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Abstract: A log-logistic (LL) random variable is one whose logarithm has a logistic distribution. Since the logistic 
distribution is similar to the normal distribution, log-logistic random variables are similar to log-normal (LN) random 
variables. However, many of the important properties of LN random variables can only be described using integrals, 

while the corresponding properties of LL random variables can be described using simple algebra. LL random variables 
may therefore be a useful alternative to LN random variable for computer simulation of operating room processes or 
other health care applications, especially when they fit the data more closely. We review the properties of LL random 

variables, and derive some relationships of the mean residual time to the median residual time. We describe methods of 
fitting LL distributions to observed data, and discuss potential advantages of using them for simulation of operating room 
utilization.  
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INTRODUCTION 

The efficient use of surgical operating rooms is a 

major financial concern for hospitals, since an 

estimated 40% of their total revenue is derived from 

this source [1]. Patient satisfaction and staff morale can 

be adversely affected by delays or other 

inconveniences related to the operating rooms. It is 

even possible that patient safety could be impaired if 

essential personnel or facilities were unavailable due to 

suboptimal resource management. 

Analysis of these complicated systems has been 

undertaken using computer simulation, with some 

success [2, 3]. The duration of surgical procedures has 

previously been modeled using log-normal distributions 

[4, 5]. However, there is no theoretical reason why a 

log-normal distribution should be preferred, and other 

distributional forms may have advantages for some 

applications. 

Log-logistic distributions were first studied in detail 

by Fisk [6], and are sometimes referred to by his name 

[7]. A log-logistic random variable can be simply 

defined as one whose logarithm has a logistic 

distribution. Since a logistic distribution is similar to a 

normal distribution, a log-logistic (LL) distribution will be 

similar to a log-normal (LN) distribution, but with a 

somewhat narrower peak and somewhat heavier tails.  
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Unlike log-normal distributions, however, log-logistic 

distributions have hazard functions and other 

properties that can be specified using simple algebraic 

formulas, and therefore may be easier to incorporate 

into a computer program.  

This article will present some theoretical 

background about LL distributions, and demonstrate 

some applied results to show how they may provide a 

useful alternative to LN distributions for the purpose of 

analyzing or simulating the duration of surgical 

procedures. We will also derive some relationships 

between the mean and median residual time functions 

for LL random variables that may add to their value in 

simulation modeling. 

BASIC PROPERTIES OF LOG-LOGISTIC RANDOM 
VARIABLES 

The properties of a logistic random variable Y with 

mean -  <  <  and variance 
2 

> 0, which we can 

abbreviate L( ,
2
), have been described elsewhere [8]. 

This distribution is familiar in health care research 

because of its application to regression modeling of 

binary outcomes [9].  

The probability density function (pdf) of a logistic 

random variable is  

gY (y)=
3

e (y μ )/ 3

1+ e (y μ )/ 3( )
2 , -  < y < . 

It is useful at this point to make the substitutions 
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= eμ , =
3

, (  > 0,  > 0). 

Although some previous authors have used different 
parameterizations for the purpose of describing LL 
distributions, the substitutions  and  have been most 
commonly used in recent years because they produce 
very simple formulas, especially for the LL CDF. We 
can rewrite the logistic pdf as 

gY (y)=
( ) e y

1+ ( ) e y( )
2   

=
(1 / ) e y

1+ (1 / ) e y( )
2 , -  < y < . 

Let Y be the logarithm of another random variable T 
(i.e., T = e

Y
). Then the pdf of T can be obtained using 

the transformation technique as 

fT (t) =
df 1(t)

dt
gY f 1(t)( )  

=
d ln (t)

dt

(1 / ) e ln (t )( )

1+ (1 / ) e ln (t )( )( )
2  

=
( / ) (t / ) 1

1+ (t / )( )
2 , 0 t < ; > 1.   

We can refer to the log-logistic random variable T 

with the parameters  and  as LL( , ). When  >1, 

the pdf of a LL( , ) random variable is 0 at t=0, and 

has a single maximum (mode) at 

t pdf max =
1

+1

1

. 

