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Abstract: The paper deals with the constrained Bayesian Method (CBM) for testing composite hypotheses. It is shown 
that, similarly to the cases when CBM is optimal for testing simple and multiple hypotheses in parallel and sequential 
experiments, it keeps the optimal properties at testing composite hypotheses. In particular, it easily, without special 
efforts, overcomes the Lindley’s paradox arising when testing a simple hypothesis versus a composite one. The CBM is 
compared with Bayesian test in the classical case and when the a priori probabilities are chosen in a special manner for 
overcoming the Lindley’s paradox. Superiority of CBM against these tests is demonstrated by simulation. The justice of 
the theoretical judgment is supported by many computation results of different characteristics of the considered methods.  
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1. INTRODUCTION 

In [1] was offered Constrained Bayesian Methods 
(CBM) of statistical hypotheses testing. The CBM have 
all positive characteristics of well-known classical 
approaches. It is a data-dependent measure like 
Fisher’s test for making a decision, it uses a posteriori 
probabilities like the Jeffreys test and computes error 
probabilities Type I and Type II like the Neyman-
Pearson’s approach does [2]. The parallel and 
sequential methods for testing many (more than or 
equal to two) and multiple simple hypotheses are 
considered in the works [2, 3-6, 7-9]. Also there are 
given the results of comparison of CBM with the Fisher, 
Jeffreys, Neyman-Pearson, Berger (parallel and 
sequential), Wald (sequential), Bonferroni and step-up 
and step- down methods of multiple hypotheses 
testing, which shows the unique properties of this 
method. In particular, it gives more logical and reliable 
decisions, using information contained in the sample 
more completely than the existing methods. Continuing 
the development and examination of CBM, below we 
offer its application for testing composite hypotheses.  

A lot of works are dedicated to the problem of 
testing composite hypotheses. In particular, a compact 
and exhaustive review of the history of development of 
the theory of hypotheses testing (including composite 
ones) is given in the paper [10]. In this case Neyman 
and Pearson replace the density at a single parameter 
value with the maximum of the density over all 
parameters in that hypothesis. The maximum likelihood  
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ratio test rejects the null hypothesis for large values of 
sup!"#A

f! (x) / sup!"#0 f! (x) . This is a useful method for 
finding good testing procedures. Stein’s method [11, 
12] integrates the density over !  using special 
measures to obtain the density of the maximum 
invariant statistic, which can then be used to analyze 
the problems; for example, to find the uniformly most 
powerful invariant test. The Bayesian approach to 
hypothesis testing uses the integrated likelihood ratio 

f! (x)" A (!)d!#A
$ / f! (x)" 0 (!)d!#0

$  for making a decision. 

Here ! A  is the density of the parameter !  at the 
alternative supposition, ! 0  is the density of the 
parameter at the null supposition. In the Bayesian 
statement, the a priori probability that the null 
hypothesis is true ! 0  is necessary. Hence it is clear 
that, in the Bayesian approach, the problems of proper 
choice of the densities ! 0  and ! A  and the a priori 
probability arise. For overcoming this problem, in [13] 
was recommended “reference” priors ! A  and ! 0  in 
many common problems. They must be carefully 
chosen so that the priors would not overwhelm the 
data. Other approaches include developing priors using 
imaginary prior data, and using part of the data as a 
training sample [14, 15]. The conditioning strategy 
proposed in [16] for the simple versus simple 
hypothesis was generalized to testing a precise null 
hypothesis versus a composite alternative hypothesis 
in [17]. In the latter paper, it is shown that the 
conditional frequentist method of testing a precise 
hypothesis can be made virtually equivalent to 
Bayesian testing. The method is adapted to sequential 
testing involving precise and composite hypotheses in 
[18]. Testing of a composite null hypothesis versus a 
composite alternative when both have a related 
invariance structure is considered in [19]. There were 
developed conditional frequentist tests that allowed 
reporting the data-dependent error probabilities. It was 
shown that the resulting tests were also Bayesian tests, 
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because the reported frequentist error probabilities 
were also the posterior probabilities of the hypotheses 
under definite choices of the prior distribution. The new 
procedures are illustrated in a variety of applications to 
model selection and testing of multivariate hypothesis. 
The paper considered the case when both hypotheses 
were composite, the situation that arises most 
frequently in practice. The Bayesian test for simple 
versus two-sided hypotheses in the multivariate case 
was developed in [20]. The Bayesian and the p-value 
approaches were compared. A better approximation 
was obtained by the Bayesian approach, because the 
p-value is in the range of the Bayesian measures of 
evidence. Testing of simple versus composite 
alternative hypotheses concerning the mean vector of 
the asymptotic normal distribution was given in [21]. 
The numerical algorithm used to compute the inverses 
were considered. There were compared different 
weighting strategies and local asymptotic powers of 
different test procedures. As a result, it was inferred 
that no test was uniformly dominated by another, and 
the ranking of the powers varied significantly with the 
direction of the alternative, and it is different if the 
alternative was fixed or local. For simple and composite 
null hypotheses, the likelihood ratio test (LR test), 
Wald’s test, and Rao’s score test were derived and 
turned out to have simple representations in [22]. The 
asymptotic distribution of the corresponding test 
statistics under the null hypothesis was stated, and, 
asymptotic optimality of the LR test in the case of a 
simple null hypothesis was shown. A power study was 
performed to measure and compare the quality of the 
tests for both simple and composite null hypotheses. 

The problem of testing simple versus composite 
hypotheses using the Bayesian approach was 
considered in [23]. The method of choosing the prior 
distribution of hypotheses with consideration of the 
simple basic hypotheses versus the composite 
alternative hypothesis for avoiding the so-called 
Lindley’s paradox was offered. The essence of the 
paradox is in the following: for any fixed prior 
probability of the basic hypothesis, the posterior 
probability of this hypothesis can be made as close to 
one as desired, whatever the data for a sufficiently 
large prior value of some parameter of the considered 
distribution at the alternative hypothesis. Similar 
behavior was founded in [24, 25] when a uniform 
distribution over a finite interval was chosen for the 
parameter under investigation at the alternative 
hypothesis (though the same type of a result is hold 
with any other distributional assumption). Namely, the 
posterior probability of the basic hypothesis tends to 
one as the size of the interval increases. The method 
offered in [23] was concretized for the cases of normal 
and uniform distributions of the parameter of 
mathematical expectation under a composite 
alternative hypothesis.  

Below we apply CBM to composite hypotheses 
testing for the cases considered in [23]. The results of 
investigation show high quality of CBM in these cases 
as well. In particular, it preserves all positive properties 
that it has at testing simple and multiple hypotheses. 
Moreover it naturally overcomes the problem of the 
Lindley’s paradox arising in classical methods based 
on the likelihood ratio. These facts are shown 
theoretically and on the basis of computation of the 
concrete examples taken from work [23]. The 
Application of CBM to composite hypotheses testing is 
described in Section 2. The Lindley’s paradox in 
classical hypothesis testing and CBM is considered in 
Section 3. Computation results of some examples are 
presented in Section 4. The discussion of the problem 
and conclusions made are given in Sections 5 and 6, 
respectively.  

2. CBM FOR TESTING COMPOSITE HYPOTHESES 

Let us consider the problem of testing composite 
hypotheses. We assume that the data are represented 
by x , which has density f! (x)  for parameter ! . Let us 
test the hypotheses  

Hi :! "#i ,            (1) 

where !i , i = 1,...,S  ( S ! 2 ), are the disjoint subsets of 

the parameter space, i.e.  !i ! j! = " , ji ! . 

For testing hypotheses (1) there are different ways 
of action. As was mentioned above, one of possible 
ways was offered by Neyman and Pearson. They 
replaced the density at a single parameter value with 
the maximum of the density over all parameters in that 
hypothesis, i.e. instead of density f! (x) , the conditional 
density f! (x | Hi ) = sup!"#i

f! (x)  is considered. Stein’s 

method integrates the density over !  using special 
measures to obtain the density of the maximum 
invariant statistic, which can then be used to analyze 
the problems. Here, instead of density f! (x) , the 

integrated density f! (x | Hi ) = f! (x)" i (! )d!#i
$  over the 

subset !i , where the density ! i  of the parameter 
conditional on it being in the hypothesis Hi  is used. As 
was mentioned in [10], the Neyman and Pearson’s 
method is an extremely useful method for finding good 
testing procedures and the Stein’s method allows us to 
find the uniformly most powerful invariant test, though 
there arises the problem of finding the proper densities 
! i , i = 1,...,S . When testing composite hypotheses (1) 
using CBM, we can use one of the possible decision 
rules of different statements of CBM depending on the 
final aim [1, 4, 9]. In these decision rules, one must use 
densities f! (x | Hi ) , i = 1,...,S , conditioned in 
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accordance with Nayman-Pearson or Stein’s methods 
depending on the existed information and desired 
properties of decisions made. The integrated densities 
are used in the examples considered below with the 
aim to study the CBM on the Lindley’s paradox 
problem.  

