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Consumer Product Randomized Controlled Trials be Analyzed? 
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Abstract: Background: Experimental study design, randomization, blinding, control, and the analysis of such data 
according to the intention-to-treat (ITT) principle are de-facto “gold standards” in pharmacotherapy research. While 

external treatment allocation under conditions of medical practice is conceptually reflected by in-study randomization in 
randomized controlled trials (RCTs) of therapeutic drugs, actual product use is based on self-selection in a consumer 
product setting.  

Discussion: With in-market product allocation being consumer-internal, there is no standard against which protocol 
adherence can be attuned, and the question arises, as to whether compliance-based analysis concepts reflect the real-
world effects of consumer products.  

Summary: The lack of correspondence between RCTs and consumer market conditions becomes evident by the fact 
that even if, theoretically, all data would be available from all members of the real-world target population, it would be 
impossible to calculate either an ITT or a per-protocol effect. This renders the calculation of such estimates meaningless 

in consumer product research contexts. 
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BACKGROUND 

The effects of drug-based medical interventions are 

generally assessed in randomized controlled trials 

(RCTs), by performing statistical comparisons of the 

outcome measures, between patients randomly 

allocated to the investigational treatment (R=1) or to 

the control treatment (R=0). Under the assumptions of 

(1) balance of both the known and unknown covariates 

(through randomization); (2) full compliance; and (3) 

complete data, the results of the trial are evidence of a 

causal treatment effect. This is a fundamental strength 

of the randomized-experimental methodology, in terms 

of internal validity [1]. In potential outcomes terms, 

randomization renders the impact of the actual 

treatment (A) on the distribution of the potential 

outcomes Y(A=a) ignorable (i.e., Y(a) A) and 

participants exchangeable across groups [2,3]. 

In a well-designed RCT, the factual probabilistic 

dependencies of an outcome measurement on the 

actual treatment can be interpreted in a causal manner 

in terms of A having caused Y in at least some 

individuals. This probability-raising formulation of 

causation, which is restricted to the study-specific 

context (C), has been formulated for observed 0/1 

response outcomes through the conditional probability 

relation Pr(Y|A=1,C) > Pr(Y|A=0,C) [4]. When this 

inequality is demonstrated, the probabilistic causal 
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conclusion that A caused Y is implicated within this 

study context. The external validity of the conclusions 

is dependent on the context in which the study was 

performed, therefore the findings are only generalizable 

when the study context reflects the context in which the 

treatment will be used. In reality this can only be 

approximated. Importantly, as Cartwright [5] has 

pointed out, there are “no manuals” for the type of 

induction implied in generalizing the results from a 

specific study. This is mainly due to the lack of certainty 

regarding the totality of relevant context factors. 

Even if researchers were able to design and 

conduct an “ideal” RCT, clinical trials become more 

complex in reality because they involve human 

participants who deviate from the study instructions [6]. 

In fact, compliance is a complicated and typically non-

random phenomenon which encompasses different 

forms of “all-or-nothing” and partial compliance. The 

type and extent of non-compliance that arise in a study 

depends on the research design and study context, 

and can range from not taking the allocated treatment, 

to not taking the treatment in accordance with the 

protocol, or even taking an alternative treatment [7]. 

The intuitive approach to addressing the issues that 

arise with a broken randomization, when the actual 

treatment Ai assigned to the i
th

 participant is not the 

randomized treatment Ri, would be to simply restrict 

the analysis to the individuals that completed the study 

as planned. This equates to a “per-protocol” (PP) 

analysis, which does inform about the efficacy of the 

experimental treatment compared to the control under 

ideal circumstances. It can provide “proof” of a 



Intention-to-Treat Analysis but for Treatment Intention International Journal of Statistics in Medical Research, 2016, Vol. 5, No. 2      91 

therapeutic concept by answering the question “can the 

treatment work” [8], for a specific study context, by 

demonstrating E[Y|A=1,R=1]>E[Y|A=0,R=0]. 

Effect Estimation in RCTs 

Unfortunately, PP effect estimates can be biased, 

because the groups being compared are not only 

based on randomized treatment allocation, but also on 

post-randomization compliance. If compliance is not 

ignorable [9], then the factors that determine treatment 

compliance can also influence the effect of the 

treatment and thus confound the treatment-effect 

association. Also, if compliance is influenced by both 

the treatment and the treatment effect, the PP 

approach might overestimate the benefit of the 

treatment, because the target population will also 

include less responsive individuals. Therefore, while 

the PP analysis may have the advantage of alleviating 

the need to analyze and address the details of non-

compliance, the dismissal of incomplete and non-

compliant data implies a loss of information and power, 

and can potentially introduce bias by violating the 

ignorability assumption. 