From the pdf of T, we can also obtain its cumulative 

distribution function (CDF) as 

FT (t) = fT (u)du
0

t

=
(t / )

1+ (t / )
=

1

1+ (t / )
, 

and its survival function ST(t) = 1-FT(t). The hazard 
function h(t) can be defined as the probability that an 
event occurs at time t, given that it has not occurred 
before time t, and can be calculated for T as 

hT (t) =
fT (t)

1 FT (t)
=
( / )(t / ) 1

1+ (t / )
. 

The hazard function will be similar to the pdf when T 
is small, then become increasingly larger than the pdf 
as T increases, reaching a maximum at 

thazmax = 1( )
1

, 

and decreasing thereafter. For  >1, it can be seen that 
thazmax > tpdfmax. 

The rth moments of T exist for r < , and can be 

expressed using a moment-generating function [6], 

leading to 

E(T r ) = r r /

sin (r / )
, 

where E(U) is the expectation operator. Thus, if  >1 
the mean of T will be 

E(T ) =
( / )

sin ( / )
 

and if  >2 the variance of T will be 

Var(T ) = E(T 2 ) E(T )( )
2
=

2 (2 / )

sin (2 / )

( / )

sin ( / )

2

. 

The quantile function Q(q) for a log-logistic random 
variable can be obtained by inversion of the CDF as 

Q(q) = F 1(q) =
q

1 q

1/

. 

It can be seen that the 0.5
th

 quantile (i.e., 50
th

 

percentile or median) of T is just . This simple form for 

the quantile function also makes it easy to generate a 

LL( , ) random variate: If U is a uniform (0,1) random 

variate, then  

T =
U

1 U

1/

 will be LL( , ).  

USING LOG-LOGISTIC RANDOM VARIABLES TO 
MODEL A SAMPLE OF DATA 

Reasonable parameters for a log-logistic random 

variable (or a log-normal random variable) to 

approximate a sample of data can be most easily 

chosen using a “method of moments”. A simple method 

of moments estimator could be obtained by setting the 

parameter  equal to the mean of the log-transformed 

data, and setting the parameter 
2
 equal to the 

variance of the log-transformed data. As an example, 

theoretical LL and LN distributions were fitted in this 

way to data from 333 cases of Coronary Artery Bypass 

Grafting (CABG) performed at the Maine Medical 

Center during 2013. The use of these data for this 

purpose, without personal identifiers, was proposed to 
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an Institutional Review Board, which ruled it exempt 

from further review.  

Figure 1 compares a histogram of the recorded 

operative durations (grouped by 15-minute intervals) to 

the pdf of a LL(264,7.77) distribution and a LN 

distribution with the same mean and variance. In this 

example, the LL distribution is seen to have a narrower 

and taller peak than the LN distribution; the heavier LL 

“tails” are more difficult to appreciate. The shape of the 

histogram is somewhat closer to the LL pdf than to the 

LN pdf. 

 

Figure 1: Histogram of operative procedure times for 
Coronary Artery Bypass Graft, with superimposed log-logistic 
(LL, solid line) and log-normal (LN, dotted line) probability 
density functions fitted using a method of moments. 

Figure 2 compares the empirical CDF to the CDFs 

for these LL and LN distributions. A Kolmogorov-

Smirnov test shows that the LL distribution fits the data 

somewhat better than the LN distribution (p=0.135 for 

LL, p=.050 for LN).  

 

Figure 2: Cumulative distribution of operative procedure 
times for Coronary Artery Bypass Graft (heavy solid line), 
with superimposed log-logistic (LL, lighter solid line) and log-
normal (LN, dotted line) cumulative distribution functions 
fitted using a method of moments. 

It is not necessarily true that a LL distribution will fit 

every sample of operative times better than a LN 

distribution. It is also possible that a closer fit might be 

obtained by using other moments of the LL or LN 

distributions, as discussed by Ashkar and Mahdi [10]. It 

is also possible to fit a theoretical distribution using 

specific quantiles of the empirical data [11].  

