0.25) 

 1.05 (0.26)  

-1.09 (0.44) 

-1.06 (0.43) 

 1.07 (0.31) 

 1.04 (0.32) 

-1.06 (0.26) 

-1.03 (0.28) 

 1.08 (0.25) 

 1.05 (0.27) 

-0.002 (0.33) 

 0.001 (0.34) 

 0.01 (0.24) 

 0.01 (0.26) 

-1.15 (1.44) 

-1.05 (0.47) 

-0.004 (0.36) 

 0.01 (0.38) 

 1.07 (0.33) 

 1.04 (0.35) 

-1.05 (0.27) 

-1.04 (0.29) 

 0.01 (0.24) 

 0.01 (0.26) 

 1.07 (0.25) 

 1.05 (0.27) 
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(Table 2b). Continued. 

Average frailty variance 

1-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

0.134 

1.185 

0.095 

1.190 

0.093 

1.144 

0.090 

1.148 

0.107  

1.222 

0.092  

1.156  

0.137  

1.248  

0.116  

1.199  

0.101  

1.155  

0.093  

1.130  

0.091 

1.143 

0.088  

1.136 

0.128 

1.158 

0.101 

1.168 

0.089 

1.166 

0.088 

1.160 

0.106 

1.159 

0.091  

1.165 

0.139 

1.189 

0.119 

1.148 

0.104 

1.167 

0.089 

1.163 

0.088 

1.155 

0.087 

1.154 

0.126 

0.926 

0.093 

0.975 

0.082 

0.999 

0.081 

1.002 

0.103 

0.955 

0.083 

1.000 

0.110 

0.949 

0.110 

0.961 

0.100 

0.990 

0.083 

1.001 

0.081 

1.004 

0.079 

1.002 

0.173 

0.958 

0.129 

1.015 

0.112 

1.059 

0.105 

1.071 

0.142 

0.981 

0.111 

1.066 

0.191 

0.966 

0.159 

0.979 

0.136 

1.017 

0.110 

1.054 

0.108 

1.056 

0.104 

1.066 

 

model to the data to predict time to event and we used 

age at diagnosis as a prognostic factor. Comparing the 

traditional model fit to our model (Tables 3a/3b), there 

was some improvement in the treatment effect by 

employing our modeling. The frailty variance was 

0.0007, which showed there was not much 

heterogeneity between centers. The p-value for the 

treatment effect was 0.07 so potentially borderline 

significant (Table 3b). The p-value for the test for age 

effect from NS fit being rejected was 0.059. The p-

value for the test for no effect of both treatment and 

age being rejected was 0.035. Therefore, though it 

appeared there may not be a significant treatment 

effect, there was some effect of age in the model, and 

the overall model was statistically significant. Our 

method allows plotting of age and the log(HR), allowing 

a smoothed view of the non-linearity of the treatment-

prognostic curve (Figure 3).  

4. DISCUSSION 

We have conducted a simulation study on potential 

patterns of multicenter clinical trials for a rare outcome 

with a prognostic factor such as rare forms of cancer. 

Many of these studies are small and able to recruit only 

a few patients per study site or even involve few 

centers in the overall study. We analyzed different 

scenarios in which numbers of sites and numbers of 

patients per site were varied in light of being able to 

recruit few patients per center. Using various criteria to 

judge the scenarios, such as proportion of times 

treatment effect was rejected, bias between estimated 

curves, and proportion of times regression age effect 

from NS fit was rejected, we were able to ascertain 

model fits from each scenario. From our previous paper 

and research, in the test of no null effect for a NS fit of 

the covariate the test of null effect was rejected 84% of 

the time under the true log scenario and 100% of the 

time under the linear scenario. Though our current 

results examine overall model fit due to having 

additional covariates, it keeps consistent with the 

previous null model results except for scenarios 35 and 

36. 

Overall, it is still preferable to have more patients 

per site and more sites and higher case rate, rather 

than a few patients per site. However, we have 

demonstrated that having a few patients per site, as 

low as 3 patients per site, is feasible if there are many 

sites in the trial (such as 20 sites) with higher rather 

than lower case rate. In addition, we were able to 

demonstrate the use of this modeling technique on an 

actual dataset of rare cancers which had anywhere 

from 1 to 20 patients per center. This allowed us to 
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(Figure 2b). Continued. 

 

b 

 

c 
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(Figure 2c). Continued. 

 

c 

 

d 
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(Figure 2d). Continued. 

 

d 

 

e 
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(Figure 2f). Continued. 

 

f 

Figure 2: a: Log hazard ratio of fitted median NS curves at minimum rMSEacross age for scenarios 1-16. 

b: Log hazard ratio of fitted median NS curves at minimum rMSE across age for scenarios 17-32. 

c: Log hazard ratio of fitted median NS curves at minimum rMSE across age for scenarios 33-48. 

d: Log hazard ratio of fitted median NS curves at minimum rMSE across age for scenarios 49-64. 

e: Log hazard ratio of fitted median NS curves at minimum rMSE across age for scenarios 65-80. 

f: Log hazard ratio of fitted median NS curves at minimum rMSE across age for scenarios 81-96. 

model potential heterogeneity between centers as well 

as the treatment effect and probable non-linearity. We 

were also able to show this under the scenario when 

the true underlying effect of the prognostic factor is 

either linear or non-linear. In fact a potential drawback 

of this modeling is relying only on the natural spline to 
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smooth the prognostic factor. Also, our actual dataset 

example appeared to have a non-linear effect in age so 

we couldn’t see if the age effect had been truly linear in 

this real example. 

We were also able to demonstrate the use of 

modeling the heterogeneity between centers with 

frailty, similar to Duchateau [5, 6], but this time with far 

fewer sites and fewer patients per site. We were also 

able to incorporate nonlinear effects of the prognostic 

factor through modeling by smoothing, which aids in 

visualization of plots of hazard rate by that factor. In 

addition, the penalized estimation approach is used for 

both the frailty fit and the nonlinear prognostic factor fit 

[10]. Our hope is that this modeling can be employed 

for rare disease datasets from studies conducted at 

multicenters with survival outcomes. 

While the paper provides guidance for Cox 

proportional hazards regression of a survival outcome, 

modeling the heterogeneity between centers through 

the frailty effect and being able to obtain a smoothed 

estimate for the prognostic factor, it may be of interest 

to see how other smoothing methods could apply 

and/or varying the distribution of the frailty effect to see 

if these have any impact at all. While this was of 

interest, the scope of the paper was largely to ascertain 

modeling rare disease survival outcomes in small 

center settings.  

Table 3a: Cox Model Results for Rare Cancer Dataset Example 

Variable Coefficient Standard error Chi-square p-value 

Treatment 0.629 0.372 2.86 0.091 

age 0.041 0.028 2.16 0.140 

 

Table 3b: Cox Model Results with ns and Frailty for Rare Cancer Dataset Example 

Variable Coefficient Standard error Chi-square p-value 

Treatment 0.655 0.374 3.08 0.079 

Ns-age1 -3.060 1.802 2.88 0.089 

Ns-age2 0.837 1.122 0.56 0.460 

Ns-age3 0.703 1.364 0.27 0.610 

Ns-age4 0.396 0.962 0.17 0.680 

Frailty   0.03 0.600 

 

 

Figure 3: Log hazard ratio of fitted median NS curve at minimum rMSE across age for rare cancer dataset example. 
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