3. LINDLEY’S PARADOX AND CBM  

The likelihood ratio tests are based on the relations 
of the densities f! (x | Hi ) , and it is logically clear that, 
the bigger is the difference among these densities, the 
bigger is evidence for making a proper decision on the 
basis of the observation results. When the integrated 
density f! (x | Hi ) = f! (x)" i (! )d!#i

$  is used for testing 

composite hypotheses, unfortunately, it is not possible 
to make a proper decision for distanced densities for all 
the possible densities ! i , i = 1,...,S . For example, 
when testing two hypotheses, null and alternative, the 
integrated likelihood ratio is 

f! (x)" A (!)d!#A
$ / f! (x)" 0 (!)d!#0

$ . The Bayesian 

approach to hypothesis testing uses this ratio, and the 
posterior probability that the null hypothesis is true is 
calculated as 

 p(H 0 | D) = 1 / (1+ posterior odds) ,        (2) 

where posterior odds = (1! " 0 ) f# (x)$ A (#)d#%A
& /  

! 0 f" (x)# 0 (")d"$0
% , ! 0  is a priori probability that the null 

hypothesis is true.  

It is obvious that the posterior odds depend heavily 
on ! 0  and the individual priors ! A  and ! 0 . It is known 
that, as the prior ! A  becomes increasingly flat, the 
posterior odds usually approach 0  [10, 23]. In [13] was 
recommended “reference” priors ! A  and ! 0  so that the 
priors did not overwhelm the data. Other approaches 
recommend to use part of the data as a training 
sample. In [14] was offered averaging over training 
samples for choosing so-called “intrinsic” priors. A 
number of methods for finding the priors were reviewed 
in [15]. For choosing ! 0 , in [13] was proposed to take 

! 0 =
1
2

, which means that the posterior odds are equal 

to the Bayes factor. 

The Bayesian rule of testing hypotheses computes 
the posterior probability of the null hypothesis on the 
basis of some data D = x1, x2 , ..., xn{ }  and, if it is close 
to one, accepts the null hypothesis, otherwise it 
accepts the alternative hypothesis. It is known that, 
when both null and alternative hypotheses have the  
 

same dimension, i.e. when both are simple or both are 
composite, the solution is easily obtained, but when the 
null hypothesis is simple and the alternative composite, 
the posterior probability of the null hypothesis may be 
rather misleading. For showing this fact, the following 
examples were considered in [23]. The first of them 
consists in the following. Let D = x1, x2 , ..., xn{ }  be a 
random sample of the random variable !  with normal 
distribution. The null and alternative hypotheses are 

H 0 :! ~ N(x | µ,"
2 )  and HA :! ~ N(x | ",#

2 ) , 
p(µ | HA ) = N(µ | µ1,!1

2 ) , 

with a priori probabilities p(H 0 ) = p  and p(H1 ) = 1! p . 

The arithmetic mean of the observation x  is 
sufficient and the posterior probability of the null 
hypothesis is 

 p(H 0 | D) = p(H 0 | x ) = 1+ 1! p
p

p(x | HA )
p(x | H 0 )

"

#$
%

&'

!1

,        (3)  

where  

p(x | H 0 ) = N x | µ0 ,!
2 / n( ) , 

p(x | HA ) = N x | µ,! 2 / n( )N µ | µ1,!1
2( )dµ" =

N x | µ1,!1
2 +! 2 / n( )

. 

The final form of (3) is  

p(H 0 | D) =

1+ 1! p
p

" 2 / n
("1

2 +" 2 / n)
#

$%
&

'(

1/2

exp x ! µ0( )2 / 2" 2 / n( ){ }
exp x ! µ1( )2 / 2"12 + 2" 2 / n( ){ }

)

*

+
+
+
+
+
+

,

-

.

.

.

.

.

.

!1

.       (4) 

It is easy to see from (4) that, for any fixed x  and 
p , the right hand side of (4) tends to one as !1

2  
increases, i.e. for sufficiently large prior variance !1

2 , 
independently of the data values and a priori probability 
p , the null hypothesis will always be accepted. This 

fact is called the Lindley’s statistical paradox. Similar 
behavior was mentioned in [24, 25] at uniform 
distribution of p(µ | HA )  when the size of the interval 
increases. For avoiding this misleading, in [23] it was 
suggested not to choose the fixed value of p , but to 
choose it depending on the form of p(µ | HA ) . In 
particular, we must choose the prior probability which 
maximizes the amount of missing information about ! , 
which gives  
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1! p
p

=
"1
2 +" 2 / n
" 2 / n

#

$%
&

'(

1/2

. 

Application of this methodology to considered case 
(3) gives the following posterior for null 

 p(H 0 | D) = 1+
exp x ! µ0( )2 / 2" 2 / n( ){ }

exp x ! µ1( )2 / 2"12 + 2" 2 / n( ){ }
#

$

%
%
%

&

'

(
(
(

!1

.     (5) 

which does not tend to one as !1
2  increases.  

In the second example, at alternative hypothesis 

µ ! "A,A] [  and p(µ | HA ) =
1
2A

, the posterior 

probability of H 0  is [23] 

p(H 0 | D) = 1+ 1! p
p

1 / (2A)
n / 2"# 2( )1/2 exp !n x ! µ0( )2 / 2# 2{ }

$

%

&
&
&

'

(

)
)
)

!1

 (6) 

which, for fixed p , tends to one as A  increases. 

In this case the proper choice of a priori probability 
in accordance with the above-mentioned methodology 
gives the following result  

 1! p
p

=
n

2"e# 2
$
%&

'
()

1/2

2A           (7) 

and, substituting it into (6), we get 

p(H 0 | D) = 1+ exp 1
2

n /! 2( ) x " µ0( )2 "1#
$

%
&

'
(
)

*
+
,

#

$
-

%

&
.

"1

,       (8) 

which does not depend on the arbitrary constant A . 

Thus, the method of choosing the proper priors for 
overcoming the Lindley’s paradox was offered in [23]. 
But let us imagine the situation when the priors are 
known on the basis of previous experience or they are 
defined on the basis of preliminary investigation of the 
problem. The existing knowledge is very important and 
it is not reasonable to ignore it as it can lead to 
misleading conclusions.  

Let us apply one of CBM, for example, task 1 with 
restrictions on the averaged probability of acceptance 
of true hypotheses for testing hypotheses [1, 4, 9]. For 
two hypotheses, it has the following form  

p(H 0 ) p(x | H 0 )dx!A
" + p(HA ) p(x | HA )dx!0

" # min
!0 ,!A{ }

,  (9) 

at 

p(H 0 ) p(x | H 0 )dx!0
" + p(HA ) p(x | HA )dx!A

" # 1$% ,  (10) 

where !0  and !A  are the acceptance regions of 
hypotheses H 0  and HA , respectively, and  

!0 = x : p(x | HA )
p(x | H 0 )

< "
p

1# p
$
%
&

'
(
)

,

!A = x : p(x | H 0 )
p(x | HA )

< "
1# p
p

$
%
&

'
(
)

. 

For the first example considered above, we have  

 !0 =

x : 1" p
p

# 2 / n
#1
2 +# 2 / n

$

%&
'

()

1/2

exp x " µ0( )2 / 2# 2 / n( ){ }
exp x " µ1( )2 / 2#12 + 2# 2 / n( ){ }

< *

+

,

-
--

.

-
-
-

/

0

-
--

1

-
-
-

,      (11) 

 !A =

x : 1" p
p

# 2 / n
#1
2 +# 2 / n

$

%&
'

()

1/2

exp x " µ0( )2 / 2# 2 / n( ){ }
exp x " µ1( )2 / 2#12 + 2# 2 / n( ){ }

> 1 / *

+

,

-
--

.

-
-
-

/

0

-
--

1

-
-
-

.      (12) 

It is evident that, for any fixed x  and p , the left-
hand-side member of inequalities of !0  and !A  tend 
to zero as !1

2  increases. If !  is fixed (as it is in the 
classical Bayesian statement when ! = 1 ), for a large 
prior variance !1

2 , inequality in (11) will always be 
satisfied and that in (12) will newer be satisfied, i.e. 
hypothesis H 0  will always be accepted.  

In the considered case, Lagrange multiplier !  must 
be chosen so that condition (10) was satisfied. This 
means that the average power of the test will always be 
equal to the chosen level 1!" . The value of !  
compensates the influence of !1

2  on the conditions in 
(11) and (12), and its value depends on the value of ! . 
When !1

2  increases the value of !  decreases for 
satisfying condition (10). Therefore, the sizes of 
hypotheses acceptance regions !0  and !A  will be 
kept the same for the preservation of condition (10) and 
the situation like the Lindley’s paradox will never arise.  

For the given values of µ0 , µ1 , ! 2 , !1
2  and ! , the 

value of !  will be defined from condition (10). That 
means that, to the concrete values of µ0 , µ1 , ! 2 , !1

2  
and ! , the concrete value of !  corresponds. In this 
condition, it is evident that, when x ! µ0 , the 
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probability of satisfying of the inequality in (11) 
increases but the same probability in (12) decreases, 
i.e. the probability that hypothesis H 0  will be accepted 
increases, and the probability that HA  will be accepted 
decreases independently of the value of !1

2 . On the 
other hand, when x ! µ1 , there is diametrically 
opposite circumstance: the probability of satisfying the 
inequality in (12) increases but that in (11) decreases. 
This means that the probability of acceptance of HA  
increases, and the probability of acceptance of H 0  
decreases. 

Similarly to [23], let us denote ! x  and ! 1   

x = µ0 + ! x "# / n , 

µ1 = µ0 + ! 1 "#1 , 

so that ! x  and ! 1  are the measures in standard unites, 
how far the sample and the prior mean are from the 
null hypothesis, respectively. 

Substitution of them into (11) and (12) yields 

 !0 =

x : 1" p
p

# 2 / n
#1
2 +# 2 / n

$

%&
'

()

1/2

exp

1
2

* x
2 "

* x +# / n " * 1#1( )2
#1
2 +# 2 / n

$

%

&
&

'

(

)
)

,

-
.