Many software programs are available to fit time-to-

event data to parametric distributions using maximum 

likelihood, for example the streg procedure in Stata 

(StataCorp, College Station TX) described elsewhere 

[12]. LL and LN models are naturally expressed as 

“accelerated failure time” (AFT) models, in which the 

natural logarithm of the modeled duration time t for 

subject j is expressed as a linear function of covariates, 

that is 

log(tj) = xjb + j = b0j + b1jx1j + … + bkjxkj + j , 

where xj = (x1j … xkj) is a vector of covariates, b = (b0 

… bk) is a vector of regression coefficients, and j is the 

error; a LL model is obtained if j has a logistic 

distribution, and a LN model is obtained if j is has a 

normal distribution 

Exponentiating the AFT equation allows the 

operative duration to be estimated as  

t j = e
b0 j e

b1 j x1 j ... ebkjxkj  

Thus, an AFT model can be interpreted such that 

the effect of a covariate prolongs the predicted duration 

if the coefficient is positive and shortens the duration if 

the coefficient is negative. Using our example of CABG 

surgery, the Stata command streg, dist(loglogistic) 

without covariates estimates b0=5.57. Therefore,  

0 = e
b0 = e5.57 = 262.4 .  

The software also estimates  =7.89 (Stata actually 

reports =1/ ), so the maximum likelihood estimates of 

 and  are similar to those obtained by a method of 

moments. If we add a covariate (x1=1 if the case is an 

emergency, x1=0 otherwise), Stata estimates b0=5.57, 

b1=-0.07, and  =7.92. Thus, for an emergency case 

we can estimate  

1 = e
b0+b1 = e5.57 0.07

= 244.7 . 

This can be interpreted to show that emergency 

surgery is associated with a shortening of the median 

duration by a factor of about 244.7/262.4 = 0.933. 
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Although AFT models may be a useful method to 

analyze operative duration, it is more common to 

analyze time-to-event variables using a proportional 

hazards model. Unfortunately, this is not easy with 

either the LL or the LN distributions. However, a similar 

approach can be utilized with a LL distribution and a 

proportional odds model. It can be seen from the 

formula for the LL CDF that  

Odds(T < t) =
F(t)

1 F(t)
= t /( ) . 

From this simple expression for the odds, it is easy 

to calculate an odds ratio (OR) measuring the effect of 

being an emergency case, for example 

OR=
(t / 1)

(t / 0 )
=
1 / exp(b0 + b1)

1 / exp(b0 )
= exp( b1)( )

= e0.07*7.92 = 1.74.

 

This may be interpreted that the odds of having 

finished the procedure for any time t are multiplied by a 

factor of 1.74 if the case was an emergency. In some 

settings, a proportional odds model may be preferable 

to an AFT model, and the LL distribution is the only one 

that allows both formulations [13]. 

MEAN AND MEDIAN RESIDUAL TIME FUNCTIONS 

Any realistic simulation of operating room times 

should allow for reassignment of rooms for procedures 

scheduled to follow a case that is taking more time than 

expected. In “real time”, information about the delayed 

case can be incorporated into the estimate of 

remaining time [14], but for simulation (or other 

predictions before the procedure begins) it is useful to 

have a method for prediction based upon the 

theoretical distribution of times. The most commonly 

used predictive functions for this purpose are the mean 

residual time and the median residual time [15, 16]. 

The mean residual time function, which we shall 

abbreviate as rtm(t), is the expected time remaining 

given that a procedure has not finished by time t, that 

is,  

rtm (t) = E(T t |T > t) =

S(u)du
t

S(t)
.        (1) 

Some authors have referred to this as the mean 

residual lifetime function [15]. For a LL distribution, the 

mean residual time function can be expressed as  

rtm (t) = 1+ t /( )( ) 1

1+ u /( )
du

t

,        (2) 

but unfortunately the integral cannot be evaluated 

analytically. Since many statistical programs can 

produce values for Beta Functions, numerical values of 

rtm(t) may be most easily obtained by changing the 

variable of integration to F(t) [17]. Using dF(u) = f(u)du, 

we have the interesting result that 

1

1+ u /( )
du

t

=
1

h(u)
dF(u)

F(t )

1

. 