In non-randomized, observational cohort studies the 

“as-treated” (AT) analysis, where subjects are analyzed 

according to treatment they received, is the only viable 

analysis. This approach is also used when assessing 

safety data collected in RCTs and is the standard 

approach for analyzing preventive vaccine trials [10]. In 

order to correctly specify actual treatment (i.e., the 

exposure) for an AT analysis, the details of non-

compliance need to be analyzed, to determine whether 

or not the treatment was taken in accordance with the 

protocol (e.g., dose, frequency), or whether it was 

declined, replaced, or supplemented with an alternative 

treatment. 

When compliance is independent of baseline 

characteristics and treatment effects, the PP and AT 

analyses provide valid effect estimates, as the 

assumption of ignorability holds. However, when the 

randomization cannot be relied on, ignorability is no 

longer warranted and the statistical analysis needs to 

consider the impacts of potential biases and 

confounding. In this scenario non-compliance is likely 

linked to a diminished treatment effect and/or an 

adverse outcome, which means that the AT and PP 

analyses would be prone to overestimate the treatment 

effect. Methods exist that can be used to control for 

confounding in effect estimates analytically, by 

reconstituting conditional exchangeability (Y(a) A|C), 

or, in terms of observed outcomes, conditional 

independence through unconfounding, such that 

Y R|(A,C) [11,12]. This can be achieved by 

implementing some form of conditioning (adjustment, 

stratification, standardization, or matching) to account 

for potential confounders. However, there is no 

guarantee that unconfounding is being achieved, and 

unmeasured or unknown confounders cannot be 

considered. 

To avoid the methodological complications 

associated with the PP and AT analyses, which arise 

because of the dissociation of randomized from actual 

treatment, the intent-to-treat (ITT) analysis principle 

can be followed. This is where the analysis is 

performed according to the randomization, independent 

of the post-randomization compliance and actual 

treatment. The approach alleviates the need to exclude 

certain subjects from the analysis or to re-define the 

comparison groups, by simply demonstrating that for a 

specific study context E[Y|R=1]>E[Y|R=0]. While the 

ITT analysis may appear counter-intuitive at first, it has 

the advantage of building on the randomization-based 

balance of the baseline covariates, as well as retaining 

the information from the full study sample. 

When noncompliance arises because of a lack of 

treatment effect, the ITT estimates are conservative 

and minimize the type I error. As non-compliance is not 

only a study phenomenon but also occurs in medical 

practice, ITT results are widely considered to be more 

generalizable to the real-world than PP or AT results. 

Additionally, the ITT analysis has the potential to 

minimize investigator bias and thereby increase the 

integrity of study results. As pointed out by Begg [13] 

the ITT analysis promotes transparency by severely 

limiting opportunities to obscure unfavorable results. It 

is understandable that these methodological strengths, 

together with the statistical simplicity, have led to 

widespread adoption of the ITT approach, making it the 

“gold standard” approach in analyzing randomized 

superiority trials and have lead to broad support by 

regulatory bodies [7,14]. Table 1 provides an overview 

of ITT as compared to PP and AT analysis strategies in 

the context of randomized parallel-group controlled 

therapeutic superiority trials.  

Scope and Properties of ITT 

Although there are many advantages to the ITT 

approach, there are also downsides. A treatment which 

is efficacious may not be effective (because of non-

compliance), which is why exclusive use of the ITT 



92     International Journal of Statistics in Medical Research, 2016, Vol. 5, No. 2 Weitkunat et al. 

approach does not provide sufficient insight into the 

actual effect of a treatment. While confounding due to 

self-selection subsequent to randomization is avoided 

as compliance is ignored, ITT effect estimates of 

parallel-group superiority trials are not independent of 

compliance, as they are biased towards the null with 

increasing rates of noncompliance. Moreover, the ITT 

strategy is inappropriate for safety analyses [15].  

Because post-randomization drop-out may be linked 

to a lack of benefits or tolerability of the treatment, 

adjustment to avoid bias due to differential loss to 

follow-up is needed for conducting an ITT analysis. 

