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Abstract: In this study, some important issues regarding process capability and performance have been highlighted, 

particularly in case when the distribution of a process characteristic is non-normal. The process capability and 
performance analysis has become an inevitable step in quality management of modern industrial processes. 
Determination of the performance capability of a stable process using the standard process capability indices (Cp, Cpk) 

requires that the quality characteristics of the underlying process data should follow a normal distribution. Statistical 
Process Control charts widely used in industry and services by quality professionals require that the quality characteristic 
being monitored is normally distributed. If, in contrast, the distribution of this characteristic is not normal, any conclusion 

drawn from control charts on the stability of the process may be misleading and erroneous. In this paper, an alternative 
approach has been suggested that is based on the identification of the best distribution that would fit the data. 
Specifically, the Johnson distribution was used as a model to normalize real field data that showed departure from 

normality. Real field data from the construction industry was used as a case study to illustrate the proposed analysis. 
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1. INTRODUCTION 

Statistical Process Control is a process 
improvement methodology widely used by modern 
manufacturing and service organizations. This 
methodology is mainly based on the use of control 
charts and frequency distributions of process and 
quality characteristics data. Common and well 
established control charts include the Shewhart control 

chart ( x R and x S  charts), the cumulative sum 
control chart (CUSUM) and the exponentially weighted 
moving average control chart (EWMA). Determination 
of the performance capability of a stable process using 
the standard process capability indices (Cp, Cpk) 
requires that the quality characteristics of the 
underlying process data should follow a normal 
distribution, it is becoming more critical than ever to 
assess precisely process losses due to non-
compliance of customer specifications. To assess 
these losses, industry is widely using process capability 
indices. 

Departures from this normality assumption could 

lead to erroneous results when applying conventional 

statistical capability measures which are based on the 

assumption. Many researchers have been investigating 

solutions to the non-normality problem. In case of data 

that do not obey normal distribution, the key issue in 

this analysis was to obtain correct estimate of process 

performance. When the distribution of a process 

characteristic is non- normal, process capability indices 

calculated using conventional methods could often lead 

to erroneous and misleading interpretation of the 
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process's capability. Typically we assume that the 

processes follows normal probability distribution 

ensuring a high percentage of the process 

measurements falling between ± 3s of the process 

mean and the total spread amounts to about 6s 

variations. This article describes the estimation of Cp 

and Cpk, commonly used process capability indices 

(PCI), in case of nonnormal data using the 

characteristics of Pearson system distribution. 

In process improvement strategies, these control 

charts are used to monitor product quality and detect 

special events occurring in the process that may cause 

out-of-control situations that would lead to an unstable 

and unpredictable process. Such processes deliver 

poor quality products to customers. Customers expect 

suppliers of products and services to provide proof of 

process control and process capability. organizations’ 

management continuously improve processes, by 

making them more stable and capable to produce high 

quality, to meet customer specifications, and to achieve 

business excellence. 

Standards (Shewhart) control charts are designed 

on the assumption that the process being monitored 

produces a quality characteristic that can be 

approximated by a symmetrical normal distribution, 

when only the innate sources of variability are present 

in the system. The central limit theorem can be used to 

approximate distributions to the normal distribution 

provided that the samples being measured and 

monitored would be large enough. However, in many 

industrial situations, this cannot be assured and the 

process output is not normally distributed and heavy 

tailed and skewed. Experience has showed that in 
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some manufacturing processes, such as chemical 

processes parameters, cutting tool wear processes and 

some concrete production processes, the distribution 

are usually skewed. In this case, standard control 

charts based on normality assumptions can lead to 

erroneous conclusions regarding the stability and the 

capability of the process. Such wrong conclusions 

would cost manufacturing and service organizations big 

financial losses and lose customers to competitors.  

With the advents in statistical theories and 

computing facilities, this can be easily solved, by 

understanding of distributions that provide good model 

for most non-normal quality characteristics. Such an 

approach has been reported in the technical literature 

[1-4]. Derya and Canan (2012)  [4] developed standard 

control charts instead using Weibull, Gamma and 

lognormal distributions. Sherill and Johnson (2009) [3] 

showed the possibility to use exponential, Weibull and 

Lognormal distribution for transforming non-normal 

data for process control and process capability 

calculations. The objective of the present paper is to 

examine the use of the Johnson`s family of 

distributions to model control charts that can be used 

for process improvement purposes. A real field case 

study is presented for ready mixed concrete production 

plants where process distribution showed a skewed 

non-normal distribution. 