Expressing the integral in terms of F(u) leads to 

1

1+ u /( )
du

t

= F(u)( )
1
1 1 F(u)( )

1

dF(u)
F(t )

1

 

= B
1
,1

1
BF(t )

1
,1

1
, 

where B denotes a complete Beta Function and BF(t) 
denotes an incomplete Beta Function evaluated at F(t).  

Using properties of Beta Functions [18], Equation 

(2) can therefore be rewritten as 

rtm (t) = 1+ (t / )( )
sin ( / )

BF(t )
1
,1

1
  

=
( / )

sin( / )
1+ (t / )( ) 1 I

1
,1

1
,F(t) , (3) 

where I denotes a regularized Beta Function, and the 

term in brackets can also be interpreted as the survival 

function (1-CDF) for a Beta Distribution with 

parameters (1/ , 1-1/ ), evaluated at F(t). It can be 

seen that rtm(t) will equal the mean of T when t=0, 

which is to be expected given the known relationship  

S(u)du
0

= u f (u)du
0

 

for any time-to-event distribution [19]. 

It is easy to find the median residual time function, 

rtq0.5(t) by solving  

1 F(t + rtq0.5 (t)) = 0.5 1 F(t)( ) .          (4) 

For a LL random variable this results in 
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rtq0.5 (t)= 1+ 2 t /( )( )
1/

t ,          (5) 

and will equal the median of T when t=0. In addition to 

being easier to calculate, rtq0.5(t) has been advocated 

as a more robust measure of “ageing” than rtm(t) [20]. 

Other quantile residual time functions can also be 

defined by substituting a fraction other than 0.5 in 

Equation (4). 

RELATIONSHIPS OF MEAN AND MEDIAN 
RESIDUAL TIMES  

We will derive several properties of rtm(t) and 

rtq0.5(t) for LL random variables that are useful in their 

application to simulation studies. In the first two 

theorems, we will define some relationships of these 

functions to the hazard function h(t) or its inverse 

1 / h(t) =
1+ (t / a)

( / )(t / ) 1 = t /( ) 1+ t /( )( ) .       (6) 

We will then derive additional relationships between 
rtm(t) and rtq0.5(t), for the usual case where  >1.  

Theorem 1: For a LL random variable, the value of t 

where rtm(t) is minimized (trtmmin) is less than the value 

of t where h(t) is maximized (thazmax, where also 1/h(t) is 

minimized). 

Proof: We can differentiate both sides of Equation 
(1) to obtain  

 
d rtm(t)

dt
=

f (t) S(u)du
t

S(t)( )
2

S(t)

S(t)
= h(t) rtm(t) 1 .       (7) 

Thus when the derivative of rtm(t) is zero, 

rtm(t)=1/h(t), although the value of t at this point cannot 

be determined analytically. Differentiating again gives 

d2rtm(t)

dt 2
= h(t)

d rtm(t)

dt
+ rtm(t)

d h(t)

dt
. 

Gupta and Akman have shown that rtm(t) for a LL 

distribution will have a “bathtub” (concave upward) 

shape [17, 21], so its second derivative must be 

positive. At the point where the first derivative of rtm(t) 

is zero, the derivative of h(t) must therefore be positive, 

demonstrating that h(t) has not reached its maximum.  

Corollary 1: For a LL random variable, when t < 

trtmmin , rtm(t) < 1/h(t), and when t > trtmmin , rtm(t) >1/h(t).  

Proof: This can be established by rearranging 

Equation (7). 

Lemma 1: If a>0 and b>1, then a
b
 > 1 – b + ab. 

Proof: 

ab = exp(b log a) =1+ b log a +
b log a( )

2

2!
+
(b log a)3

3!
+ ...  

=1+ b log a +
b log a( )

2

2!
+
b2 log a( )

3

3!
+ ...  