One of the simplest adjustments is the last observation 

carried forward (LOCF) approach, a single imputation 

method where the missing data are replaced by the last 

observed value. Although this approach was previously 

considered to be conservative, it introduces bias and 

leads to overestimation of the precision of the effect 

estimate [16]. While there are statistical methodologies 

that can reduce the potential bias that arises from 

missing data (e.g., multiple imputation, generalized 

estimating equations methods) [17], ITT estimates 

remain at risk of being seriously biased when more 

than 30 percent of study participants are lost to follow-

up [18]. 

Although ITT estimates are usually smaller than PP 

and AT estimates in superiority trials, the 

conservativeness does not extend to non-inferiority or 

equivalence trials, where the ITT approach tends to 

favor equality of treatments and therefore to increase 

the type I error. Furthermore, the ITT approach, by 

mixing the effect in compliers with the absence of effect 

in non-compliers, dilutes the treatment effect estimates 

and increases the type II error in superiority trials.  

In addition to their general strengths and limitations, 

one has to consider the research questions that are 

addressed by the ITT and non-ITT approaches. The PP 

analysis answers questions about the maximal 

treatment effect or the effect when the treatment is 

received as intended, whereas the AT analysis 

answers a different question, related to the effect of the 

treatment, as it is actually received. Both provide 

measures of efficacy aiming at explaining the treatment 

effects. In contrast, the ITT analysis aims to quantify 

the effect of being “prescribed” a treatment, regardless 

of whether or not the treatment is received. Therefore, 

ITT estimates pragmatically quantify the effectiveness 

of being prescribed a treatment, and do not directly 

address the efficacy of the treatment. Assessing the 

effects of treatment assignment rather than treatment 

per se has in fact been considered an asset with regard 

to similarity to the real-world medical practice and its 

value for informing policy decisions. However, 

generalizability of ITT results relies on the assumption 

that the levels and patterns of noncompliance in the 

study and real-world conditions are similar. 

Table 1: Key Aspects, Strengths and Limitations of Main Analytical Approaches in Superiority Therapy Studies. 
(Characteristics do not Simply Extend to Non-Inferiority Assessment) 

Analytical Approach  

Intention to Treat Per Protocol As Treated 

Basic principle of 
comparing 
participants 

As randomized, ignoring actual 
treatment 

As randomized, conditional to 
protocol compliance 

As per treatment actually received, 
ignoring randomization 

Scope  Effectiveness of treatment offer Efficacy of treatment under ideal 
circumstances (compliance) 

Efficacy of treatment; safety 

Properties Typically underestimating superiority 
effect  

Ideal effect estimated in superiority 
assessment (anti-conservative in 

superiority assessment) 

Estimated effect subject to self-
selection bias, typically anti-

conservative in superiority 
assessment; unbiased effect 

estimation may require conditioning 
(e.g., adjustment) 

Strengths Randomization-protected from bias 
due to imbalance of baseline 

characteristics; simple  

 

Proof of therapeutic concept Data set comparable to that of 
safety analysis and to observational 

studies; allows for analysis under 
high treatment crossover rates 

Limitations Imputation of missing data required; 

generalizability depending on 

correspondence of in-study and real-
life compliance 

Reduced power depending on non-

compliance; risk of ignorability 

assumption being violated (selection 
bias); bias possible in any direction, 

most likely anti-conservative 

Reduced power depending on 

dropout-rate; bias possible in any 

direction, most likely anti-
conservative 
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Consequently, the properties of ITT estimates need 

to be carefully assessed in context. This is particularly 

important when comparing results from RCTs to 

observational studies [19]. As Hernán and Robins [20] 

have pointed out, reporting only the ITT effect implies 

preferring misclassification over confounding, a 

preference that needs to be justified in each 

application. 

The ITT principle was developed for and is 

inextricably linked to research on medical treatments. 

And in this framework, the approach is reasonable as 

the treatment allocation is externally controlled and can 

be considered to mirror the real-world medical practice 

of prescribing treatments to patients. In therapy 

research this link is rarely addressed, due to the 

similarities between the study and real-world setting, 

and seems to be generally viewed as a triviality. The 

concept, as recognized by the term “intention” in the 

name ITT, reflects an external intent to impose a 

treatment on a subject, which in RCTs is 

operationalized by randomization. 