2. JOHNSON’S DISTRIBUTIONS IN QUALITY 
IMPROVEMENT 

Statisticians and quality professionals are often 

faced with the problem of summarizing a set of data by 

means of a mathematical function which fits the data 

and allowsss on obtaining estimates of percentiles. 

Frequently, statisticians and quality professionals 

usually have insufficient theoretical grounds for 

selecting a model like normal, gamma or extreme-value 

distributions for a "real world" data set [5]. Usually data 

are obtained and empirical methods are used to draw 

conclusions and make decisions on process and 

quality improvement in real business situations. The 

fitting of empirical distributions to data has a long 

history, and many different procedures have been 

advocated. The most common of these is the use of 

normal distribution. The central limit theorem leads one 

to expect this distribution to provide reasonable 

representation for many, but not all, physical 

phenomena [6]. 

Although models like gamma, log-normal and beta 
distributions do lead to a wide diversity of distribution 
shapes, they still do not provide the degree of 

generality that is frequently desirable. In 1949, Johnson 
derived a system of curves that has the flexibility of 
covering a wide variety of shapes. This system has the 
practical and theoretical advantages of being able to 
transform these curves to the normal distribution. The 
Johnson system is able to closely approximate many of 
the standard continuous distributions through one of 
the three functional forms and is thus highly flexible. 
The Johnson system provides one distribution 
corresponding to each pair of mathematically possible 
values of skewness and kurtosis. Any data set can be 

fitted by a member of the Johnson families such as SU , 

SL , and SB . This motivated us to use Johnson system 

for the analysis of micro array data [7]. This family of 
distributions, published by the statistician N.L. Johnson 
in 1949, is perhaps the most versatile choice. It is 
based on a transformation of the standard normal 
variable, and includes four forms: 

1. Unbounded: the set of distributions that go to 

infinity in both the upper or lower tail. 

2. Bounded: the set of distributions that have a 

fixed boundary on either the upper or lower tail, 

or both. 

3. Log Normal: a border between the Unbounded 

and Bounded distribution forms. 

4. Normal: a special case of the unbounded form. 

The fact that the Johnson system involves a 
transformation of the raw variable to a normal variable 
allowsss estimates of the percentiles of the fitted 
distribution to be calculated from the Normal 
distribution percentiles, for use in control limit 

calculations (on the Individual-X chart or the x R  
charts) or for Capability Analysis. Thus, although 
capability indices and control limits are generally only 
defined for normal variables, this approach allowsss 
their calculation for all distribution types [7]. In this 
study, the authors applied the Johnson system, which 

includes the SU , SL , and SB  distributions, as the 

Johnson system exhibits the key property of being able 
to accommodate all theoretically feasible skewness-
kurtosis combinations (Figure 1).  

The standard process capability analysis is one of 

many statistical process control widely used in 

manufacturing and services engineering. It is based on 

the assumption that process data are normally 

distributed. When this condition cannot be guaranteed, 

either capability indices should be computed based on 

distributions other than normal, or the data should be 

transformed so that it conforms better to the normal 

distribution [1]. Sherill and Johnson (2009) [3], and 
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many others showed that the use of Box-Cox and the 

Johnson transformations would help the quality 

professional to perform correct process analysis using 

both control charts for process stability and capability 

indices for process capability to meet customer 

specifications. In addition, it is worth mentioning here 

that in a recent study, [8], showed compressive 

strength of concrete elements in buildings are best 

modeled using log-normal and the Johnson SB 

distributions.  

3. MATHEMATICAL FORMULATION OF THE 
JOHNSON’S DISTRIBUTIONS 

As stated earlier, when process data exhibit non-

normal distribution, it is erroneous to draw standard 

control charts for process improvement and perform 

capability analysis. The practical solution is to 

transform the data and drive them towards normality, 

using common and well established probability 

distributions, such as Box-Cox, log-normal or the 

Johnson distribution. Such an approach has been used 

in the open literature. Basically the Johnson 

transformation computes an optimal transformation 

function from three flexible distribution families (SU, SB, 

and SL). This makes this transformation more powerful 

than other distribution [3]. 