>1+ b 1+ exp(log a)( ) = 1+ b ( 1+ a) = 1 b + ab  . 

Theorem 2: For a LL random variable with  >1, the 

value of t where rtq0.5(t) is minimized is less than the 

value of t where h(t) is maximized (and 1/h(t) is 

minimized). 

Proof: We can differentiate both sides of Equation 

(5) to obtain 

d rtq0.5 (t)

dt
= 2 1+ 2 t /( )( )

1
1
t /( )

1 1 .        (8) 

If this derivative is set equal to zero, we can find a 

minimum for rtq0.5(t) as 

trtq0.5 min = 2 1 2

1

. 

Lemma 1 can be used to show that this is less than 

thazmax . 

Corollary 2: For a LL random variable with  >1, 

rtq0.5 (t) <
1

h(t)
.  

Proof: From Lemma 1, we can say that 

1

t /( )
+

+1
>

1

t /( )
+ 2 . 

After several algebraic steps, this leads to 

t /( ) 1+ t /( )( ) > 1+ 2 t /( )( )
1

t . 

Lemma 2: If  >1, >0, and t>0, then 

4 1( )
t /( )

1 1+ 2 t /( )( )
1
2
<

1

1+ (t / )
. 
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Proof: Consider the function 

w(z)= z
1
1

1+ 2z( )
1
2 1+ z( )  , with >1 and z>0.         (9) 

Setting the first derivative of w(z) equal to zero 
demonstrates a stationary point at z = -1. The second 

derivative of w(z) evaluated at this point is  

(1 / )( 1)
1

(2 1)
1
3

, 

which is clearly negative, showing this point to be a 

maximum for w(z). Evaluating w( -1) allows us to say 

w(z)
1

2 1

2
1

1( )
. 

Substituting the expression on the right-hand side of 

Equation (9) for w(z) and rearranging terms gives 

2 1

1

2
1

1( )
z
1
1

1+ 2z( )
1
2
<

1

1+ z
.  

The first term in this expression is always greater 

than 4, and substituting z = t /( ) completes the proof. 

Theorem 3: For a LL random variable with  >1, the 
derivative of rtq0.5(t) is less than the derivative of rtm(t). 

Proof: Let us refer to the expression on the left-
hand side of Lemma 2 as v(u), and recognize the right-
hand side as S(u), the survival function for a LL 
distribution. Now we can integrate both sides of the 
inequality to obtain 

v(u)du < S(u)du
tt

, 

and the left-hand side can be evaluated analytically to 

obtain 

t

2
1+ 2 u /( )( )

1
1

< S(u)du
t

 

 
2

1+ 2 t /( )( )
1
1
< S(u)du

t

 . 

Therefore, 

2 1+ 2 t /( )( )
1
1
t /( )

1 1 <

( / )(t / ) 1 S(u)du
t

1.

 

From Equation (2), Equation (7), and Equation (8), 

this means  

d rtq0.5 (t)

dt
<
d rtm(t)

dt
. 

Corollary 3: For a LL random variable with  >1, 

the value of t where rtm(t) is minimized is less than the 

value of t where rtq0.5(t) is minimized. 

Proof: This follows immediately from Theorem 3 

and the observation that when the derivative of rtm(t) is 

zero, the derivative of rtq0.5(t) must be negative, so it 

has not reached a minimum. Combining this with 

Theorems 1 and 2, we have 

trtmmin < trtq0.5 min < thazmax . 

Theorem 4: For a LL random variable with  >1, 

rtq0.5(t) < rtm(t). 

Proof: We have established that rtq0.5(0) =  and 

rtm(0)= ( / )/(sin( / )), and since (sin( / ))/( / )  1 

[18], rtq0.5(0)  rtm(0). With  >1, Theorem 3 means 

that rtq0.5(t) decreases more quickly (or increases more 

slowly) than rtm(t), so rtq0.5(t) < rtm(t). 

