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Abstract: Exposure-crossover design offers a non-experimental option to control for stable baseline confounding 

through self-matching while examining causal effect of an exposure on an acute outcome. This study extends this 
approach to longitudinal data with repeated measures of exposure and outcome using data from a cohort of 340 older 
medical patients in an intensive care unit (ICU). The analytic sample included 92 patients who received 1 dose of 

haloperidol, an antipsychotic medication often used for patients with delirium. Exposure-crossover design was 
implemented by sampling the 3-day time segments prior (Induction) and posterior (Subsequent) to each treatment 
episode of receiving haloperidol. In the full cohort, there was a trend of increasing delirium severity scores (Mean±SD: 

4.4±1.7) over the course of the ICU stay. After exposure-crossover sampling, the delirium severity score decreased from 
the Induction (4.9) to the Subsequent (4.1) intervals, with the treatment episode falling in-between (4.5). Based on a 
GEE Poisson model accounting for self-matching and within-subject correlation, the unadjusted mean delirium severity 

scores was -0.55 (95% CI: -1.10, -0.01) points lower for the Subsequent than the Induction intervals. The association 
diminished by 32% (-0.38, 95%CI: -0.99, 0.24) after adjusting only for ICU confounding, while being slightly increased by 
7% (-0.60, 95%CI: -1.15, -0.04) when adjusting only for baseline characteristics. These results suggest that longitudinal 

exposure-crossover design is feasible and capable of partially removing stable baseline confounding through self-
matching. Loss of power due to eliminating treatment-irrelevant person-time and uncertainty around allocating person-
time to comparison intervals remain methodological challenges. 

Keywords: Exposure-crossover design, self-matching, confounding, causal effects, generalized estimating 

equation. 

INTRODUCTION 

Self-matching offers an attractive study design 

option alternative to randomization and peer-matching 

for observational studies of treatment effect, i.e., 

control for selection bias and confounding due to 

stable, patient-specific risk factors, such as genetic 

predisposition, personality traits and education 

attainment [1, 2]. Such stable confounding is inherent 

to observational data and often difficult to address in 

the analytic stage [1, 2]. The self-matching principle 

was first applied in epidemiological literature through 

case-crossover design [1], which was devised to 

examine the transient exposure effects on an acute 

outcome through comparing a designated “case” period 

and one or more “control” periods. A variant of case-

crossover approach, called “exposure-crossover”, was 

proposed [3], which shares several key features as its 

precursor, such as using each subject as their own 

control and comparing the outcome risks during an 

assumed effect period and a control period, yet 
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anchors the analyses on the time of exposure instead 

of the outcome (or case) [3].  

Since its introduction, at least two population-based 

studies have used the exposure-crossover approach to 

address the risk of an adverse outcome in an 

administrative database [4, 5]. The two studies defined 

a 1-year post-exposure period (or subsequent interval) 

to detect effects of fibromyalgia diagnosis on motor 

vehicle crashes or a medication injection on 

thromboembolism risk, in reference to a broader 3-year 

control period (or baseline interval), and found a 

significant detrimental association. However, whether 

this novel approach can be applied to longitudinal 

studies with repeated measures of exposure and 

outcome, especially in the quasi-experimental context, 

has not been explored in the literature.  

This study attempts to extend the exposure-

crossover approach to longitudinal data with multiple 

episodes of medication treatment over time. We 

illustrate our approach using a cohort of elderly patients 

receiving intensive care who have multiple 

comorbidities and are simultaneously receiving several 

medications (or polypharmacy). The scientific question 
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behind this exercise is whether the administration of 

haloperidol, an antipsychotic medication commonly 

used to treat delirious patients, reduces the severity of 

delirium, an acute confusional state. Previous studies 

including sparse clinical trials have been insufficient 

and sometimes conflicting regarding the effectiveness 

of haloperidol in treating delirium, calling for novel 

observational studies to fill in the knowledge gap [6, 7].  