Even if ITT estimates reflect the real-world 

effectiveness of interventions, it is important not to 

confuse them with estimates of the population health 

impact. ITT quantifies the effectiveness at an 

individual-level, whereas population impact measures 

weigh exposure effects by the proportion of the total 

population that is exposed to the intervention. To obtain 

valid population impact estimates, calculations must be 

conducted in accordance with the exposure and 

covariate strata that actually define the target 

population. If, for example, the effect of a therapy on an 

outcome depends on sex, age, dose, or other factors, 

then stratum-specific effect estimates as well as 

stratum-specific actual treatment prevalence estimates 

must be obtained in order to quantify the population 

attributable impact [21]. 

DISCUSSION 

Transportability of Effect Measures 

In order to fully understand the effect of a treatment 

one would have to be able to assess both of the two 

potential outcomes for a subject (1) the potential 

outcome of receiving the treatment Y(1) and (2) the 

potential outcome of not receiving the treatment Y(0), 

where the difference in the two potential outcomes 

constitutes the individual treatment effect ITEi=Yi(1)-

Yi(0). Assuming full compliance (Ai=Ri for all 

participants i), randomization can be thought of as a 

process that, by creating one missing potential 

outcome for each participant, generates the observed 

outcomes of the analysis variable so that 

Yi=Ai·Yi(1)+(1-Ai)·Yi(0) [22]. While these do not allow for 

calculating the counterfactual individual or average 

treatment effect ATE=E(ITE), the average observed 

treatment effect can be quantified by a contrast of the 

expected values of Y under the two exposures, 

Y=E[Y|A=1]-E[Y|A=0], which is unbiased under full 

compliance. When the distribution of the observed Y is 

normal or Bernoulli, Y can be calculated as the mean 

difference, Y=M1-M0. Under the assumption of a sharp 

null effect in Yi with no actual treatment (A=0; meaning 

M0=0), this simplifies to 

Y = M1 =
1

N1

Yi (A = 1)
i=1

N1
          (1) 

Y corresponds to the average observed treatment 

effect in the treated, (i.e., the as-treated estimate). 

When the proportion of the total sample that is actually 

receiving treatment (PA) corresponds to 

PA = Pr(A = 1) =
(Ai = 1)i=1

N

(Ri = r)i=1

N          (2) 

it follows that N1=PA·N in (1). 

By building directly on PA, the AT estimate can be 

calculated without conditioning the summation, as in 

(1), through 

AT =

1

N
Yii=1

N

PA
           (3) 

Then based on the proportion of the sample that is 

randomized to active treatment (PR) 

PR = Pr(R = 1) =
(Ri = 1)i=1

N

(Ri = r)i=1

N          (4) 

and on the control group not having access to the 

treatment (one-sided non-compliance), the ITT effect is 

calculated as 

ITT =

1

N
Yii=1

N

PR
           (5) 

while the PP effect is similarly calculated as 
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PP =

1

N
Yii=1

N

PR PC
           (6) 

using the protocol-compliant proportion (Pc) of the 

sample 

PC = E(A = z R = z) = Pr(A = 1 R = 1) =
(Ri = 1,Ai = 1)i=1

N

(Ri = 1)i=1

N
 (7) 

which corresponds to the ratio of the unconditional 

probabilities PA and PR under one-sided non-

compliance.  

The equations for the three estimates: the AT 

estimate (3), the ITT estimate (5), and the PP estimate 

(6) are computationally identical in the numerator, while 

the factors related to randomization, compliance, and 

actual treatment are included in the denominators. 

Although it may appear that the numerators are 

independent of randomization and compliance, they 

are not. The expectancy is the counterfactual average 

treatment effect in the treated ATT=E(ATE|A=1), 

weighted by the proportion of the sample that is 

actually treated, i.e., E[N
-1

· Yi]=ATT·PA, with PA=PR·PC. 

Under one-sided non-compliance, the complier 

average causal effect (CACE) equals the average 

treatment effect in the treated (ATT). 

By replacing the numerator in (5) accordingly, it 

follows that ITT=CACE·PC, which implies that the ITT 

estimate is dependent on both the CACE and the level 

of compliance, even though, as pointed out above, it 

should not be biased by self-selection. In contrast to 

ITT, PP and AT are treatment effect estimates which 

are not biased by compliance level per se, even though 

they can be confounded by differential non-compliance 

or common causes (or effects) of actual exposure and 

effect. 