/.

0

1
.

2.
< 3

,

-

.

.

.

/

.

.

.

0

1

.

.

.

2

.

.

.

,      (13) 

!A =

x : 1" p
p

# 2 / n
#1
2 +# 2 / n

$

%&
'

()

1/2

exp 1
2

* x
2 "

* x +# / n " * 1#1( )2
#1
2 +# 2 / n

$

%

&
&

'

(

)
)

,

-
.

/.

0

1
.

2.
> 1 / 3

,

-

.

.

.

/

.

.

.

0

1

.

.

.

2

.

.

.

.     (14) 

When either !1
2  or n  increases, the expression in 

the power of exponents tends to exp 1
2
! x
2 " ! 1

2( )#
$
%

&
'
(

 and 

(13) and (14) could be rewritten as follows  

!0 = x : 1" p
p

#( )1/2 exp 1
2
$ x
2 " $ 1

2( )%
&
'

(
)
*
< +

%
&
'

(
)
*

,      (15) 

!A = x : 1" p
p

#( )1/2 exp 1
2
$ x
2 " $ 1

2( )%
&
'

(
)
*
> 1 / +

%
&
'

(
)
*

.      (16) 

where ! = " 2 / n
"1
2 +" 2 / n

 is a very small value. Form here 

it is evident that, for fixed ! 2 , !1
2  and n , the only 

important features are the distances in standard unites 
! x  and ! 1  from the sample and from the prior mean to 
the null hypothesis. Under the null hypothesis, ! x  will 

be moderate, ! x
2 " ! 1

2( )  will not be too large, therefore 

the fulfillment of the inequality defining the region !0  is 
more probable, i.e. it is more probable to accept H 0 . 
Under the alternative hypothesis, ! x  will increase as 

n , ! x
2 " ! 1

2( )  increases as n , exponent in (16) will 
increase and the probability of fulfilling the inequality 
defined the region !A  (see (16)) increases, i.e. 
acceptance of HA  is more probable.  

Analyzing (13) and (14), we arrive at the following 
conclusion. Let us suppose that x ! µ0 . Then (13) and 
(14) tend to the following expressions 

!0 =

x : 1" p
p

# 2 / n
#1
2 +# 2 / n

$

%&
'

()

1/2

exp "
µ1 " µ0( )2

2(#1
2 +# 2 / n)

*
+
,

-,

.
/
,

0,
< 1

*

+

,
,

-

,
,

.

/

,
,

0

,
,

,       (17) 

!A =

x : 1" p
p

# 2 / n
#1
2 +# 2 / n

$

%&
'

()

1/2

exp "
µ1 " µ0( )2

2(#1
2 +# 2 / n)

*
+
,

-,

.
/
,

0,
> 1 / 1

*

+

,
,

-

,
,

.

/

,
,

0

,
,

.       (18) 

Hence it is evident that, when for fixed ! 2 , !1
2  and 

n  we have µ1 ! µ0( )2 "# , P(x !"0 )# 1  and 
P(x !"A )# 0 .  

Let us suppose that x ! µ1 . Then (13) and (14) 
tend to the following expressions 

!0 = x : 1" p
p

# 2 / n
#1
2 +# 2 / n

$

%&
'

()

1/2

exp
µ1 " µ0( )2 *n
2# 2

+
,
-

.-

/
0
-

1-
< 2

+
,
-

.-

/
0
-

1-
, (17) 

!A = x : 1" p
p

# 2 / n
#1
2 +# 2 / n

$

%&
'

()

1/2

exp
µ1 " µ0( )2 *n
2# 2

+
,
-

.-

/
0
-

1-
> 1 / 2

+
,
-

.-

/
0
-

1-
. (18) 

When for fixed ! 2 , !1
2  and n  we have 

µ1 ! µ0( )2 "# , the following is true P(x !"0 )# 0  and 
P(x !"A )# 1 . 

Let us consider the second example when, with the 
alternative hypothesis, the mathematical expectation is 
uniformly distributed in the finite interval. In this case, 
the decision-making regions have the following forms 
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!0 = x : 1" p
p

1 / (2A)
n / 2#$ 2( )1/2 exp "n x " µ0( )2 / 2$ 2{ }

< %
&

'
(

)(

*

+
(

,(
, (19) 

!A = x : 1" p
p

1 / (2A)
n / 2#$ 2( )1/2 exp "n x " µ0( )2 / 2$ 2{ }

> 1 / %
&

'
(

)(

*

+
(

,(
. (20) 

Similarly, for the given µ0 , ! 2  and n , in the 
classical Bayesian rule ! = 1  and, when A  increases, 
the inequality in (19) will always be satisfied, while the 
inequality in (20), on the contrary, will not be satisfied. 
That means that, for fixed p , the probability of 
inequality in (19) tends to one as A  increases and the 
probability of inequality in (20) tends to zero as A  
increases. This is the same that, when A  increases the 
null hypothesis will always be accepted.  

In the constrained Bayesian task, for given ! , 
when A  increases the value of !  decreases in such a 
way that condition (10) was satisfied. For given p , µ0 , 
! 2 , n , A  and ! , the value of !  is defined from 
condition (10), and, the smaller is the difference 
between  

!x  and µ0 , i.e. the smaller is x ! µ0( )2 , the 
bigger is the probability of satisfying the inequality in 
(20). This means that the probability of acceptance of 
H 0  increases. On the other hand, the bigger is the 
divergence between  

!x  and µ0 , i.e. the bigger is 

x ! µ0( )2 , the bigger is the probability of inequality in 
(20) and the smaller is the inequality in (19). This 
means that the probability of acceptance of HA  
increases.  

4. COMPUTATION RESULTS 

Let us present the computation results of the 
considered examples for demonstration of the 
theoretically investigated properties of the Bayes 
method with arbitrary and a priori probabilities offered 
by Bernardo and CBM.  

The following notations are used below in addition 
to the above-introduced ones:  

r  - risk function computed by ratio (9),  

!0  - probability of incorrect rejection of the basic 
hypothesis,  

!1  - probability of incorrect rejection of the alternative 
hypothesis,  

!0  - probability of incorrect acceptance of the basic 
hypothesis,  

!1  - probability of incorrect acceptance of the 
alternative hypothesis; 

at ! > 1   

p01  - probability of making no decision when the 
observed value belongs to the intersection area of the 
regions of acceptance of tested hypotheses at validity 
of H 0 ,  

p11  - probability of making no decision when the 
observed value belongs to the intersection area of the 
regions of acceptance of tested hypotheses at validity 
of H1 ; 

at ! < 1   

p02  - probability of making no decision when the 
observed value does not belong to the regions of 
acceptance of tested hypotheses at validity of H 0 ,  

p12  - probability of making no decision when the 
observed value does not belong to the regions of 
acceptance of tested hypotheses at validity of H1 . 

The results given below were obtained by 
simulation of 10,000 experiments in which by x0  and 
x1  computed at validity of hypotheses 
H 0 :! ~ N(x | µ,"

2 )  and HA :! ~ N(x | ",#
2 ) , 

p(µ | HA ) = N(µ | µ1,!1
2 ) , respectively, with sample 

sizes equal to n  and a priori probability p , decisions 
were made and the appropriate error probabilities were 
computed. 

Example 1. The results of computation of Lagrange 
multiplier, risk function and error probabilities 
depending on the variance of the alternative hypothesis 
in CBM are given in Table 1. Figures 1a, b and c were 
constructed by these results. All computations for this 
paper are realized in MATLAB by programs developed 
by the author of the paper. The codes of these 
programs are given in Appendix.  

From the computation results, the following is 
evident. When the variance of alternative hypotheses 
increases, the Lagrange multiplier in the decision rule 
changes: in the beginning it increases, achieves its 
maximum and then decreases. For the considered 
example, it increased from 0.4615 for !1

2 = 1  up to the 
maximum value 9.7657 for !1

2 = 50  and then 
decreased to 1.0898 for !1

2 = 500 . The change of !1
2  

from 1 to 500 caused the change of the value of the 
probability of rejection of the null hypothesis !0  from 
0.0857 practically to zero (0.0004) for !1

2 = 100 , after 
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Table 1: Computation Results of Lagrange Multiplier, Risk Function and Error Probabilities Depending on the Variance 
of the Alternative Hypothesis 

Initial values  
m = 10,000  

n = 5 , ! 2 = 1  

µ0 = 1 , µ1 = 3  

Computed values 

!1
2  p  !  !  r  !0  !1  !0  !1  p01  p11  p02  p12  

1 0.4615 0.0118 0.0857 0.0143 0.0024 0.0211 0 0 0.0646 0.0119 

2 0.7793 0.0307 0.0594 0.0406 0.0278 0.0335 0 0 0.0259 0.0128 

3 1.1656 0.0636 0.0399 0.0601 0.0720 0.0553 0.0154 0.0119 0 0 

4 1.6952 0.1016 0.0220 0.0780 0.1203 0.0828 0.0608 0.0423 0 0 

5 2.3528 0.1444 0.0174 0.0826 0.1693 0.1195 0.1021 0.0867 0 0 

10 

0.05 

5.1938 0.2916 0.0052 0.0948 0.2776 0.3056 0.3004 0.1828 0 0 

30 8.3372 0.3261 0.0015 0.0985 0.3147 0.3375 0.3360 0.2162 0 0 

40 8.6671 0.2971 0.0014 0.0986 0.2952 0.2990 0.2976 0.1966 0 0 

50 9.7657 0.2934 0.0018 0.0982 0.2888 0.2979 0.2961 0.1906 0 0 

60 9.5523 0.2693 0.0017 0.0983 0.2752 0.2635 0.2618 0.1769 0 0 

70 8.7808 0.2364 0.0010 0.0990 0.2554 0.2173 0.2163 0.1564 0 0 

100 8.9242 0.2017 0.0004 0.0996 0.2392 0.1642 0.1638 0.1396 0 0 

300 3.9063 0.0874 0.0021 0.0979 0.1428 0.0320 0.0299 0.0449 0 0 

500 

0.5 

 

