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Abstract: Background: We sometimes want to include in a meta-analysis data from studies where results are presented 
as medians and ranges or interquartile ranges rather than as means and standard deviations. In this paper I extend a 

method of Hozo et al. to estimate mean and standard deviation from median, minimum, and maximum to the case where 
quartiles are also available.  

Methods: Inequalities are developed for each observation using upper and lower limits derived from the minimum, the 

three quartiles, and the maximum. These are summed to give bounds for the sum and hence the mean of the 
observations, the average of these bounds in the estimate. A similar estimate is found for the sum of the observations 
squared and hence for the variance and standard deviation. 

Results: For data from a Normal distribution, the extended method using quartiles gives good estimates of sample 
means but sample standard deviations are overestimated. For data from a Lognormal distribution, both sample mean 
and standard deviation are overestimated. Overestimation is worse for larger samples and for highly skewed parent 

distributions. The extended estimates using quartiles are always superior in both bias and precision to those without.  

Conclusions: The estimates have the advantage of being extremely simple to carry out. I argue that as, in practice, such 
methods will be applied to small samples, the overestimation may not be a serious problem. 

Keywords: Quartile, minimum, maximum, mean, standard deviation, systematic review. 

THE NEED FOR A METHOD 

In systematic review and meta-analysis, we 

sometimes want to combine data from studies where 

results are presented in different forms. To combine 

results from several studies, we need to have results in 

a common format. When the outcome is a quantitative 

variable, this format is preferably as means and 

standard deviations. Sometimes research results are 

published as medians and ranges or interquartile 

ranges. If possible, reviewers should try to obtain the 

original data so that means and standard deviations 

can be computed. Often it is not possible to contact 

study authors or raw data have been lost. Reviewers 

may then have to omit these studies from the 

quantitative part of the review, or try to salvage what 

they can from publications which give only very limited 

summaries of data. Reviewers may be able to back-

calculate means and standard deviations from 

confidence intervals or P values. Sometimes we have 

to take a ruler to graphs to extract data. If the original 

results are not obtainable, how can we estimate means 

and standard deviations from what we do have? 

For a systematic review, we had two papers which 

had published the medians and the limits of the ranges 

and the interquartile ranges. We wanted to estimate  
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means and standard deviations from the available 

information. Hozo et al. [1] published a method for 

estimating the mean and variance from the median, 

range, and the size of a sample. I asked whether we 

could improve on this by including the first and third 

medians? 

DEVELOPING THE STATISTICAL METHOD 

Notation 

sample size = n 

minimum = a 

first quartile = b 

median = c 

third quartile = d 

maximum = e 

Suppose we have a sample where all quartiles are 

actual observations, so that there are k observations 

between minimum and first quartile, k observations 

between first quartile and median, k observations 

between median and third quartile, and k observations 

between third quartile and maximum. Then n = 4k + 5. 

Following Hozo et al., we can set up a series of 

inequalities for the observations xi. 
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a  x1 = a  a 

a  x2  b } 

…………. } 

a  xi  b } k inequalities 

………… } 

b  xk+2 = b  b 

…………. } 

b  xi  c } k inequalities 

………… } 

c  x2k+3 = c  c 

…………. } 

c  xi  d } k inequalities 

………… } 

d  x3k+4 = d  d 

…………. } 

d  xi  e } k inequalities 

………… } 

e  x4k+5 = e  e 

We can sum these inequalities to give a single 

inequality: 

a + ka + b + kb + c + kc + d + kd + e  xi  a + kb + b 

+ kc + c + kd + d + ke + e (k + 1)( a + b + c + d) + e  

xi  a + (k + 1)(b + c + d + e) 

This gives us upper and lower limits for the sum of 

xi and hence, dividing by n, limits for the mean. The 

estimate of Hozo et al. [1] is the average of these limits: 

(k + 2)a + 2(k +1)(b + c + d) + (k + 2)e

2n
 

If we replace 4k + 5 by n, the estimate of the mean 

becomes: 