METHODS 

Prototype of Exposure-Crossover Design 

In the seminal paper by Redelmeier [3], the 

exposure-crossover design involves 3 major steps of 

data reorganization. First, establish a time zero based 

on the time of exposure for each subject. Second, 

follow each subject for outcome experience both 

backward (pre-treatment) and forward (post-treatment) 

from the defined time zero. Third, collapse the entire 

timeline of the study period into 3 sequential intervals, 

called the baseline, induction and subsequent intervals, 

respectively. In the analyses, the “causal” effect of the 

exposure is estimated by comparing the subsequent 

(serving to detect and quantify post-exposure 

outcomes) and the baseline (serving to detect and 

quantify long-term temporal trends prior to the 

exposure) intervals, while excluding the induction 

interval (reflecting nuisance related to reverse 

causality, confounding by indication, or other biases) 

[3]. To ensure a fair and efficient comparison, each 

interval was divided into time segments with uniform 

duration, typically by calendar year or 13 segments of 

28-days [3].  

Adapt Exposure-Crossover Design to Repeated 
Measure Data 

To examine the “causal” effect of repeated 

haloperidol treatments among older ICU patients with 

multi-morbidities and polypharmacy regimen, we 

adapted the exposure-crossover design in the following 

aspects: 

1. Define Treatment Episodes of Consecutive 
Haloperidol Doses as Time Zero 

 In previous studies of exposure-crossover design, 

exposure was typically assumed to occur at a single 

time point [3-5] and embedded into the induction 

interval as a nuisance. In our sample, however, 

patients may receive haloperidol treatment over several 

consecutive days. To make an optimal use of such 

repeated exposure data while retaining its essential 

feature of self-matching, we first identified all the time 

periods of 1 or more days in which a patient was given 

a haloperidol dose every day as a treatment episode. 

The first and last day of these treatment episodes, 

respectively, were then used as a time zero to define 

the induction (pre-treatment) and subsequent (post-

treatment) intervals. However, the outcome 

assessments on delirium severity during the treatment 

episodes may intervene with serial administrations of 

haloperidol doses and the (residual) effects of the 

medication and the delirium pathology are difficult to 

disentangle from each other. To avoid causal 

ambiguity, we considered the treatment episodes 

nuisance parameter and only evaluated the delirium 

severity in these time periods in descriptive and 

sensitivity analyses. 

2. Construct Comparison Intervals Based on 
Biologically Plausible Exposure Window 

 After identifying all haloperidol treatment episodes, 

the next step was to sample time segments to 

construct comparison intervals, i.e., the baseline, 

induction and subsequent intervals, relative to the 

defined time zero. To appropriately assign person-time 

segments to each interval while avoiding “pragmatics” 

and arbitraracy [3], we first need to define a biologically 

plausible exposure window for detecting the “causal” 

effect of haloperidol treatment on the delirium 

symptoms. Based on the fact that delirium symptoms 

typically arise in hours to days following exposure to 

some causal risk factors and that the half-life for 

haloperidol ranges from 14 to 24 hours [8], we 

considered the 3 days immediately following a 

haloperidol dose be the most plausible exposure 

window. Accordingly, we assigned a maximum 3 days 

and a minimum 1-day after each treatment episode to 

the subsequent intervals. We then tried to allocate an 

equal number of maximum 3 days preceding each 

treatment episode to the induction intervals as the 

comparison period. When number of person-days 

between 2 adjacent treatment episodes is <6, we 

assign the days to subsequent interval first, under the 

minimum 1-day exposure window assumption. If 

available person-days for allocation is>6, the extra 

days after assigning the 3-days to each of the 2 

intervals were excluded.  

3. Omit Defining a Baseline Interval as a 
Comparison Period 

 While the prototypical exposure-crossover design 

requires defining a baseline interval to capture the 

ongoing outcome risk unrelated to exposure as a 
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comparison period [3-5], we chose not to do so for both 

theoretical (retaining the self-matching principle) and 

practical (lack of data prior to ICU admission) reasons. 

First and foremost, the scientific question prompting 

this self-matching design is whether the change in 

delirium severity is caused by haloperidol treatment, or 

by other “triggering” causes or temporal confounding 

proximal to the time of treatment [1,2,9]. Therefore, the 

most relevant time periods to detect such a change 

would be the time periods immediately preceding (or 

induction to) and following (or subsequent to) the 

exposure, rather than a distant period farther before the 

exposure. In addition, older patients entering the ICU 

are known to have an increased risk of delirium. Such 

ongoing risk may result from cumulative effects of 

genetic predisposition, long-term exposure to 

environmental factors, as well as the natural aging 

process, and is not expected to change dramatically 

over a short period prior to ICU admission (and thus, 

presumably are “stable”) [1-3]. Finally, the salient point 

of the exposure-crossover design is its built-in self-

matching capacity, whereby the stable baseline 

confounding, measured and unmeasured, is 

supposedly automatically removed. It would be 

redundant or counterintuitive to reiterate an explicit 

baseline period as a comparison or reference period. 