1.0898 0.0514 0.0054 0.0946 0.0965 0.0062 0.0008 0.0019 0 0 

 

that it increased a little up to 0.0054 for !1
2 = 500 . In 

this case the value of the probability of rejection of the 
alternative hypothesis !1  increased from 0.0143 for 
!1
2 = 1  up to 0.0996 for !1

2 = 100  and then it decreased 
to 0.0946 for !1

2 = 500 . The probabilities of incorrect 
acceptance of basic and alternative hypotheses !0  
and !1  in the beginning increased from 0.0024 and 
0.0211 up to 0.3147 and 0.3375, respectively, for 
!1
2 = 30  and then they decreased to 0.0965 and 

0.0062, respectively, for !1
2 = 500 . When ! > 1 , the 

probabilities p01  and p11  of making no decision when 
the observed value belongs to the intersection area of 
the regions of acceptance of testing hypotheses at 
validity of H 0  and H1 , change similarly from 0.0154 
and 0.0119, respectively, for !1

2 = 3  up to 0.3360 and 
0.2162 for !1

2 = 30 , and then they decrease to 0.0008 
and 0.0019 for !1

2 = 500 . When ! < 1 , the probability 
p02  of making no decision when the observed value 

does not belong to the regions of acceptance of testing 
hypotheses at validity of H 0  decreases from 0.0646 for 
!1
2 = 1  to 0.0259 for !1

2 = 2  and the probability p12  of 
making no decision when the observed value does not  
 

belong to the regions of acceptance of testing 
hypotheses at validity of H1  increases from 0.0119 for 
!1
2 = 1  up to 0.0128 for !1

2 = 2 .  

In accordance with expression (9), the value of the 
risk function is within the interval between !0  and !1 .  

As was mentioned above, for simulation there were 
used 10,000 random numbers distributed by 
appropriate distribution laws. Let us explain the 
essence of the computed values of the considered 
probabilities from the point of view of decision-making. 
Let us consider the case !1

2 = 500 . In this case, for 
! = 1.0898 , the decisions about the validity of tested 
hypotheses were made 10,000 times. Among them, the 
null hypothesis was incorrectly rejected 54 times, while 
the alternative hypothesis – 946 times. The null 
hypothesis was incorrectly accepted 965 times, while 
the alternative hypothesis – 62 times. No decision was 
made 27 times, because the information contained in 
the sample was not sufficient for making a simple 
decision with given reliability, among them 8 times 
because both hypotheses were supposed to be true 
and 19 times both hypotheses were supposed to be 
false. It seems that these results are quite good for so 
noised alternative hypothesis.  
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    a       b 

 
c 

Figure 1: Dependences of Lagrange multiplier, risk function and error probabilities on the variance of the alternative hypothesis 
in the constrained Bayesian test. 

The results of computation of Lagrange multiplier, 
risk function and error probabilities depending on the 
sample size are given in Table 2. The dependences of 
the considered probabilities on the sample size n  are 
shown in Figure 2. 

Hence the following is obvious. When the sample 
size n  increases from 1 to 50, the error probabilities of 
type II for both hypotheses, i.e. the probabilities of 
incorrect acceptance of both hypotheses and the risk 
function which is the averaged value of these 
probabilities, decrease. They tend to zero (see Figure 
2a). The probabilities of type I for both hypotheses, i.e. 
the probabilities of incorrect rejection of both 

hypotheses change in such a manner that their sum 
weighed by a priori probabilities was not more then ! , 
i.e. restriction (10) in the statement of the constrained 
Bayesian task was satisfied. The changes have the 
following character. The probability of rejection of the 
basic hypothesis decreases and the probability of 
rejection of the alternative hypothesis increases when 
the sample size n  increases from 1 up to 10. After that, 
i.e. when n  increases from 10 up to 50, the probability 
of rejection of the basic hypothesis increases and the 
probability of rejection of the alternative hypothesis 
decreases (see Figure 2a). These two probabilities are 
equal to each other when n = 37 . The described 
situation logically can be explained completely from the 
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Table 2: Computation Results of Lagrange Multiplier, Risk Function and Error Probabilities Depending on the Sample 
Size 

Initial values  
m = 10,000  

µ0 = 1 , µ1 = 3  

! 2 = 1 , !1
2 = 30  

! = 0.05  

Computed values 

n  p  popt  !  r  !0  !1  !0  !1  p01  p11  p02  p12  

1  
0.1523* 

4.7098 
1.4938 

0.4113 
0.2644 

0.0106 
0.3283 

0.0894 
0 

0.3400 
0.1322 

0.4825 
1 

0.4719 
0.6717 

0.2506 
0.1322 

0 
0 

0 
0 

2  6.2814 0.3924 0.0061 0.0939 0.3364 0.4485 0.4424 0.2425 0 0 

3  7.2328 0.3725 0.0029 0.0971 0.3386 0.4065 0.4036 0.2415 0 0 

4  7.9070 0.3458 0.0023 0.0977 0.3223 0.3693 0.3670 0.2246 0 0 

5  
0.0753* 

8.5832 
1.0686 

0.3346 
0.1236 

0.0025 
0.6075 

0.0975 
0.0046 

0.3120 
0.0550 

0.3571 
0.9657 

0.3546 
0.3582 

0.2145 
0.0504 

0 
0 

0 
0 

10  7.8974 0.2207 0.0022 0.0978 0.2452 0.1961 0.1939 0.1474 0 0 

15  4.5156 0.1211 0.0033 0.0967 0.1682 0.0740 0.0707 0.0715 0 0 

20  1.7333 0.0669 0.0067 0.0933 0.1138 0.0201 0.0134 0.0205 0 0 

25  0.6143 0.0372 0.0171 0.0829 0.0692 0.0053 0 0 0.0118 0.0137 

30  0.3100 0.0233 0.0336 0.0664 0.0438 0.0028 0 0 0.0308 0.0226 

35  0.2074 0.0156 0.0463 0.0537 0.0298 0.0014 0 0 0.0449 0.0239 

40  0.1699 0.0115 0.0560 0.0440 0.0225 0.0004 0 0 0.0556 0.0215 

45  0.1380 0.0083 0.0656 0.0344 0.0160 0.0006 0 0 0.0650 0.0184 

50 

0.5 

 0.1169 0.0052 0.0752 0.0248 0.0098 0.0007 0 0 0.0745 0.0150 
*these two lines of computation results are obtained for optimal (in accordance with Bernardo for overcoming the Lindley’s paradox) values of a priori probability at 
appropriate sample sizes. 

point of view of the information theory. In particular, the 
more is the information about the studied phenomenon, 
the more reliable must be the decision made in relation 
with this phenomenon. In the considered case, the 
increase of the information, i.e. the increase of sample 
size n , causes the decrease of probabilities of type II 
errors and, on the basis of the condition of the 
considered problem, type I errors stay in the frame of 
chosen restriction (10). To the small or big values of 
the variance of the alternative hypothesis corresponds 
the increase of information about tested hypotheses. 
Therefore, to the small or big values of the variance of 
alternative hypothesis correspond small values of type 
II errors, and the weighted sum of type I error 
probabilities satisfy restriction (10) (see Figure 1a).  

Constrained Bayesian methods of hypotheses 
testing have the following specificity [1, 9]: when the 
Lagrange multiplier !  differs from the one in the 
observation space there appears the region of no 
acceptance of the simple hypothesis and the region of 
supposition of the validity of both hypotheses. In the 
considered case, p01  and p11  are the probabilities of no 
acceptance of basic and alternative hypotheses, 

respectively, when they are true, and p02  and p12  are 
the probabilities of supposition of the validity of both 
hypotheses when basic and alternative hypotheses are 
true, respectively. When n  changes from 1 up to 50, 
the value of !  changes. In the beginning it is more 
than one and after n = 22  it becomes less than one 
(see Figure 2c). Therefore, in the computed values 
(see Table 2), up to n = 25  p02  and p12  are equal to 
zero, after that p01  and p11  become equal to zero. The 
fact that n  increases corresponds to the increase of 
the existing information about tested hypotheses. To 
the increasing information corresponds the increase in 
the information distance between the tested 
hypotheses in the considered case. The increase in the 
information distance between the tested hypotheses 
logically causes the decrease in the intersection of 
hypotheses acceptance regions because of restriction 
(10). The decrease in the intersection of hypotheses 
acceptance regions causes the decrease in the 
probabilities p01  and p11 . When the information 
distance increases, after some its value (which is 
determined by restriction (10)), the regions of 
acceptance of tested hypotheses are not intersected, 
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and the following increase in the distance causes the 
appearance of the region which does not belong to the 
hypotheses acceptance regions. The bigger is the 
distance, the bigger is the latter region, i.e. the bigger is 
the sum of probabilities p02  and p12 . The changes of 
probabilities p01 , p11 , p02  and p12  given in Figure 2b 
correspond completely to this logic. 