(n + 3)a + 2(n 1)(b + c + d) + (n + 3)e

8n
 

Following the same procedure, without the first and 

third quartiles, Hozo et al. [1] obtained: 

a + 2c + e

4
+
a 2c + e

4n
=
(n +1)a + 2(n 1)c + (n +1)e

4n
 

For the variance, we find similar inequalities for xi
2
: 

ax1  x1
2
 = a

2
  ax1 

ax2  x2
2
  bx2 } 

…………. } 

axi  xi
2
  bxi } k inequalities 

………… } 

bxk+2  xk+2
2
 = b

2
  bxk+2 

…………. } 

bxi  xi
2
  cxi } k inequalities 

………… } 

cx2k+3  x2k+3
2
 = c

2
  x2k+3 

…………. } 

cxi  xi
2
  dxi } k inequalities 

………… } 

dx3k+4  x3k+4
2
 = d

2
  x3k+4

2
 

…………. } 

dxi  xi
2
  exi } k inequalities 

………… } 

e
2
  x4k+5

2
 = e

2
  e

2
 

We can sum these inequalities to give a single 

inequality: 

a
2
 + a(x2 + . . . + xk+1)  xi

2
  a

2
 + b(x2 + . . . + xk+1) 

+ b
2
 + b(xk+3 + . . . + x2k+2)  + b

2
 + c(xk+3 + . . . + x2k+2) 

+ c
2
 + c(x2k+3 + . . . + x3k+3)  + c

2
 + d(x2k+3 + . . . + x3k+3) 

+ d
2
 + d(x3k+5 + . . . + x4k+4)  + d

2
 + e(x3k+5 + . . . + x4k+4) 

+ e
2 

 + e
2
 

In a similar position, Hozo et al. [1] replace (x2 + . . . 

+ xM 1) by the estimate (M  2)(a + c)/2, where M is the 

number of observations up to but not including the 

median. In the same way, we can replace (x2 + . . . + 

xk+1) by the estimate k(a + b)/2, (xk+3 + . . . + x2k+2) by 

the estimate k(b + c)/2, and so on. The inequality 

becomes  

a
2
 + ak(a + b)/2 + b

2
 + bk(b + c)/2 + c

2
 + ck(c + d)/2 + 

d
2
 + dk(d + e)/2 + e

2
  xi

2
  a

2
 + bk(a + b)/2 + b

2
 + 

ck(b + c)/2 + c
2
 + dk(c + d)/2 + d

2
 + ek(d + e)/2 + e

2
 

which becomes 

[(k + 2)(a
2
 + b

2
 + c

2
 + d

2
) + k(ab + bc + cd + de) + 

2e
2
]/2  xi

2
  [(k + 2)(b

2
 + c

2
 + d

2
 + e

2
) + k(ab + bc + 

cd + de) + 2a
2
]/2 
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If we replace 4k+5 by n, we get 

[(n + 3)(a
2
 + b

2
 + c

2
 + d

2
) + (n  5)(ab + bc + cd + de) + 

8e
2
]/8  xi

2
  [(n + 3)(b

2
 + c

2
 + d

2
 + e

2
) + (n  5)(ab + 

bc + cd + de) + 8a
2
]/8 

If we average these limits to get an estimate of xi
2
 

we get 

[2(n + 3)(b
2
 + c

2
 + d

2
) + 2(n  5)(ab + bc + cd + de) + (n 

+ 11)(a
2
 + e

2
)]/16 

Ignoring the first and third quartiles, Hozo et al. [1] 

get: 

(a
2
 + c

2
 + e

2
) + (n+3)[(a + c)

2
 + (c + e)

2
]/8 

We then subtract the estimated mean squared 

multiplied by n and divide the result by (n  1) to get 

the estimated variance; the square root gives us the 

estimated standard deviation. 

APPLICATION TO A PRACTICAL EXAMPLE 

Table 1 shows a sample of measurements of forced 

expiratory volume from a sample of 57 medical 

students [2]. The quantiles for these data are:  

minimum = 2.85 = a 

1
st
 quartile = 3.54 = b 

median = 4.1 = c  

3
rd

 quartile = 4.5 = d 

maximum = 5.43 =e 

If we apply the formula for the mean we get 

estimated mean = 4.07 litre, compared to a directly 

calculated mean = 4.06 litre. If we apply the formula for 

standard deviation the estimate is 0.68 litre, compared 

to directly calculated standard deviation = 0.67 litre. 