Corollary 4: For a LL random variable with  >1, 

consider the function 

lrtm(t) =
2

1+ (t / )( ) 1+ 2(t / )( )
1
1
.       (10) 

Then lrtm(t) < rtm(t). 

Proof: From Theorem 3 and Equation (7) we can 
show that 

drtq0.5 (t)

dt
+1 / h(t) < rtm(t) , 

which leads directly to Corollary 4. Considering 

Corollary 4 and Theorem 4, the closest lower bound for 

rtm(t) that we have found for a LL random variable with 

 >1 is the greater of rtq0.5(t) and lrtm(t). 

APPLIED EXAMPLE 

The LL distribution with =264.0 and =7.77, which 

resulted from estimating the duration of Coronary 

Artery Bypass Graft procedures above, is used in 

Figure 3 to illustrate some of the relationships derived 

in the Theorems and Corollaries above. Equation (3) 

was used to calculate rtm(t), Equation (5) was used to 

calculate rtq0.5(t), Equation (6) was used to calculate 
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1/h(t), and Equation (10) was used to calculate lrtm(t). 

It can be seen from Figure 3 that rtq0.5(0) is slightly less 

than rtm(0), after which rtq0.5(t) and rtm(t) gradually 

diverge. For larger values of t, rtm(t) is more closely 

approximated by lrtm(t) or even 1/h(t) than it is by 

rtq0.5(t). 

 

Figure 3: For a log-logistic distribution with parameters 
=264.0 and =7.77, mean residual time function (rtm, bold 

solid line), median residual time function (rtq50, medium solid 
line), inverse hazard function (1/h, dashed line), and the rtm 
lower bound (lrtm, dotted line) defined in Corollary 4. 

CONCLUSIONS 

The log-logistic distribution results from a simple 

transformation of the familiar logistic distribution, and 

has been found useful in survival analysis [13, 17, 22], 

econometrics [6, 7], and hydrology [10]. Since all these 

areas of study have some relationship to the flow of 

patients through an operating suite, it is appealing to 

apply this mathematical model in the health care 

simulation. 

Log-normal distributions have been used to model 

operative procedure times, and the Central Limit 

Theorem could be invoked to argue that the product of 

numerous effects on these times might lead to a 

normal distribution for the sum of their logarithms. 

However, any distribution supported from zero to 

infinity with a unimodal hazard function could be fitted 

to the empirical distribution of procedure times, and the 

choice of one over another should be primarily 

determined by goodness of fit and practicality.  

The mathematical simplicity of the LL hazard is a 

theoretical advantage compared to more complicated 

distributions (and even over the LN, which requires 

evaluation of an integral). The processing time required 

to compute a LL hazard function is about half of that 

required to compute a LN hazard function. These 

computation times are in the range of a millisecond for 

a contemporary desktop computer using Stata, so the 

overall effect on a simulation program will only be 

noticeable if the calculation is being repeated for 

multiple state transitions, at frequent intervals during 

the period of observation, and for many patients. 

However, the simplicity of the functional expressions 

may also enable easier and more accurate 

programming. 

In situations where simulation models require an 

estimate of time remaining (for example, if a surgical 

procedure would be moved to a different room when 

the originally scheduled room is “running late”), residual 

time functions may be useful. While rtm(t) is a natural 

choice for this purpose, there are several reasons why 

rtq0.5(t) may be preferable [20]. However, even for 

skewed distributions, it cannot be simply assumed that 

the median is less than the mean [23]. The 

relationships between rtm(t) and rtq0.5(t) we have 

derived for LL random variables may therefore add to 

their usefulness for simulation analyses.  

Thus, there are several potential reasons to choose 

a LL distribution for modeling the duration of operative 

procedures. It requires a relatively large sample to 

determine whether or not a LL distribution fits a given 

set of data better than a LN with the same mean and 

variance [24]. Given the many other sources of 

randomness in simulating an operating room 

environment, the choice of one distributional form over 

another is probably not of critical importance. However, 

log-logistic distributions should be considered a useful 

option for modeling procedure durations or other health 

care applications when their properties are appropriate. 
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