 

Figure 1: The Skewness and Kurtosis Plane for the Johnson 
Distributions. 

These translations transform any continuous 

random variable X  into a standard normal variable Z  

using general form: 

Z = a + bg(
X μ

)           (1) 

Where: a  and b  are shape parameters, μ  is a 

location parameter, and g(x) is a function defining the 

Johnson system of families, determined as: 

g(x) =

ln x( ) , for the lognormal family,

ln x + x2
+1( ) , for the unbounded family,

ln
x

1-x
, for the bounded family,

x , for the normal family.

 

As discussed in [5], the above system has the 

flexibility to match any feasible set of values for the 

mean, variance, skewness, and kurtosis coefficients. 

With this system, the skewness and kurtosis also 

uniquely identify the appropriate form for the (g) 

function. 

3.1. Johnson’s Translation System 

Johnson proposed three normalizing 

transformations having the general form: 

Z = + f
X μ

,           (2) 

Where f (.)  denotes the transformation function, Z  

is a standard normal random variable  and  are 

shape parameters,  is a scale parameter and μ  is a 

location parameter. Without loss of generality, it is 

assumed that 
 0 and 

 0 .  

The first transformation proposed by Johnson 

defines the lognormal system of distributions denoted 

by SL : 

 

Z = + ln
X μ

=
*

+ ln X μ( ) , X μ,        (3) 

The bounded system of distributions SB  is defined 

by: 

 

Z = + ln
X μ

μ + X
= μ X μ + ,         (4) 

SB  curves cover bounded distributions. The 

distributions can be bounded on the lower end, or the 

upper end, or both. This family covers gamma 

distributions, beta distributions and many others. 

The unbounded system of distributions SU  is 

defined by: 



220     International Journal of Statistics in Medical Research, 2015, Vol. 4, No. 2 Bachioua Lahcene 

 

Z = + ln
X μ

+
X μ

2

+1

1/2

=

+ sinh 1 X μ
, . X +

       (5) 

The SU  curves are unbounded and cover the t  and 

normal distributions, among others. 

3.2. Johnson’s Family of Distributions 

The Johnson family of distributions is made up of 

three distributions, Johnson SU , Johnson SB  and 

lognormal. It covers any specified average, standard 
deviation, skewness and kurtosis. Together they form 
4-parameter family distributions that cover the entire 
skewness-kurtosis region other than the impossible 

region. The Johnson SU  distribution covers the area 

above the lognormal curve and the Johnson SB  covers 

the area below the lognormal curve. A family of 
distributions is several distributions combined so that 
they cover a well defined region in a skewness and 
kurtosis plot (lognormal family of distributions, negative 
lognormal and normal distributions,..). Readers can find 
detailed developments about the Johnson family of 
distributions in reference books [6]. 

This family of distributions is usually parameterized 

as a function of skewness and kurtosis. Skewness is a 

measure of non symmetry in the data, so for a normal 

distribution it takes the value of zero. Negative values 

for the skewness indicate that data are skewed left, 

and positive values indicate that data are skewed right. 

On the other hand, kurtosis is a measure of whether 

the data are peaked or flat relative to a normal 

distribution. The kurtosis for a normal distribution is 3.0. 

A kurtosis value larger than 3.0 indicates a “peaked” 

distribution and a kurtosis value less than 3.0 indicates 

a “flat” distribution. Thus, both can be seen as 

measures of shape of the distributions. 

When the data is not normally distributed, capability 

analysis can still produce useful results by using 

nonparametric indices, or by transforming the data so 

that it conforms better to normal distribution than its 

original form. In order to find whether a process is in 

control, quality control charts like R and X Bar charts 

can be used. Earlier work of Lovelace and Swain 

(2009) [9] has been extended for this distributional 

assumption. Quantiles are estimated by probability 

plotting technique and then control limits are obtained 

to determine whether the process is in statistical control 

or not [9]. 