The dependence of ITT estimates on compliance 

levels can also be demonstrated without the use of 

counterfactual concepts. Constraining Y to follow a 

Bernoulli distribution with E(Y|A=1)=1, assuming one-

sided non-compliance and a sharp null effect with no 

actual treatment, the expectancy of the sum 

E[ Yi]=N·E[Y]=N·PA=N·PR·PC, implying that the 

numerator can be simplified to PA=PR·PC. Further, it 

follows that AT=PP=1, ITT=PC, and that PR has no 

impact on the estimates. Thus, under full compliance, 

all three estimates are identical. This simplifies the 

assessment of the external validity [1], i.e., the 

generalizability of study findings to the real therapy 

world. If minor sources of divergence between in-study 

vs. medical practice realities are ignorable, four major 

assumptions are needed to render effect estimates 

unbiased: (1) the study population is an unbiased 

representative sample of the target patient population; 

(2) the healthcare providers do not introduce treatment 

selection bias; (3) the compliance levels are identical 

under study and medical practice conditions, (4) the 

study and real-world conditions do not differentially 

influence the treatment effects. In reality, under most 

circumstances, the first three assumptions are more 

fiction than fact. 

Consumer Product Effects 

As concluded above, the basis for designing a study 

relevant to the real-world is that a selection mechanism 

can be implemented to obtain a study sample that is 

representative of the target population. In drug trials the 

mechanism of recruiting and screening subjects is 

remarkably similar to the real-world medical practice of 

diagnosing and treating an ailment. Both settings rest 

on confirmed medical diagnosis and restrictions 

regarding co-morbidities, concomitant medication and 

access to the investigational treatment itself. All of this 

is in favor of a relatively close correspondence between 

study and real-world conditions. Also, patients typically 

are in need of and expect a benefit from a treatment to 

which they have restricted access, whereas consumers 

rarely depend on any particular product and typically 

can access alternative products freely. This renders 

participation and compliance rates likely higher in 

therapy as compared to consumer product trials. Thus, 

even if recruitment for and conduct of studies are 

similar, drug trials are likely to be more representative 

of their target populations and settings than consumer 

product trials. 

When it comes to transporting findings from 

consumer product RCTs to consumer markets, things 

become very complicated. Blinding or concealing the 

actual exposure is often difficult or impossible for 

consumer products and may, if achieved, impact the 

compliance, as the subjects would be unable to identify 

with the product as they do in real-world settings. For 

studies where the control product is already marketed, 

and the study is being conducted in an ambulatory 

setting, there are further complications related to non-

compliance. Study participants often don’t have access 

to the investigational product (as it is not yet marketed), 

but they have free access to the control product or 

even to other alternative products. And although 

randomization is used as a mechanism to allocate 

product, this mechanism does not reflect the self-
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selection process of choosing a new consumer product 

in the market. As pointed out above, ITT effect 

estimates can only be generalizable if one assumes 

that compliance in a setting of random consumer 

product allocation is reflective of the consumer product 

selection in the market. And even then it would need to 

be acknowledged that the usual conservative property 

of ITT would only hold if in-study compliance would not 

be larger than real-world actual use rates. As this 

appears to be unlikely for most settings and products, 

the ITT approach would overestimate the real-world 

effectiveness of consumer products. 

Further, since with consumer products there is no 

external “treatment” allocation, both the PP and ITT 

have no correspondence with the real-world. This 

raises, in the context of consumer product clinical trials, 

a fundamental problem, i.e., the necessity for an in-

study effect estimate to represent something 

meaningful in a real-world consumer product market. 

It appears that the problem of incorporating external 

allocation in the consumer product setting has been 

largely neglected thus far in many consumer-related 

research areas, although not completely. Hoxby and 

Murarka [23] point out that the effects of school 

admission offers are not adequately being dealt with in 

terms of ITT effect estimates, as final enrolment was 

always voluntary and non-enrolment would not 

correspond to noncompliance in therapy settings. 

According to Feinman [24], ITT analyses in nutrition 

studies are frequently conducted without justification. 

These examples seem to demonstrate violations of a 

basic principle of biostatistics, namely to invariably 

align the analytic approach with the research question, 

or, to cite Sackett and Wennberg [25]: “the question 

being asked determines the appropriate research 

architecture, strategy, and tactics to be used – not 

tradition, authority, experts, paradigms, or schools of 

thought” (p. 1636). 