Therefore, instead of defining a baseline interval, we 

considered adjusting several patient characteristics at 

ICU admission in the analyses as proxy to stable 

baseline confounding. 

A schematic illustration of this longitudinal version of 

exposure-crossover design is presented in Figure 1. 

Data Source and Analytic Sample 

To illustrate our approach, we used the Evaluation 

of Psychoactive Medications in the Intensive Care Unit 

(EPIC) which consists of 304 consecutive patients 60 

years or older admitted to the medical intensive care 

units (ICU) of the Yale-New Haven Hospital, 

Connecticut, between September 5, 2002 and 

September 30, 2004 [7, 10]. Patients were assessed 

for delirium with the Confusion Assessment Method for 

the ICU (CAM-ICU) by a trained research nurse on a 

daily basis [11]. The dose, route and time of 

administration of all medications were tracked through 

3 nursing shifts (day, evening and night). Other data 

collected included baseline demographics (e.g., age, 

sex, race), clinical characteristics (e.g., admitting 

diagnosis, dementia, and laboratory tests) and ICU 

 

Figure 1: A case scenario illustrating exposure-crossover sampling from a patient with 33 person-days of ICU stay. 
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interventions (e.g., mechanical ventilation), as 

described previously [7, 10]. During the ICU stay (mean 

duration ±SD: 7.2±7.9 days), 234 patients developed 

delirium, of whom 93 received at least one dose of 

haloperidol, the most common pharmacological 

treatment for delirium in clinical practice [6, 7]. After 

excluding one patient who received only a single dose 

at last day in ICU, we included 92 haloperidol users in 

the analytic sample.  

Statistical Analyses 

Study Variables 

To derive a quantitative measure of delirium 

severity as study outcome, each of the 4 diagnostic 

features of the CAM-ICU, i.e., 1) acute onset or 

symptom fluctuation; 2) inattention; 3) disorganized 

thinking; and 4) altered level of consciousness, was 

assigned a score of 0 (absent), 1 (mild) or 2 

(severe/marked), following a validated CAM-S algorism 

using the same 4 features [12]. The summary delirium 

severity score ranges from 0 to 7, with 7 indicating 

most severe symptoms.  

The haloperidol treatment each patient received 

during ICU stay was measured as cumulative daily 

does in milligrams, and grouped into one or more 

discrete treatment episode, as defined above.  

Several patient characteristics were used to capture 

stable baseline confounding, including age (in year), 

Acute Physiology and Chronic Health Evaluation 

(APACHE II) score, admission diagnoses (4 

categories), dementia (yes vs no) and antipsychotic 

use at admission (yes vs no). ICU confounding was 

represented by a categorical variable denoting the time 

spent on mechanical ventilation during ICU stay (0, 1-

80%, 80%) and cumulative anticholinergic daily drug 

burden as a time-varying continuous variable. The later 

was a standardized daily drug dose across 12 

anticholinergic medications, a class of common 

geriatric medications known to cause delirium [13, 14]. 

Graphical Representation and Descriptive Analyses  

We used line and bar-char plots to explore the 

distribution of delirium severity over the course of ICU 

stay in the original data and after applying exposure-

crossover sampling [3]. We used mean and standard 

deviation for continuous variables, and frequency and 

percentages for categorical variables to summarize the 

population characteristics and exposure crossover 

design features.  

Generalized Estimating Equation Modeling  

We used a generalized estimating equation Poisson 

model [15] to examine the “causal” effects of 

haloperidol treatment by comparing the average 

delirium severity scores for the subsequent and the 

induction intervals while ignoring the treatment 

episodes to avoid potential reverse causality. We 

estimated the mean difference on the delirium severity 

scores between the two intervals through identity link 

function, with robust variance estimator for 95% 

confidence interval calculation. Self-matching was 

accounted for by treating each pair of comparison 

intervals (i.e., induction and subsequent) as a cluster. 

As patients could contribute multiple exposure-

crossover intervals (and treatment episodes) to the 

analyses, we used an unstructured covariance to 

account for each persons’ unique correlation pattern. 