Thus the approximation is quite good.  

In contrast, Table 2 [2] shows a data set which 

clearly has a highly skewed distribution, vitamin D 

measured in the blood of 26 men [2]. The quantiles for 

these data are:  

minimum = 14 = a 

1
st
 quartile = 25 = b 

median = 31 = c  

3
rd

 quartile = 48 = d 

maximum = 83 =e 

If we apply the formula for the mean we get 

estimated mean = 38.5, compared to a directly 

calculated mean = 36.9 mmol/litre. For standard 

deviation the estimate is 19.2 mmol/litre, compared to 

directly calculated standard deviation = 17.2 mmol/litre. 

Thus the approximation is not quite so good, being 

slightly too high for both mean and standard deviation.  

Table 3 shows a larger data set which also clearly 

has a highly skewed distribution, serum triglyceride 

from 282 babies [2]. The quantiles for these data are:  

minimum = 0.15 = a 

1
st
 quartile = 0.35 = b 

median = 0.46 = c  

3
rd

 quartile = 0.60 = d 

maximum = 1.66 =e 

If we apply the formula for the mean we get 

estimated mean = 0.58 mmol/litre, compared to a 

directly calculated mean = 0.51 mmol/litre. For 

standard deviation the estimate is 0.34 mmol/litre, 

compared to directly calculated standard deviation = 

0.22 mmol/litre. Thus the approximation is relatively 

poor, being slightly too high for the mean and much too 

high for the variability.  

When we have an outcome variable which has a 

highly skew distribution, we would usually prefer to 

carry out meta-analysis on the logarithmic scale if 

possible. Whether we can do this would depend on 

what can be extracted from the studies in the review. 

Table 1: FEV (Litres) for 57 Male Medical Students 

2.85  3.19  3.50  3.69  3.90  4.14  4.32  4.50  4.80  5.20 

2.85  3.20  3.54  3.70  3.96  4.16  4.44  4.56  4.80  5.30 

2.98  3.30  3.54  3.70  4.05  4.20  4.47  4.68  4.90  5.43 

3.04  3.39  3.57  3.75  4.08  4.20  4.47  4.70  5.00  

3.10  3.42  3.60  3.78  4.10  4.30  4.47  4.71  5.10  

3.10  3.48  3.60  3.83  4.14  4.30  4.50  4.78  5.10  
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Table 2: Vitamin D Levels Measured in the Blood of 26 Healthy Men 

14  22  26  31  42  52  67 

17  24  26  31  43  54  83 

20  25  27  32  46  54   

21  26  30  35  48  63  

 