As PP and ITT are not applicable for measuring the 

effects of actual use of consumer products, the 

question about the meaning of AT is of key importance 

in consumer studies. The target population-level actual 

use effect (AU) can, in theory (with NTP reflecting the 

size of the target population), be quantified along the 

same lines as the AT effect under study conditions: 

AU =

Yii=1

NTP

(Ai = 1)i=1

NTP
=

1

NTP

Yii=1

NTP

1

NTP

(Ai = 1)i=1

NTP
=

1

NTP

Yii=1

NTP

PA
  (8) 

As can be seen, the effect estimated in (8) formally 

corresponds to (3), which estimates AT from study 

data. If the numerator of (8) is replaced by its 

expectancy (CACE·PA) it becomes evident that AU is 

the real-world observable pendant to the average 

treatment effect in the treated, ATT. Other than the in-

study AT effect estimate, AU is by definition unbiased, 

as it reflects the post-launch reality using, theoretically, 

the totally of data on the target population, rendering it 

a measure rather than an estimate. A closer look at the 

denominator of (8) reveals that, through simple 

counting, the level of actual use is quantified as an 

unconditional prevalence. From formulas (3), (5), and 

(6), it becomes clear that the only effect estimate from 

an RCT that can be obtained based only on simply 

counting actual use is AT. In contrast, counting 

conditioned on randomization is required for PP and 

ITT, respectively. While (8) can be helpful when 

separate data sets on outcome and actual use rates 

are available for a particular population, typically 

population-level AU cannot realistically be measured by 

a single study; more practically, population-based 

observational studies can attempt to estimate AU 

effects by measuring outcomes in representative actual 

user cohorts. The calculation of the AU effect would 

then correspond to the standard way of calculating 

cohort effects, based on only the numerator of (8) and 

NTP, the latter then corresponding to the size of the 

actual use cohort. 

While formally, AT and AU are identical, it is critical 

to note that the causal factors that determine actual 

use are different under RCT and consumer market 

conditions. Actual use is based on unconditional 

counting in the consumer product market situation or in 

a representative cohort of actual users, but is defined 

under randomized product use allocation by PA=PR·PC 

in an RCT with one-sided non-compliance. In order to 

render RCT-based AT a valid estimate of AU, it would 

be required that selection mechanisms, participant/ 

consumer characteristics, compliance/continuation of 

product use, actual exposure/actual use and effects are 

identical under study and market conditions. This 

essentially necessitates that what would be achieved 

by randomization is an unbiased version of self-

selection under market conditions, which inevitably 

raises the question as to whether randomization (and, 

more generally, external product use allocation) is a 

useful concept in consumer product clinical trials in the 

first place. It appears that this question needs to be 

addressed very carefully on a case-by-case basis. The 

longer the trial and the lesser the control over actual 
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use in the context of a particular research question, the 

weaker the argument in favor of randomization 

becomes.  

SUMMARY 

ITT is a methodological development in 

pharmacotherapy research, where it is now widely 

adopted, and any departure is viewed with suspicion by 

“clinical trialists” [26] who are in favor of and 

accustomed to the method. According to Sackett [27], 

the main purpose of RCTs regarding “the clinical 

management of patients” is to avoid confusing efficacy 

with compliance, regression to the mean, or placebo 

effects. The keystone is randomization, the essential 

idea of which is to ensure that participants differ only 

with respect to the interventions being compared. The 

underlying logic is most likely to play out when RCTs 

are short, small, double-blinded, well-controlled, and 

conducted in homogeneous, highly selected and fully 

compliant patients. Whenever research questions, 

study designs, and procedures deviate from the 

textbook-ideal pharmacotherapy RCT, however, the 

underlying logic deteriorates. When the ITT approach is 

transplanted to a fundamentally different setting, 

matters get even worse.  

Randomization has no correspondence in real-world 

consumer product settings with unrestricted product 

access and self-selection rather than external 

allocation, and blinding often being impossible. Under 

consumer product market conditions there is no 

restricted access to products, no patient, no doctor, no 

diagnosis, no disease, no treatment, no treatment 

intention, no treatment allocation, no compliance, and 

also no noncompliance. Since no prescriptive product 

allocation takes place in consumer markets, a post-

launch equivalent of PP, ITT, or CACE (all of which are 

inseparable of randomization or at least external 

treatment allocation) is undefined and cannot be 

calculated even when all target population data are 

available. As Shrier et al. [28] have pointed out 

recently, „…adherence concepts do not apply when 

participants simply choose treatment because there is 

nothing to adhere to“ (p.2). This implies that 

compliance-based and ITT effect estimates are out of 

context and meaningless with regard to estimating 

consumer market actual use effects. An inevitable 

logical consequence is to abandon the ITT principle in 

consumer product trials.  