We systematically adjusted for the baseline 

characteristics at ICU admission and precipitating 

confounding during ICU stay, and jointly, and used the 

percent change in the parameter estimates from the 

unadjusted model to each adjusted model to quantify 

the capacity of the exposure-crossover design in 

achieving self-matching.  

We performed sensitivity analyses on the fully 

adjusted GEE model. First, we refit the model by 

including the treatment episodes as an explicit 

(nuisance) parameter, to test potential pragmatics and 

person-time selection bias [1, 2, 16]. Second, we 

restricted the analyses to a maximal 1-day duration for 

both induction and subsequent intervals, to examine 

the impact of unequal length assignment to the 

intervals. Third, we restricted the analyses to the first 

induction and the last subsequent intervals, to remove 

potential reverse causality bias due to residual effects 

of most recent haloperidol dose or delirium symptoms 

over successive intervals. Finally, we refit the model by 

ignoring the self-matching mechanism, to verify the 

notion of potential underestimation bias [1]. 

All statistical analyses were performed using SAS 

software version 9.4 (SAS Institute, Cary NC 2010), 

with a two-sided  = 0.05 for statistical significance. 

RESULTS 

The characteristics of the 92 older patients included 

in the study sample are summarized in Table 1, which 

are largely comparable to the full cohort except for 

increased baseline cognitive impairment 

(IQCODE>3.3), less admissions for gastrointestinal 

hemorrhage and more time mechanically ventilated. 
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The 92 patients contributed a total of 825 person-

days to the exposure-crossover sample. Of these, 398 

person-days received 1 haloperidol dose at 6.6±10.8 

mg per day and constituted 130 treatment episodes, 

with an average contribution of 1.4±0.9 episodes per 

person (range: 1-6). The delirium severity score on 251 

person-days was 4.4±1.7 (range: 0-7). 

During the ICU stay, the observed delirium severity 

scores among the full cohort appeared to increase 

gradually from admission to day 28, as shown in Figure 

2. 

After trimming the person-time data unrelated to the 

exposure-crossover design, the monotonic trend of 

delirium severity over time in disappeared, as shown in 

Figure 3. 

Figure 4 presents the average delirium severity 

scores for the 3-day before (induction interval) and 3-

day after (subsequent interval) the haloperidol 

treatment episode, aggregated across person-days in 

the exposure-crossover sample. The mean delirium 

severity scores were highest during the induction 

interval (4.9, 95% CI: 4.4, 5.4) and lowest during the 

subsequent interval (4.1, 95% CI: 3.8, 4.5), with the 

treatment episodes coming in-between (4.5, 95% CI: 

4.1, 4.8). 

As summarized in Table 2, there was a modest 

reduction in the delirium severity score from the 

induction to the subsequent intervals, with an 

unadjusted mean difference of -0.55 (95% CI: -1.10, -

0.01) points. The association changed by 7% after 

adjusting for baseline characteristics (-0.60, 95% CI: -

1.15, -0.04); yet diminished by 32% after adjusting for 

ICU covariates (-0.38, 95% CI: -0.99, 0.24). Adjusting 

for both baseline and ICU covariates did not alter the 

point estimate (-0.38, 95% CI: -1.01, 0.25). 

Sensitivity analyses derived consistent results, with 

a statistically insignificant reduction of delirium severity 

score following the treatment episode (Table 3). In 

addition, the two extreme scenarios provided some 

Table 1: Characteristics of Study Sample  

Characteristics Full Cohort 

(N=304) 

Analytic Sample  

(N=92) 

Baseline characteristics 

Age (yr), mean±sd 74.7±8.5 74.3±7.7 

Male gender, n (%) 143 (47.0) 41 (44.6) 

IQCODE>3.3,* n (%) 94 (31.2) 37 (40.2) 

APACHE II Score,
†
 mean±sd 23.4±6.4 24.5±6.1 

On antipsychotics, n (%)  20 (6.6) 7 (7.6) 

Admitting diagnosis, n (%) 

Respiratory diseases 153 (50.3) 54 (58.7) 

Gastrointestinal hemorrhage 52 (17.1) 8 (8.7) 

Sepsis 50 (16.5) 14 (15.2) 

Other diagnoses
‡
 45 (16.1) 16 (17.4) 

ICU characteristics 

 Time under mechanical ventilation, n (%)   

 Never intubated 144 (47.4) 39 (42.4) 

 Intubated <80% time 85 (28.0) 31 (33.7) 