4. APPLICATION OF JOHNSON’S SYSTEM OF 
DISTRIBUTIONS FOR REAL FIELD DATA  

To illustrate the above analysis, real field data from 

the construction industry business was chosen as a 

case study. Data from Ready mixed concrete plants 

were gathered and analyzed using Minitab 16 statistical 

software. The observed quality characteristic was the 

compressive strength (kgf/cm
2
) of concrete as defined 

by international quality standards [10]. The gathered 

data consisted of 22 samples of concrete with a 

nominal specification 350 kgf/cm
2
. The sampling 

process consists of a sample size of 3 spanning over a 

period of 30 days. These data are presented in Table 

1. 

Initial analysis of the data of the concrete using 

standard X -chart (Figure 2) showed that the process is 

out of statistical control; this would mean the existence 

of special causes of variation affecting the process.  

Table 1: Data for Compressive Strength for Ready 
Mixed Concrete (Kgf/cm

2
) 

Sample Cylinder 1 Cylinder 2 Cylinder 3 

1 353.8 363 360.6 

2 357.8 358.7 370.9 

3 365.2 360 356.6 

4 340.4 335.2 330.1 

5 359.6 358.1 351.2 

6 368.1 366.7 369.3 

7 357.9 355.0 350.6 

8 337.8 352.6 361.6 

9 359.1 349.2 363.7 

10 361.1 358.2 358.3 

11 358.3 345.7 341.7 

12 357.3 359.2 356.9 

13 352.6 363.1 374.6 

14 360.8 356.2 352.7 

15 347.5 339.8 354.3 

16 358.2 359.5 353.9 

17 375.2 372.5 370.2 

18 357.5 359.5 348.9 

19 343.2 355.8 362.4 

20 362.1 356.6 359.1 

21 365.2 362 359.4 

22 361.3 346.8 339.0 
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Figure 2: Standards x  chart for the concrete compressive 
strength. 

out-of –control shown from the x  control chart was 

drawn based on the assumption of normally distributed 

concrete data. Is this assumption correct? If not what 

would be the best distribution that fits these real field 

data. To answer this question, distributions 

identification was carried out for the data, and the 

outcome is presented in Figure 3 as probability plots. 

From this figure, it can be seen that the compressive 

strength of concrete does fit neither the normal, nor the 

exponential, nor the Weibull, nor the lognormal 

distributions. It is very obvious that the exponential 

distribution is a poor model for the concrete data. The 

Johnson distribution would be an alternative for the 

model [3, 8]. The transformed data by the Johnson 

system are illustrated in Figure 4, where it can be seen 

that this distribution shown as a mixture would be the 

best model of these concrete data. From this figure, it 

can be seen that within the interval percentile ranging 

from 1.054 to 98.94, would be the best fit of the data. 

Normality within this interval can be guaranteed. These 

correspond to the lower control limit and the upper 

control limit for the normalized data which are 

UCL=375.2 (kgf/cm
2
) and LCL=330.1 (kgf/cm

2
). These 

control limits will be used as the new control limits for 

the x  chart as shown in Figure 5. It is clearly shown 

that the control chart with the new control limits indicate 

totally the opposite of the early conclusion drawn from 

the standard control chart. The process is shown to be 

in statistical control.  

5. CONCLUSIONS 

Most statistical process control charts require that 

the quality characteristic being monitored is normally 

distributed. If, in contrast, the quality distribution of the 

quality characteristic of interest is not normal, the 

conclusions drawn from control charts on the stability of 

the process may be misleading and highly erroneous. 

 

Figure 3: Probability Plots for the Concrete Compressive Strength. 
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In this paper, an alternative approach has been 

suggested that is based on the identification of the best 

distribution that would fit the data. Specifically, the 

Johnson distribution was used as a model to normalize 

real field data that showed departure from normality. 

Real field data from the construction industry was 

used as a case study to illustrate the analysis. The 

assumption of normality when the data were not 

normally distributed led to conclude that the monitored 

process was out of statistical control, indicating that 

 

Figure 4: Probability Plots for the Johnson Transformed data of Concrete Strength. 

 

 

Figure 5: x -chart with the new Control Limits using Johnson transformations. 
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some special causes are present in the process, which 

would require some intervention from management on 

the process to get rid of the special cause of variation 

to occur again. This would certainly cost the 

organization some cost. However, when the data were 

transformed and brought to normality through Johnson 

transformations, and the new control limits calculated, 

the new control chart indicated no sign of special 

causes of variation. 
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