If there is no other objective reason, the choice of a 
priori probability p  in accordance with Bernardo for 
only overcoming the Lindley’s paradox, on the one 
hand, unjustifiably significantly increases the probability 
of incorrect rejection of the basic hypothesis (!0 ) and 

the probability of incorrect acceptance of the alterative 
hypothesis ( !1 ) and, on the other hand, unjustifiably 
significantly decreases the probability of incorrect 
rejection of the alternative hypothesis (!1 ) and the 
probability of incorrect acceptance of the basic 
hypothesis ( !0 ) (see popt  in lines of Table 2 at n = 1  
and n = 5 ).  

The results of computation of Lagrange multiplier, 
risk function and error probabilities depending on the a 
priori probability are given in Table 3. Figures 3a, b and 
c are constructed by these results.  

 
     a       b 

 
c 

Figure 2: Dependences of Lagrange multiplier, risk function and error probabilities on the sample size in the constrained 
Bayesian test. 
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Table 3: Computation Results of Lagrange Multiplier, Risk Function and Error Probabilities Depending on the a Priori 
Probability 

Initial values  
m = 10,000  

n = 5 , ! = 0.05  

µ0 = 1 , µ1 = 3  

! 2 = 1 , !1
2 = 30  

Computed values 

p  !  r  !0  !1  !0  !1  p01  p11  p02  p12  

0.01 0.1235 0.0071 1 0.0404 0 0.7070 0 0 0.2930 0.0404 

0.05 0.9767 0.0500 1 0 0 1 0 0 0 0 

0.1 1.3996 0.1873 0.2247 0.0306 0.1228 0.7677 0.5430 0.0922 0 0 

0.15 2.1136 0.2581 0.0749 0.0456 0.1851 0.6717 0.5968 0.1395 0 0 

0.2 2.8459 0.2876 0.0312 0.0547 0.2116 0.5918 0.5606 0.1569 0 0 

0.25 3.6939 0.3249 0.0176 0.0608 0.2450 0.5647 0.5471 0.1842 0 0 

0.30 4.5781 0.3347 0.0106 0.0669 0.2543 0.5224 0.5118 0.1874 0 0 

0.35 5.4853 0.3497 0.0069 0.0732 0.2838 0.4720 0.4651 0.2106 0 0 

0.4 6.6015 0.3631 0.0044 0.0804 0.3017 0.4553 0.4509 0.2213 0 0 

0.45 7.5412 0.3415 0.0026 0.0888 0.2950 0.3984 0.3958 0.2062 0 0 

0.5 8.5460 0.3329 0.0019 0.0981 0.3148 0.3510 0.3491 0.2167 0 0 

0.55 9.0180 0.3012 0.0010 0.1099 0.3186 0.2869 0.2859 0.2087 0 0 

0.6 9.7802 0.2682 0.0008 0.1238 0.3303 0.2268 0.2260 0.2065 0 0 

0.65 9.8921 0.2337 0.0008 0.1414 0.3404 0.1763 0.1755 0.1990 0 0 

0.7 8.8764 0.1828 0.0006 0.1653 0.3382 0.1162 0.1156 0.1729 0 0 

0.75 5.8290 0.1203 0.0008 0.1976 0.3310 0.0501 0.0493 0.1334 0 0 

0.8 3.4200 0.0821 0.0012 0.2452 0.3336 0.0192 0.0180 0.0884 0 0 

0.85 0.6715 0.0437 0.0045 0.3078 0.2829 0.0015 0 0 0.0030 0.0249 

0.9 0.1527 0.0243 0.0142 0.3722 0.2424 0.0001 0 0 0.0141 0.1298 

0.9247 0.0835 0.0183 0.0211 0.4050 0.2426 0 0 0 0.0211 0.1624 

0.95 0.0417 0.0113 0.0304 0.4224 0.2259 0 0 0 0.0304 0.1965 

0.99 0.0059 0.0021 0.0455 0.4949 0.2125 0 0 0 0.0455 0.2824 

 

Hence the following is clear. With the increasing a 
priori probability of basic hypothesis p  and accordingly 
the decreasing a priori probability of alternative 
hypothesis (1! p) , the probability of acceptance of 
basic hypothesis !0 , when it is not true, increases up 
to p = 0.65  and then it decreases. At the same time, 
the probability of acceptance of the alternative 
hypothesis !1 , when it is not true, decreases (see 
Figure 3a). The risk function is sum of these two 
probabilities, weighed by a priory probabilities (see (9)). 
Therefore, the form of the change of the risk function 
up to p = 0.5  has the form of !1  and then, it has the 
form of !0  (see Figure 3a).  

As was investigated in [1], the change of a priori 
probability affects the decision made. This influence is 
not so significant as in the classical Bayesian test, but 
still it is present in the constrained test too, especially, 
when p  is very small ( < 0.1 ) or very big ( > 0.8 ) (see 
Table 3 and Figure 3a). When p  changes from 0.1 up 
to 0.99, the probability of rejection of the basic 
hypothesis !0  when it is true decreases to p = 0.8  and 
then it increases. At the same time, the probability of 
rejection of the alternative hypothesis !1  when it is true 
increases from zero up to 0.4949 so that restriction (10) 
in the statement of the task was fulfilled. (Remark: here 
must be taken into account the fact that !0  and !1  
from Table 3 contain the probabilities of no making the 
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decision, i.e. probabilities p01 , p11 , p02  and p12  and, 
after their exclusion, restriction (10) is fulfilled). 

The Lagrange multiplier !  changes depending on 
p  and, when p  changes from 0.1 up to 0.99, !  

increases from 0.1235 up to 9.8921 for p = 0.65 , and 
then, it decreases to 0.0059 (see Figure 3c). The 
probabilities of no-acceptance of hypotheses p01 , p11 , 
p02  and p12  change depending on ! . When ! < 1 , to 

which correspond p < 0.1  and p > 0.8 , p01  and p11  are 
equal to zero. When 0.1 ! p ! 0.8 , p01  and p11  increase 
in the beginning and then, they decrease. The 
probabilities p02  and p12  are equal to zero when 

0.1 ! p ! 0.8 , i.e. when ! > 1 . They decrease on the left 
of this interval and they increase on the right of this 
interval.  

Let us present the simulation results for the 
considered example obtained by the classical Bayesian 
method and with Bernardo’s correction. Computation 
results of the risk function and error probabilities 
depending on the variance of the alternative hypothesis 
and on the sample size are given in Tables 4 and 5, 
respectively, for both methods. Appropriate graphs are 
shown in Figures 4 and 5, respectively.  

From these results, the following is evident. The 
property of (4) that, for the sufficiently large prior 

 
     a       b 

 
c 

Figure 3: Dependences of Lagrange multiplier, risk function and error probabilities on the a priori probability in the constrained 
Bayesian test. 
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Table 4: Computation Results of the Risk Function and Error Probabilities Depending on the Variance of the 
Alternative Hypothesis 

Initial values  
m = 10,000 , n = 5  

µ0 = 1 , µ1 = 3  

! 2 = 1 , p = 0.5  

Computed values for classical Bayesian method Computed values for Bernardo’s correction 

!1
2  r  !0 = "1  !1 = "0  r  !0 = "1  !1 = "0 ia 

0.001 0.0060 0.0119 0 0.0060 0.0120 0 

0.01 0.0063 0.0126 0 0.0069 0.0138 0 

0.05 0.0076 0.0151 0 0.0077 0.0154 0 

0.08 0.0092 0.0183 0 0.0105 0.0210 0 

0.1 0.0098 0.0197 0 0.0117 0.0234 0 

0.5 0.0172 0.0338 0.0007 0.0321 0.0642 0.0001 

1 0.0236 0.0409 0.0063 0.0484 0.0949 0.0019 

2 0.0387 0.0430 0.0344 0.0935 0.1789 0.0080 

3 0.0554 0.0421 0.0687 0.1371 0.2536 0.0206 

4 0.0722 0.0425 0.1019 0.1772 0.3189 0.0354 

5 0.0843 0.0438 0.1247 0.2062 0.3710 0.0415 

10 0.1176 0.0376 0.1977 0.2895 0.5219 0.0570 

30 0.1286 0.0225 0.2347 0.3756 0.7122 0.0389 

40 0.1207 0.0184 0.2230 0.3892 0.7456 0.0328 

50 0.1177 0.0178 0.2176 0.3997 0.7737 0.0257 

60 0.1139 0.0165 0.2112 0.4072 0.7908 0.0236 

70 0.1086 0.0165 0.2007 0.4158 0.8102 0.0213 

100 0.0978 0.0124 0.1831 0.4287 0.8408 0.0166 

300 0.0629 0.0061 0.1197 0.4543 0.9021 0.0065 

500 0.0528 0.0052 0.1004 0.4654 0.9287 0.0021 

1000 0.0383 0.0025 0.0741 0.4747 0.9470 0.0025 

2000 0.0273 0.0016 0.0529 0.4828 0.9648 0.0004 

5000 0.0180 0.0014 0.0346 0.4883 0.9765 0.0001 

10000 0.0130 0.0008 0.0252 0.4930 0.9859 0.0001 

20000 0.0098 0.0005 0.0192 0.4947 0.9894 0 

50000 0.0055 0.0004 0.0107 0.4959 0.9918 0 

 

variance !1
2  independently of the observation results 

and a priori probability p , the null hypothesis will 
always be accepted is theoretically right. But, when the 
decision is made on the basis of real data (or on the 
basis of modeled results, as it is in the considered 
case), the situation is changed. It is true that the 
coefficient in (4) tends to zero at increasing !1

2 . When 
the variance !1

2  is very big, the arithmetic mean of 
observation results x  (for a small number of 
observations n ), at the validity of hypothesis H1  

significantly differs from the mathematical expectations 
µ0  and µ1 , and the value of the exponent in the 
denominator is significantly smaller in comparison with 
the value of the exponent in the numerator. The result 
of their division is so big that the result of its 
multiplication by the coefficient becomes more than 
one and its inverse result becomes less than one. 
Therefore, in such cases, hypothesis H1  is accepted 
(see the columns !0 = "1  and !1 = "0  in Table 4 giving 
the results of modeling for the classical Bayesian 
method). For this reason, for the real data the classical 
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Figure 4: Dependences of the risk function and error probabilities on the variance of the alternative hypothesis in the Bayesian 
and Bernardo tests. 