Table 3: Serum Triglyceride (mmol/Litre) Measured in Cord Blood from 282 Babies 

0.15  0.29  0.32  0.36  0.40  0.42  0.46  0.50  0.56  0.60  0.70  0.86 

0.16  0.29  0.33  0.36  0.40  0.42  0.46  0.50  0.56  0.60  0.72  0.87 

0.20  0.29  0.33  0.36  0.40  0.42  0.47  0.52  0.56  0.60  0.72  0.88 

0.20  0.29  0.33  0.36  0.40  0.44  0.47  0.52  0.56  0.61  0.74  0.88 

0.20  0.29  0.33  0.36  0.40  0.44  0.47  0.52  0.56  0.62  0.75  0.95 

0.20  0.29  0.33  0.36  0.40  0.44  0.47  0.52  0.56  0.62  0.75  0.96 

0.21  0.30  0.33  0.36  0.40  0.44  0.47  0.52  0.56  0.63  0.76  0.96 

0.22  0.30  0.33  0.36  0.40  0.44  0.48  0.52  0.56  0.64  0.76  0.99 

0.24  0.30  0.33  0.37  0.40  0.44  0.48  0.52  0.56  0.64  0.78  1.01 

0.25  0.30  0.34  0.37  0.40  0.44  0.48  0.53  0.57  0.64  0.78  1.02 

0.26  0.30  0.34  0.37  0.40  0.44  0.48  0.54  0.57  0.64  0.78  1.02 

0.26  0.30  0.34  0.37  0.40  0.44  0.48  0.54  0.58  0.64  0.78  1.04 

0.26  0.30  0.34  0.38  0.40  0.45  0.48  0.54  0.58  0.65  0.78  1.08 

0.27  0.30  0.34  0.38  0.40  0.45  0.48  0.54  0.58  0.66  0.78  1.11 

0.27  0.30  0.34  0.38  0.41  0.45  0.48  0.54  0.58  0.66  0.80  1.20 

0.27  0.31  0.34  0.38  0.41  0.45  0.48  0.54  0.59  0.66  0.80  1.28 

0.28  0.31  0.34  0.38  0.41  0.45  0.48  0.55  0.59  0.66  0.82  1.64 

0.28  0.32  0.35  0.39  0.41  0.45  0.48  0.55  0.59  0.66  0.82  1.66 

0.28  0.32  0.35  0.39  0.41  0.46  0.48  0.55  0.59  0.67  0.82  

0.28  0.32  0.35  0.39  0.41  0.46  0.49  0.55  0.60  0.67  0.82  

0.28  0.32  0.35  0.39  0.41  0.46  0.49  0.55  0.60  0.68  0.83  

0.28  0.32  0.35  0.39  0.42  0.46  0.49  0.55  0.60  0.70  0.84  

0.28  0.32  0.35  0.40  0.42  0.46  0.50  0.55  0.60  0.70  0.84  

0.28  0.32  0.36  0.40  0.42  0.46  0.50  0.55  0.60  0.70  0.84  

 

Using either the proposed method or the original Hozo 

method, it is simple to estimate the mean and standard 

deviation of the log transformed data, because the 

logarithm is a monotonic function and so the logs of the 

quantiles will be the quantiles of the logs. For the 

vitamin D data, the mean and standard deviation for 

loge(vitamin D) estimated from the quantiles are 3.51 

and 0.49, compared to the directly calculated mean 

and standard deviation of 3.51 and 0.44. The mean 

and standard deviation for loge (triglyceride) estimated 

from the quantiles are 0.76 and 0.54, compared to the 

directly calculated mean and standard deviation of 

0.76 and 0.39. Again, the standard deviation is 

overestimated for this large sample. 

SIMULATION STUDIES 

To explore these estimates further, Table 4 shows 

the result of simulations of a Normal sample with 

different sample sizes. These results are for single 

samples, but they are typical. As Hozo et al. [1] noted, 

their formulae work better for smaller samples. Table 5 

shows the result of 1000 simulation runs for the Normal 

distribution at each of these six sample sizes. The 

estimates of the mean are unbiased at all sample sizes 
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and the standard deviation of the mean estimates is 

always less for the extended estimates. The estimated 

standard deviation is biased, being too large, and for all 

but the smallest sample the bias is greater for the Hozo 

et al. [1] estimates than for the extended estimates. 

The bias gets bigger as the sample size increases. For 

the samples of size 100, the bias in the extended 

estimate is 0.19 or 19%. The standard deviations of the 

estimates do not decrease with increasing sample size, 

which is curious. The standard deviation of the 

extended estimates is always less than the standard 

deviation of the estimates made without the quartiles, 

so the extended estimates are less biased and more 

precise than those of Hozo et al. [1]. 

Table 6 shows a similar simulation for samples from 

a Lognormal distribution. For the small samples, the 

estimates are quite good by both methods but as the 

sample size increases both means and standard 

deviations are over-estimated. Table 7 shows the 

results of sets of 1000 simulations using the same 

Lognormal distribution. At all sample sizes, the 

estimates of both mean and standard deviation are too 

big, with the bias increasing with the sample size. The 

standard deviations of the estimates also increase with 

the sample size, so they become more biased and less 

precise. It seems rather counter-intuitive that bigger 

samples produce less reliable estimates. The extended 

estimate is always better than the Hozo et al. [1] 

estimate, in both bias and standard deviation. With 

samples of size 100, the extended estimate gives bias 

4.36 or 3% in the estimate of the mean and 8.7 or 22% 

in the estimated standard deviation. This Lognormal 

distribution is not particularly skew. The shape of the 

parent distribution is shown in Figure 1.  