 Intubated 80% time 75 (24.7) 22 (23.9) 

 Cumulative anticholinergic drug burden per day during ICU,
§
 mean±sd 1.1±2.0 1.3±2.1 

Abbreviations: sd, standard deviation; CAM, The Confusion Assessment Method; IQCODE, Informant Questionnaire on Cognitive Decline in the Elderly; APACHE, 
Acute Physiology and Chronic Health Evaluation; ADL, activities of daily living.  
*Indicative of dementia. 
†
Acute Physiology and Chronic Health Evaluation II Score,  

‡
Include neurological diseases, diabetes, metabolic abnormalities, acute renal failure and cardiac causes.  

§
Represents cumulative dose standardized on WHO Defined Daily Dose for adults across 12 common anticholinergic medications received each day, including 

amitriptyline, atropine, dicyclomine, diphenhydramine, imipramine, benzodiazepine (lorazepam), meclizine, olanzapine, paroxetine, promethazine, and narcotics 
(fentanyl and morphine). 
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Figure 2: Delirium severity score as measured with the CAM-ICU during ICU stay truncated at 28 days after admission. 

 

 

Figure 3: Exposure-crossover sample: Delirium severity score as measured with the CAM-ICU during ICU stay truncated at 28 
days after admission. 

support for the necessity of ensuring temporal 

unambiguity (model 3) [1, 2] and of accounting for self-

matching in the analyses (model 4) [1]. The great 

variation of the point estimates may reflect the 

dramatically reduced sample size or potential over-

parameterization due to estimating unstructured 

covariance matrices. 

DISCUSSIONS 

Using sample data from a cohort of older medical 

patients with multi-morbidities and polypharmacy, we 

illustrated how the exposure-crossover design can be 

extended to longitudinal data with repeated measures 

of both exposure and outcome in the quasi-
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Figure 4: Exposure-crossover sample: Delirium severity score as measured with the CAM-ICU aggregated over the induction 
and subsequent intervals across person-time. 

 

Table 2: Predicted Mean Difference of Delirium Severity Scores between the subsequent and induction Intervals in 
Exposure-Crossover Sample (N=92) 

Model no./Covariates* Mean Difference
§
 (95% 

CI)  
 (%)

¶
 Comments 

1 Unadjusted -0.55 (-1.10, -0.01) (reference) Theoretically free of stable, baseline confounding due to self-
matching 

2 Adjusted for baseline 
confounding only

†
 

-0.60 (-1.15, -0.04) 7.2 Theoretically redundant or over-adjusted after self-matching 

3 Adjusted for ICU confounding 
only

‡
 

-0.38 (-0.99, 0.24) 32.4 Theoretically unbiased from both baseline (via self-matching) 

and time-varying, proximal confounding (via regression 
adjustment) 

4 Adjusted for both baseline and 
ICU confounding

†‡
 

-0.38 (-1.01, 0.25) 31.9 Unbiased yet less efficient due to potential over-adjustment of 
baseline confounding 

*Estimated using a generalized estimating equation model of the CAM-ICU-based delirium severity scores as a Poisson outcome, accounting for self-matching as a 
cluster and each persons’ unique correlation pattern as unstructured.  
†
Included age in years, APACHE II score (continuous), admission diagnoses (4 categories), dementia (yes vs no) and antipsychotic use prior to ICU admission (yes 

vs no). 
‡
Included the time spent in mechanical ventilation during ICU stay (0, 1-80%, 80%) and a time-varying covariate, cumulative anticholinergic drug burden received 

each day.  
§
Represents predicted delirium severity score difference between the subsequent and induction Intervals using the GEE model. 

¶
Represents percent change in the effect estimates (Mean Difference) between each adjusted models versus the unadjusted (reference) model.  
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Table 3: Sensitivity Analyses: Adjusted Mean Difference of Delirium Severity Scores between the Subsequent and 
Induction Intervals Using Alternative Approach (N=92) 

Model no. /Alternative Approach* Mean Difference
† 

(95% CI) 

Comments 

1 Including haloperidol treatment 
episodes as an explicit parameter 

-0.44 (-1.07, 0.19) Avoid pragmatics and arbitrary exclusion of person-time data; may 
complicate interpretation due to potential reverse-causality  