 

Table 5: Computation Results of the Risk Function and Error Probabilities Depending on the Sample Size 

Initial values  
m = 10,000 , p = 0.5  

µ0 = 1 , µ1 = 3  

! 2 = 1 , !1
2 = 5  

Computed values for classical Bayesian 
method 

Computed values for Bernardo’s correction 

n  r  !0 = "1  !1 = "0  r  !0 = "1  !1 = "0  

1 0.2248 0.1013 0.3484 0.2808 0.3683 0.1933 

2 0.1774 0.0751 0.2797 0.2512 0.3669 0.1356 

3 0.1389 0.0551 0.2226 0.2304 0.3664 0.0945 

4 0.1106 0.0522 0.1689 0.2132 0.3624 0.0639 

5 0.0871 0.0441 0.1300 0.2024 0.3596 0.0453 

10 0.0287 0.0276 0.0297 0.1833 0.3599 0.0068 

15 0.0143 0.0223 0.0063 0.1826 0.3641 0.0011 

20 0.0107 0.0203 0.0011 0.1815 0.3628 0.0001 

25 0.0088 0.0172 0.0004 0.1844 0.3687 0 

30 0.0079 0.0158 0 0.1888 0.3775 0 

35 0.0072 0.0143 0 0.1829 0.3658 0 

40 0.0066 0.0133 0 0.1870 0.3741 0 

45 0.0061 0.0122 0 0.1856 0.3712 0 

50 0.0052 0.0104 0 0.1905 0.3810 0 
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Figure 5: Dependences of the Lagrange multiplier, the risk function and error probabilities on the sample size in the Bayesian 
and Bernardo tests. 

Bayesian method gives considerably better results in 
comparison with the Bernardo’s modification (see 
Table 4 and Figure 4). In the latter method, the 
probabilities of rejection and acceptance of basic and 
alternative hypotheses, respectively, converge to one 
at increasing !1

2 , which is incorrect. The advantage of 
the classical Bayesian method in comparison with the 
Bernardo’s correction depending on the sample size is 
evident from the data given in Table 5 and Figure 5.  

The computation results of the risk function and 
error probabilities depending on the a priori probability 
in the Bayesian test are given in Table 6. The 
appropriate graphs are shown in Figure 6. Hence it is 
evident that, when p  increases, !0  (that is the same 
as !1 ) decreases, and !1  (that is the same as !0 ) 
increases, but, the bigger is !1

2 , the faster are these 
changes, i.e. to the bigger value of the variance !1

2  
(which defines indefiniteness in the alternative 
hypothesis H1 ) correspond the less value of the 
rejection probability of the basic hypothesis H 0  and the 
big value of the rejection probability of the alternative 
hypothesis H1  for one and the same p . In other 
words, for the given value of p , when the value of 
variance !1

2  increases, the frequency of rejection of 
the basic hypothesis H 0  decreases, i.e. it will be more 
frequently accepted and the frequency of rejection of 
the alternative hypothesis H1  increases, i.e. it will be 

more frequently rejected. This corresponds completely 
to the noted above theoretical property of this test. 

The choice of a priori probability p  in accordance 
with the Bernardo’s condition does not change the 
natural motion of the investigated probabilities (see the 
cases p = 0.1640  for !1

2 = 5  and p = 0.0753  for 
!1
2 = 30 ). It only avoids the Lindley’s paradox effect for 

fixed x . 

Dependences of the risk function and error 
probabilities on the variance of the alternative 
hypothesis in the considered tests are shown in Figure 
7. As was mentioned above, for classical and Bernardo 
methods there are the following ratios: !0 = "1  and 
!1 = "0 . In CBM they differ from each other. Hence, the 
optimality of CBM in comparison with the considered 
tests is obvious.  

Example 2. For saving in room, we bring similar 
computation results for the second example with 
minimal explanations, because the behavior and ratios 
of the results obtained by the considered tests are 
similar to the results of the first example.  

On the basis of the results given in Tables 13, 14 
and Figures 14, 15, the following is evident. The 
probability of rejection of the basic hypothesis when it 
is true (that is the same, the probability of acceptance 
of the alternative hypothesis when it is false) at 
increasing variance of the basic hypothesis tends to 
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Table 6: Computation Results of the Risk Function and Error Probabilities Depending on the a Priori Probability in the 
Bayesian and Bernardo Tests 

A priori 
probability 

 

Initial values  
m = 10,000 , n = 5  

µ0 = 1 , µ1 = 3  

! 2 = 1 , !1
2 = 5  

Initial values  
m = 10,000 , n = 5  

µ0 = 1 , µ1 = 3  

! 2 = 1 , !1
2 = 30  

p  r  !0 = "1  !1 = "0  r  !0 = "1  !1 = "0  

0.01 0.0100 1 0 0.0100 1 0 

0.05 0.0500 1 0 0.0500 1 0 

0.0753 0.0753 1 0 0.0912 0.7178 0.0402 

0.1 0.1000 1 0 0.1193 0.3791 0.0904 

0.15 0.0983 0.4422 0.0376 0.1402 0.1908 0.1313 

0.1640 0.0959 0.3651 0.0431 0.1455 0.1670 0.1413 

0.2 0.0941 0.2533 0.0543 0.1516 0.1190 0.1598 

0.25 0.0928 0.1708 0.0668 0.1522 0.0855 0.1744 

0.30 0.0935 0.1211 0.0817 0.1508 0.0608 0.1894 

0.35 0.0937 0.0879 0.0968 0.1470 0.0472 0.2007 

0.4 0.0906 0.0721 0.1029 0.1454 0.0374 0.2174 

0.45 0.0850 0.0533 0.1110 0.1357 0.0289 0.2231 

0.5 0.0824 0.0425 0.1223 0.1304 0.0220 0.2388 

0.55 0.0796 0.0312 0.1388 0.1198 0.0186 0.2436 

0.6 0.0727 0.0273 0.1408 0.1104 0.0174 0.2500 

0.65 0.0653 0.0206 0.1484 0.0985 0.0107 0.2615 

0.7 0.0616 0.0161 0.1678 0.0882 0.0095 0.2718 

0.75 0.0517 0.0113 0.1727 0.0748 0.0079 0.2756 

0.8 0.0452 0.0093 0.1887 0.0629 0.0055 0.2925 

0.85 0.0364 0.0061 0.2082 0.0486 0.0034 0.3046 

0.9 0.0256 0.0027 0.2314 0.0343 0.0020 0.3247 

0.95 0.0145 0.0016 0.2589 0.0182 0.0013 0.3394 

0.99 0.0035 0.0001 0.3435 0.0039 0.0001 0.3815 

 

 
Figure 6: Dependences of the risk function and error probabilities on the a priori probability in the Bayesian test. 
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Figure 7: Dependences of the risk function and error probabilities on the variance of the alternative hypothesis in the considered 
tests for example 1. 
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Table 7: Computation Results of the Lagrange Multiplier, the Risk Function and Error Probabilities of CBM Depending 
on the Length of the Domain of Definition of Uniformly Distributed Random Variable at the Alternative 
Hypothesis 

Initial values  
m = 10,000 , n = 5  

µ0 = 3 , ! 2 = 1  

p = 0.5  

Computed values 

 A  xe0 xe1 !  r  !0  !1  !0  !1  p01  p11  p02  p12  

0.1 2.8096 0.0109 21.7270 0.5000 0.1000 0 0 1 0.9000 0 0 0 

0.5 3.9502 -0.2002 4.4443 0.5000 0.1000 0 0 1 0.9000 0 0 0 

0.7 3.2897 0.1467 3.1860 0.5000 0.1000 0 0 1 0.9000 0 0 0 

1 3.5571 -0.0549 2.0753 0.5000 0.1000 0 0 1 0.9000 0 0 0 

2 2.7300 0.7892 1.0807 0.0613 0.1000 0 0 0.1226 0.0226 0 0 0 

3 3.6723 0.3437 0.7362 0.0239 0.0986 0.0014 0.0006 0.0471 0 0 0.0515 0.0008 

4 3.9171 0.4262 0.6715 0.0212 0.0773 0.0227 0.0130 0.0294 0 0 0.0479 0.0097 

5 3.1847 -1.5526 0.8535 0.0392 0.0414 0.0586 0.0508 0.0276 0 0 0.0138 0.0078 

10 3.4541 -4.4365 6.9195 0.1925 0.0019 0.0981 0.2237 0.1613 0.1594 0.1256 0 0 

30 2.7012 5.1465 3.6624 0.0800 0.0015 0.0985 0.1391 0.0209 0.0194 0.0406 0 0 

40 3.3332 11.9239 0.8495 0.0472 0.0056 0.0944 0.0909 0.0035 0 0 0.0021 0.0035 

50 3.4695 4.3492 0.2840 0.0342 0.0100 0.0900 0.0676 0.0009 0 0 0.0091 0.0224 

60 2.0492 -17.8571 0.1546 0.0265 0.0175 0.0825 0.0528 0.0002 0 0 0.0173 0.0297 

70 3.1209 5.5814 0.0827 0.0195 0.0307 0.0693 0.0388 0.0001 0 0 0.0306 0.0305 

100 2.9632 35.1740 0.0459 0.0150 0.0430 0.0570 0.0300 0 0 0 0.0430 0.0270 

300 2.9835 19.2266 0.0085 0.0042 0.0803 0.0197 0.0083 0 0 0 0.0803 0.0114 

500 3.3755 -23.0923 0.0047 0.0019 0.0884 0.0116 0.0039 0 0 0 0.0884 0.0077 

Note: The averaged values of n  simulated random variables distributed in accordance with the hypotheses H0  and HA  are given in the columns of xe0 and xe1, 

respectively, i.e. xe0 ~ p(x | H0 )  and xe1 ~ p(x | HA )  take place.  