Table 8 shows the results of sets of 1000 

simulations using a more highly skew Lognormal 

Table 4: Estimation of Mean and Standard Deviation for a Normal Sample, Mean = 5, SD = 1 

Actual Hozo et al. [1] method Extended method using quartiles Sample size 

Mean SD Mean SD Mean SD 

10 4.90 0.87 4.98 0.87 4.82 0.94 

20 5.00 0.96 5.15 0.93 5.05 0.96 

30 4.80 0.90 4.81 0.91 4.78 0.89 

50 5.01 0.96 4.92 1.20 4.93 1.10 

100 5.02 0.98 4.97 1.17 5.01 1.11 

500 4.97 1.03 4.93 1.32 4.92 1.20 

 

Table 5: Deviations of Estimate from Actual Sample Mean and Standard Deviation in 1000 Estimations of Mean and 
Standard Deviation for a Normal Sample, Mean = 5, SD = 1 

Actual minus Hozo et al. [1] method Actual minus extended method using 
quartiles 

Parameter estimated Sample size 

Mean SD Mean SD 

10 0.001 0.122  0.001 0.054 

20  0.004 0.138  0.001 0.062 

30 0.002 0.142 0.001 0.065 

50 0.004 0.139 0.003 0.065 

100  0.004 0.139  0.001 0.068 

Sample mean 

500  0.002 0.128  0.001 0.063 

10 0.026 0.099 0.041 0.052 

20 0.086 0.117 0.069 0.069 

30 0.133 0.124 0.095 0.076 

50 0.199 0.122 0.131 0.079 

100 0.296 0.132 0.192 0.088 

Sample standard 
deviation 

 

500 0.532 0.126 0.348 0.087 
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Table 6: Estimation of Mean and Standard Deviation for a Lognormal Sample, μ = 5,  = 0.25, Mean = 153, SD = 39 

Actual Hozo et al. [1] method Extended method using quartiles Sample size 

Mean SD Mean SD Mean SD 

10 166 52 163 51 164 51 

20 161 46 155 47 161 47 

30 155 51 168 59 157 53 

50 150 37 157 41 152 41 

100 151 39 164 53 157 47 

500 151 39 182 73 165 65 

 

Table 7: Deviations of Estimate from Actual Sample Mean and Standard Deviation in 1000 Estimations of Mean and 
Standard Deviation for a Lognormal Sample, μ = 5,  = 0.25, Mean = 153, SD = 39 

Actual minus Hozo et al. [1] method Actual minus extended method using 
quartiles 

Parameter estimated Sample size 

Mean SD Mean SD 

10 2.67 5.64 0.92 2.38 

20 4.60 6.31 3.36 4.82 

30 6.76 7.13 2.52 3.25 

50 8.44 7.49 3.26 3.44 

100 10.99 7.33 4.36 3.51 

Sample mean 

500 18.03 7.44 7.78 3.67 

10 1.04 3.90 1.69 2.11 

20 1.63 2.72 2.77 2.94 

30 5.84 5.58 4.13 3.85 

50 8.65 6.18 5.93 4.32 

100 12.90 6.59 8.73 4.88 

Sample standard 
deviation 

 

500 23.69 7.01 16.39 5.40 

 

 

Figure 1: Histograms of Lognormal distributions used in the simulations. 

distribution, with μ = 5,  = 0.5. The shape of the 

distribution can be seen in Figure 1. At all sample sizes 

the estimates are too big, with the bias increasing with 

the sample size. The standard deviations of the 



Estimating Mean and Standard Deviation from the Sample Size International Journal of Statistics in Medical Research, 2015, Vol. 4, No. 1      63 

estimates increased markedly with the sample size. 

These effects are more marked than in Table 7. The 

extended estimate is always better than the Hozo et al. 