In contrast, a population health impact assessment 

based on “as-used” (“as-treated”) effect estimates 

appears to be informative. AU estimates should be 

derived from studies where exposure-response data 

have been obtained for all strata of relevance, in 

particular with regard to various levels of dose, as they 

occur in the real-world, along with prevalence data 

regarding the size of all strata of relevance in the total 

population. The heterogeneity of actual use effects 

needs to be carefully investigated by providing per 

actual-use estimates for subgroups of actual use as 

well as user characteristics. Based on the probability-

raising framework for binary variables, these subgroup-

specific effect estimates conditional on sets of 

subgroup-defining factors (contexts C) can be 

expressed as [Pr(Y|A)-Pr(Y|¬A)]|C. By combining these 

per actual-use effect estimates per stratum (AUS) with 

the population prevalence rates of the same strata, 

population health impact can be quantified. The so 

derived public health impact estimation would be 

grounded solely in study-based efficacy measures as 

well as in actual-use as it indeed occurs in the target 

population. Figure 1 provides a generic flowchart on 

analysis strategies for effect estimates from parallel 

group therapy as well as consumer product clinical 

studies.  

It appears noteworthy that for purposes of 

population health impact assessment it is not required 

that an in-study AUS effect estimate allows for a 

causal, i.e., unbiased efficacy-like interpretation within 

the population stratum it corresponds to. For example, 

if product use is accompanied by favorable lifestyle 

changes (concomitant effective exposures), the AUS 

estimate can still inform about the real-world total 

effect, necessarily under the condition that the 

concomitant in-study changes correspond to what 

occurs in the population under natural conditions; 

whenever synergistic lifestyle changes are more likely 

to occur in the natural setting compared to a study 

setting, the AUS estimate will in fact even be 

conservative with respect to the real-life impact of the 

product. To the degree that all relevant concomitant 

lifestyle patterns and other confounders can and in fact 

are measured (observed observables), these 

assumptions can be empirically validated through post-

market surveillance studies. Avoiding the need to 

identify the direct (attributable) causal effect of actual 

product use on the outcome in the context of a public 

health-level interpretation implies that AUS, so defined, 

factually provides an effectiveness estimate.  

In spite of the fundamental importance of the above 

methodological questions, they have so far attracted 

only limited attention in the consumer research realm. 
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Not infrequently unscholarly enforcement of the ITT 

approach, often by non-experts, has reached a 

concerning level of complacent imprudence, and in 

order to comply with editorial, granting, or regulatory 

requirements, researchers are essentially forced to 

perform such an analysis. Under such circumstances, 

one viable route could be to lay out clearly what 

question is and is not actually addressed with this type 

of analysis in a given context, and to conduct, if 

possible, additional analyses that provide better or 

supplementary insights. Even authors that are 

generally in favor of ITT as the primary approach in 

clinical therapy research have pointed out the 

importance of being able to provide advice to patients 

based on estimates of treatment efficacy under 

compliance [29]. Furthermore, in the context of clinical 

therapy trials, sensitivity analyses have been proposed 

to assess the effects of non-compliance with the 

allocated treatment as well as of other forms of protocol 

deviations; typically, ITT-based treatment effect 

estimates are compared to PP and/or AT estimates 

[30]. Along the same lines, the robustness of findings 

from clinical consumer product studies can be 

addressed by such sensitivity analyses. 

ITT has been developed and instituted by 

epidemiologists and biostatisticians to address the 

demand of being able to analyze therapy experiments 

in humans, i.e., double-blind randomized clinical 

pharmacotherapy trials with noncompliance and 

missing data, in an unbiased manner. Whenever 

applied with care within this framework, ITT 

undoubtedly is and remains a methodological 

cornerstone of evidence-based medicine. However, the 

further research questions and contexts deviate from 

the original framework, the less self-evident its 

deployment becomes. When blinding or masking of 

treatments is impossible and randomization does not 

reflect real-life consumer choices, careful consideration 

needs to be given as to what methodologies to apply, 

and at what evidentiary level. In any case, familiarity 

with a reiterated concept should not be confused with 

its universal truth and applicability. 
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