 

 
     a       b 
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(Figure 8). Continued. 

 
c 

Figure 8: Dependences of the Lagrange multiplier, the risk function and error probabilities on the length of the domain of 
definition of uniformly distributed random variable at the alternative hypothesis in the constrained Bayesian test. 

 

Table 8: Computation Results of the Lagrange Multiplier, the Risk Function and Error Probabilities of CBM Depending 
on the Sample Size 

Initial values  
m = 10,000 , A = 10  

µ0 = 3 , ! 2 = 1  

p = 0.5 , ! = 0.05  

Computed values 

 n  xe0 xe1 !  r  !0  !1  !0  !1  p01  p11  p02  p12  

1 4.5576 7.3393 5.2301 0.3178 0.0051 0.0949 0.2768 0.3588 0.3537 0.1819 0 0 

2 2.0512 0.1734 6.9418 0.3146 0.0035 0.0965 0.3005 0.3288 0.3253 0.2040 0 0 

3 3.2742 -3.9028 7.9040 0.2880 0.0018 0.0982 0.2868 0.2891 0.2873 0.1886 0 0 

4 4.3315 3.1191 7.6294 0.2416 0.0017 0.0983 0.2541 0.2291 0.2274 0.1558 0 0 

5 2.6525 5.0844 7.1296 0.1984 0.0015 0.0985 0.2270 0.1698 0.1683 0.1285 0 0 

10  
 

2.9451 -0.3409 1.4727 0.0620 0.0067 0.0933 0.1067 0.0172 0.0105 0.0134 0 0 

15 3.1862 -0.5697 0.2892 0.0216 0.0378 0.0622 0.0406 0.0025 0 0 0.0353 0.0216 

20 2.9242 -1.7879 0.1604 0.0087 0.0650 0.0350 0.0167 0.0008 0 0 0.0642 0.0183 

25 3.0555 -0.0751 0.1186 0.0043 0.0798 0.0202 0.0081 0.0006 0 0 0.0792 0.0121 

30 2.9433 -0.3194 0.0978 0.0024 0.0890 0.0110 0.0040 0.0008 0 0 0.0882 0.0070 

35 3.0924 -0.1571 0.0866 0.0019 0.0932 0.0068 0.0030 0.0007 0 0 0.0925 0.0038 

40 2.9752 0.0476 0.0791 0.00055 0.0959 0.0041 0.0009 0.0002 0 0 0.0957 0.0032 

45 3.3062 0.0921 0.0746 0.0004 0.0980 0.0020 0.0005 0.0003 0 0 0.0977 0.0015 

50 2.9466 -0.7556 0.0685 0.0002 0.0992 0.0008 0.0002 0.0002 0 0 0.0990 0.0006 
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     a        b 

 
c 

Figure 9: Dependences of the Lagrange multiplier, the risk function and error probabilities on the sample size in the constrained 
Bayesian test. 

one. At the same time, the probability of rejection of the 
alternative hypothesis when it is true (that is the same, 
the probability of acceptance of the basic hypothesis 
when it is false) tends to zero. The first of these 
probabilities for the Bernardo’s correction practically 
does not change and the second one tends to one. It is 
not difficult to be convinced that these behaviors are 
not correct because, with increasing indefiniteness in 
relation to the basic hypothesis, the probability of its 
rejection must tend to one and the probability of its 
acceptance must tend to zero, as they do in the 
classical Bayesian method. The behavior of CBM 

coincides with the classical Bayesian test in principle, 
but it is more thoughtful, because with the increasing 
! 2 , the indefiniteness in relation to both hypotheses 
increases, and it becomes more and more difficult to 
make a correct decision in relation to the tested 
hypotheses. In accordance with that, the regions of 
acceptance of both hypotheses increase (see !0  and 
!1 ) and consequently the region of their intersection 
increases too. Therefore, the probabilities of 
supposition for both hypotheses p01  and p11  to be true 
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Table 9: Computation Results of the Lagrange Multiplier, the Risk Function and Error Probabilities of CBM Depending 
on the a Priori Probability 

Initial values  
m = 10,000 , n = 5  

µ0 = 3 , ! 2 = 1  

A = 10 , ! = 0.05  

Computed values 

 p  xe0 xe1 !  r  !0  !1  !0  !1  p01  p11  p02  p12  

0.01 2.7537 -0.4090 0.1544 0.0058 1 0.0404 0 0.5761 0 0 0.4239 0.0404 

0.05 2.3094 3.3013 0.9767 0.0500 1 0 0 1 0 0 0 0 

0.0531 2.9630 2.5257 1.0021 0.0585 0.9415 0 0.0057 1 0.0585 0.0057 0 0 

0.1 2.9099 2.3337 1.6789 0.1529 0.1221 0.0420 0.1066 0.5695 0.4474 0.0646 0 0 

0.15 2.8971 0.8313 2.5025 0.2031 0.0427 0.0513 0.1502 0.5028 0.4601 0.0989 0 0 

0.2 3.1834 -2.1573 3.2837 0.2220 0.0224 0.0569 0.1706 0.4275 0.4051 0.1137 0 0 

0.25 3.8357 2.3950 4.1382 0.2364 0.0101 0.0633 0.1820 0.3994 0.3893 0.1187 0 0 

0.30 3.0008 3.7126 4.8407 0.2365 0.0073 0.0683 0.1930 0.3381 0.3308 0.1247 0 0 

0.35 2.6914 -4.2711 5.9248 0.2503 0.0045 0.0745 0.2101 0.3250 0.3205 0.1356 0 0 

0.4 2.8161 -0.1680 6.1932 0.2311 0.0032 0.0812 0.2145 0.2560 0.2528 0.1333 0 0 

0.45 2.1548 -0.8875 7.2070 0.2313 0.0027 0.0887 0.2258 0.2380 0.2353 0.1371 0 0 

0.5 3.3688 1.1759 7.3491 0.2113 0.0018 0.0982 0.2326 0.1900 0.1882 0.1344 0 0 

0.55 2.0364 -2.2779 6.7140 0.1685 0.0010 0.1099 0.2291 0.1190 0.1180 0.1192 0 0 

0.6 3.1860 -3.1922 6.7302 0.1481 0.0010 0.1235 0.2332 0.0913 0.0903 0.1097 0 0 

0.65 3.6665 -4.0843 4.7608 0.1112 0.0017 0.1397 0.2275 0.0486 0.0469 0.0878 0 0 

0.7 3.6420 0.0720 3.4596 0.0877 0.0023 0.1613 0.2264 0.0282 0.0259 0.0651 0 0 

0.75 3.6826 -4.9689 1.7012 0.0618 0.0025 0.1925 0.2211 0.0087 0.0062 0.0286 0 0 

0.8 3.2409 1.8051 0.6450 0.0433 0.0055 0.2280 0.2080 0.0021 0 0 0.0034 0.0200 

0.85 2.6527 1.7469 0.2297 0.0276 0.0141 0.2534 0.1811 0.0005 0 0 0.0136 0.0723 

0.9 3.3631 -0.0057 0.0828 0.0171 0.0238 0.2858 0.1690 0.0002 0 0 0.0236 0.1168 

0.95 2.9828 2.3266 0.0258 0.0078 0.0356 0.3236 0.1558 0 0 0 0.0356 0.1678 

0.99 3.3919 -1.5773 0.0039 0.0014 0.0468 0.3664 0.1399 0 0 0 0.0468 0.2265 

 

 
     a        b 
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(Figure 10). Continued. 

 
c 

Figure 10: Dependences of the Lagrange multiplier, the risk function and error probabilities on the a priori probability in the 
constrained Bayesian test. 
 