[1] estimate, in both bias and standard deviation. With 

samples of size 100, the extended estimate gives bias 

21.3 or 13% in the mean and 28.3 or 17% in the 

standard deviation. 

DISCUSSION 

The extended estimates are clearly superior to 

those of Hozo et al. [1], having less bias and smaller 

standard deviations. This might be expected, because 

they make use of more information. However, they still 

produce estimates of standard deviations which are too 

large, particularly in larger samples, and estimates of 

means which are also biased if the parent distribution is 

skew. 

Why does the performance deteriorate with 

increasing sample size and with increasing skewness? 

The estimates use the maximum and minimum of the 

distribution. If the sample is large, extreme values are 

more likely to occur and an extreme outlying point can 

have a big effect on the estimates. Even for a 

symmetrical distribution, the estimates become more 

variable as the sample size increases, though they are 

unbiased. For a positively skew distribution, extreme 

values are likely to be high and so produce mean 

estimates which are too high. The other problem with 

the estimates is the replacement of sums of 

consecutive observations, e.g. x3k+5 + . . . + x4k+4, by the 

average of the two limits of that data segment 

multiplied by k, e.g. k(d + e)/2. This is not a particularly 

good approximation because, in a unimodal distribution 

with tails, the average value of such a set of 

observations is likely to be closer to the centre of the 

distribution than is the average of the limits. This will 

inflate the estimate of xi
2
 and will therefore inflate the 

estimated variance and standard deviation. Skewness 

will make this problem worse. 

The main application in systematic reviews is likely 

to be in extracting information from fairly small studies. 

It would be quite unusual for a large study to have 

quantitative outcome data without a mean and 

standard deviation and also for the data to be 

inaccessible. It is small studies where the authors 

become uncontactable and where data are lost. 

Fortunately, both the Hozo et al. [1] and the extended 

estimates have better performances in small studies 

than in large ones. 

The bias in the estimated means may not be a great 

problem for meta-analysis, as we usually have two 

means and use the difference between them. The bias 

would be present in both estimates. The bias in the 

standard deviation will result in inflated sample errors 

for these differences in means and they will hence 

have reduced weight compared to what they would 

have if the means had been calculated directly. This is 

at least better than having a standard error which is too 

small and a weight that is too great.  

Table 8: Deviations of Estimate from Actual Sample Mean and Standard Deviation in 1000 Estimations of Mean and 
Standard Deviation for a Lognormal Sample, μ = 5,  = 0.5, Mean = 168, SD = 90 

Actual minus Hozo et al. [1] method Actual minus extended method using 
quartiles 

Parameter estimated Sample size 

Mean SD Mean SD 

10 11.1 16.0  3.9  6.2 

20 22.4 22.8  8.0  9.7 

30 27.4 22.5 10.1 10.1 

50 37.6 26.5 14.5 12.0 

100 52.3 30.6 21.3 14.6 

Sample mean 

500 85.9 34.1 37.6 16.8 

10  2.7  9.0  3.8  5.3 

20 10.4 14.5  8.1 10.1 

30 15.5 16.0 11.4 11.7 

50 24.1 19.3 17.4 14.8 

100 38.9 25.0 28.3 20.0 

Sample standard 
deviation 

 

500 75.0 31.7 56.7 26.2 
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There is plenty of room for improvement in these 

estimates and other methods will be developed which 

give better meta-analyses than these will provide. I 

have not been able to find a way to adjust for the 

overestimation of the variability, particularly for large 

samples, and it is to be hoped that one can be found in 

the future. However, they have the great advantage of 

being very easy to use and could be applied by any 

systematic reviewer, without the need for specialised 

software. 

CONCLUSIONS 

The extended estimate is clearly to be preferred 

over the Hozo et al. [1] estimate and if we have the 

quartiles we should use them. The main problem is that 

the standard deviations are overestimated. The bias in 

sample mean might not be too important in a meta-

analysis, where it would be expected to be present in 

both intervention and control groups. It is better to have 

too large a standard error than too small a standard 

error and we might accept this as reflecting the inferior 

data quality produced by using the indirect estimate. 
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