2 Assuming 1-day exposure window
‡
 -0.26 (-1.08, 0.55) Address unequal lengths of comparison intervals (i.e., subsequent vs 

induction); may compromise model efficiency 

3 Restricting to the last subsequent and 

first induction intervals from each 
patient 

-0.51 (-1.24, 0.22) Remove potential residual time-varying confounding and reverse-causality 

between successive exposure-crossover intervals at sacrifice of sample 
size 

4 Without accounting for self-matching -0.16 (-0.68, 0.37) Reduce model complexity by ignoring treatment sequencing; may 
underestimate treatment effect 

*All models were estimated using a generalized estimating equation Poisson model of the CAM-ICU-based delirium severity scores, accounting for self-matching and 
each persons’ unique correlation pattern, except otherwise indicated. 
†
Represents predicted delirium severity score difference between the subsequent and induction Intervals from each GEE model, adjusted for 5 baseline (age, 

APACHE II score, admission diagnoses, dementia and antipsychotic use prior to ICU admission) and 2 ICU (percent time spent in mechanical ventilation during ICU 
stay and cumulative anticholinergic burden received each day) covariates. 
‡
Retained only the induction and subsequent intervals with 1-day duration in the analyses.  

experimental context. The methodological renovations 

of this longitudinal exposure-crossover approach 

included: 1) defining exposure-crossover intervals 

under biologically plausible assumptions for exposure 

window (avoiding statistical artifacts, serendipity and 

spurious association); 2) shifting focus from 

subsequent-baseline comparison to subsequent-

induction comparison (to address the “causal” effect of 

medication treatment on an acute disease); 3) isolating 

treatment episodes from both the induction and 

subsequent intervals as a nuisance parameter 

(mitigating causal ambiguity); and 4) addressing 

proximal confounding via multivariable adjustment 

while controlling stable baseline risk through self-

matching. Through this longitudinal exposure-crossover 

exploration, we observed a potential modest benefit of 

haloperidol treatment on reducing delirium severity 

before adjusting for ICU confounding, which is 

consistent with some clinical trials that demonstrated a 

benefit of low dose haloperidol treatment (<4.5 mg per 

day) on reducing delirium severity among post-surgery 

patients, but not the delirium incidence [6].  

However, to appropriately accomplish the above 

goals is not trivial and requires deep critical thinking of 

the underlying causal mechanism and labor-intensive 

data-collection effort. Although utilizing repeated 

measure data increases the statistical efficiency or 

estimation precision, when many patients have missing 

data due to mortality or dropout, comparisons made 

across person-time segments may compromise the 

self-matching capacity in control for stable baseline 

risk. Therefore, potential survivor bias is likely and 

should be addressed with complete follow-up data 

allowing equal length for the two comparison intervals 

[1-3]. In addition, it remains to be clarified whether the 

diminishing haloperidol effects in this study reflected 

the overwhelming confounding unique to ICU setting 

(e.g., mechanical ventilation), or the reduced power 

due to excluding treatment-irrelevant person-time data. 

Unlike other studies in the field that often focused 

on disease incidence, we modeled delirium severity as 

a quantitative outcome. Other than finer granulation on 

the scale, we were concerned of potential “treatment”-

selection bias [1,16,17], because all patients in this 

sample were diagnosed with delirium. Modeling the 

incidence or recurrence of a diseases that potentially 

indicated the treatment at the first place may be subject 

to increased risk of “reverse causality”. Indeed, a 

recent report from this EPIC cohort observed a 

significant association between repeated haloperidol 

doses and the next-day delirium incidence using 

marginal structural model [7].  

CONCLUSIONS 

To conclude, we have demonstrated steps of 

implementing exposure-crossover design to 

longitudinal data with repeated measures of both 

exposure and outcome in a sample of older medical 

ICU patients. The preliminary evidence suggested that 

this longitudinal extension is feasible and reasonably 

attains to the essential feature of self-matching, as 

evidenced by the trivial change in the alleged 

haloperidol treatment effects after adjusting for stable 

baseline confounding alone, material change when 

ignoring self-matching in the analyses, and relative 

invariance when including the treatment episodes as 
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an explicit parameter or restricting to the first induction 

and the last subsequent intervals only. Future 

longitudinal exposure-crossover studies should 

consider using larger sample sizes, allowing wash-out 

period between successive treatment episodes and 

addressing informative missing data due to mortality 

and dropouts using alternative statistical models [1-3, 

9, 16, 17].  
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