Table 10: Computation Results of the Risk Function and Error Probabilities in the Bayesian and Bernardo Tests 

Depending on the Length of the Domain of Definition of Uniformly Distributed Random Variable at the 
Alternative Hypothesis 

Initial values  
m = 10,000 , n = 5  
µ0 = 3 , ! 2 = 1  

p = 0.5  

Computed values for classical Bayesian method Computed values for Bernardo’s correction 

A  r  !0 = "1  !1 = "0  r  !0 = "1  !1 = "0  

0.1 0.5000 1 0 0.1615 0.3229 0 
0.5 0.5000 1 0 0.1576 0.3152 0 
0.7 0.2493 0.4985 0 0.1559 0.3118 0 
1 0.1442 0.2883 0 0.1590 0.3179 0 
2 0.0558 0.1117 0 0.1592 0.3183 0 
3 0.0352 0.0693 0.0010 0.1621 0.3241 0.0001 
4 0.0323 0.0450 0.0195 0.1607 0.3160 0.0054 
5 0.0468 0.0372 0.0563 0.1710 0.3213 0.0208 
10 0.0938 0.0161 0.1715 0.2003 0.3254 0.0751 
30 0.0610 0.0044 0.1176 0.1819 0.3218 0.0420 
40 0.0474 0.0022 0.0927 0.1779 0.3251 0.0306 
50 0.0385 0.0026 0.0744 0.1734 0.3187 0.0282 
60 0.0319 0.0024 0.0614 0.1696 0.3129 0.0262 
70 0.0304 0.0016 0.0593 0.1717 0.3221 0.0213 
100 0.0217 0.0008 0.0425 0.1678 0.3220 0.0135 
300 0.0085 0.0002 0.0169 0.1600 0.3159 0.0040 
500 0.0048 0.0001 0.0095 0.1589 0.3147 0.0032 
1000 0.0022 0 0.0043 0.1578 0.3138 0.0018 
2000 0.0011 0 0.0022 0.1592 0.3177 0.0007 
5000 0.0007 0 0.0014 0.1612 0.3220 0.0004 

10000 0.0002 0 0.0004 0.1601 0.3201 0.0001 
20000 0.00015 0 0.0003 0.1576 0.3150 0.0001 
50000 0.00005 0 0.0001 0.1591 0.3182 0 
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Figure 11: Dependences of the risk function and error probabilities on the interval of definition of uniformly distributed random 
variable in the Bayesian and Bernardo tests. 

 

Table 11: Computation Results of the Risk Function and Error Probabilities in the Bayesian and Bernardo Tests 
Depending on the Sample Size 

Initial values  
m = 10,000  

µ0 = 3 , ! 2 = 1  

p = 0.5 , A = 10  

Computed values for classical Bayesian method Computed values for Bernardo’s correction 

n  r  !0 = "1  !1 = "0  r  !0 = "1  !1 = "0  

1 0.1214 0.0413 0.2015 0.2117 0.3188 0.1046 

2 0.1219 0.0254 0.2184 0.2132 0.3235 0.1028 

3 0.1152 0.0218 0.2086 0.2080 0.3199 0.0960 

4 0.1055 0.0200 0.1911 0.2016 0.3210 0.0822 

5 0.0965 0.0172 0.1758 0.1983 0.3215 0.0751 

10 0.0543 0.0107 0.0979 0.1785 0.3219 0.0351 

15 0.0325 0.0092 0.0557 0.1683 0.3172 0.0194 

20 0.0185 0.0077 0.0293 0.1643 0.3174 0.0112 

25 0.0106 0.0068 0.0143 0.1589 0.3147 0.0031 

30 0.0071 0.0050 0.0092 0.1596 0.3170 0.0022 

35 0.0050 0.0059 0.0041 0.1608 0.3204 0.0012 

40 0.0032 0.0044 0.0020 0.1615 0.3226 0.0003 

45 0.0035 0.0060 0.0010 0.1568 0.3134 0.0001 

50 0.0027 0.0053 0.0002 0.1587 0.3174 0 
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Figure 12: Dependences of the risk function and error probabilities on the sample size in the Bayesian and Bernardo tests. 

 

Table 12: Computation Results of the Risk Function and Error Probabilities in the Bayesian and Bernardo Tests 
Depending on the a Priori Probability 

Initial values  
m = 10,000 , n = 5  

µ0 = 3 , ! 2 = 1  

A = 10  

Computed values for classical Bayesian 
method 

Computed values for Bernardo’s correction 

 p  r  !0 = "1  !1 = "0  r  !0 = "1  !1 = "0  

0.01 0.0100 1 0 0.0738 0.3160 0.0714 

0.05 0.0500 1 0 0.0847 0.3106 0.0728 

0.0531 0.0534 0.9735 0.0018 0.0850 0.3057 0.0726 

0.1 0.1000 0.2435 0.0841 0.0961 0.3161 0.0717 

0.15 0.1137 0.1261 0.1115 0.1090 0.3167 0.0723 

0.2 0.1157 0.0866 0.1230 0.1189 0.3083 0.0716 

0.25 0.1166 0.0579 0.1362 0.1350 0.3208 0.0731 

0.30 0.1144 0.0408 0.1460 0.1510 0.3208 0.0783 

0.35 0.1096 0.0298 0.1526 0.1587 0.3195 0.0721 

0.4 0.1085 0.0259 0.1635 0.1747 0.3263 0.0736 

0.45 0.1047 0.0190 0.1748 0.1822 0.3198 0.0696 

0.5 0.0932 0.0141 0.1723 0.1962 0.3167 0.0757 

0.55 0.0922 0.0142 0.1876 0.2048 0.3121 0.0737 

0.6 0.0786 0.0097 0.1819 0.2163 0.3129 0.0714 

0.65 0.0722 0.0081 0.1913 0.2317 0.3182 0.0711 

0.7 0.0626 0.0054 0.1959 0.2463 0.3214 0.0711 

0.75 0.0554 0.0056 0.2048 0.2564 0.3173 0.0736 

0.8 0.0461 0.0036 0.2163 0.2666 0.3146 0.0747 

0.85 0.0353 0.0025 0.2213 0.2814 0.3179 0.0749 

0.9 0.0245 0.0015 0.2316 0.2961 0.3204 0.0771 

0.95 0.0130 0.0007 0.2461 0.3063 0.3186 0.0734 

0.99 0.0032 0.0004 0.2840 0.3141 0.3165 0.0734 
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Figure 13: Dependences of the risk function and error probabilities on the a priori probability in the Bayesian and Bernardo tests. 
 
Table 13: Computation Results of the Risk Function and Error Probabilities in the Bayesian and Bernardo Tests 

Depending on the Variance of Basic Hypothesis 

Initial values  
m = 10,000 , n = 5  
µ0 = 3 , p = 0.5  
A = 10 , ! = 0.05  

Computed values for classical Bayesian 
method 

Computed values for Bernardo’s correction 

! 2  r  !0 = "1  !1 = "0  r  !0 = "1  !1 = "0  

0.0001 0.0014 0 0.0027 0.1600 0.3189 0.0011 
0.001 0.0040 0.0004 0.0077 0.1623 0.3221 0.0026 
0.01 0.0124 0.0011 0.0237 0.1608 0.3146 0.0070 
0.05 0.0251 0.0031 0.0471 0.1668 0.3191 0.0144 
0.08 0.0312 0.0029 0.0595 0.1713 0.3229 0.0197 
0.1 0.0359 0.0043 0.0675 0.1693 0.3152 0.0234 
0.5 0.0695 0.0100 0.1290 0.1829 0.3137 0.0521 
1 0.0958 0.0152 0.1763 0.1939 0.3118 0.0759 
2 0.1287 0.0246 0.2328 0.2089 0.3179 0.0998 
3 0.1481 0.0286 0.2675 0.2221 0.3139 0.1303 
4 0.1720 0.0371 0.3069 0.2303 0.3135 0.1470 
5 0.1904 0.0417 0.3391 0.2400 0.3183 0.1616 
10 0.2453 0.0636 0.4271 0.2770 0.3241 0.2299 
30 0.3691 0.1252 0.6130 0.3606 0.3160 0.4051 
40 0.4067 0.1552 0.6582 0.3901 0.3213 0.4588 
50 0.4357 0.1746 0.6968 0.4172 0.3254 0.5089 
60 0.4543 0.1945 0.7141 0.4414 0.3182 0.5646 
70 0.4731 0.2177 0.7284 0.4634 0.3132 0.6135 

100 0.5199 0.2816 0.7582 0.5071 0.3124 0.7017 
300 0.5551 0.7993 0.3109 0.6361 0.3070 0.9652 
500 0.5000 1 0 0.6601 0.3218 0.9983 
1000 0.5000 1 0 0.6625 0.3251 1 
2000 0.5000 1 0 0.6593 0.3187 1 
5000 0.5000 1 0 0.6564 0.3129 1 
10000 0.5000 1 0 0.6611 0.3221 1 
20000 0.5000 1 0 0.6610 0.3220 1 
50000 0.5000 1 0 0.6580 0.3159 1 
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Figure 14: Dependences of the risk function and error probabilities in the Bayesian and Bernardo tests depending on the 
variance of the basic hypothesis. 

Table 14: Computation Results of the Lagrange Multiplier, the Risk Function and Error Probabilities of CBM Depending 
on the Variance of the Basic Hypothesis 

Initial values  
m = 10,000 , n = 5  
µ0 = 3 , p = 0.5  
A = 10 , ! = 0.05  

Computed values for CBM 

 ! 2  xe0 xe1 !  r  !0  !1  !0  !1  p01  p11  p02  p12  

0.0001 2.9978 -1.1466 0.0022 0.0007 0.0964 0.0036 0.0014 0 0 0 0.0964 0.0022 
0.001 2.9874 4.7805 0.0076 0.0019 0.0893 0.0107 0.0039 0 0 0 0.0893 0.0068 
0.01 3.0010 -2.7428 0.0290 0.0070 0.0693 0.0307 0.0140 0 0 0 0.0693 0.0167 
0.05 2.9201 0.5121 0.0982 0.0164 0.0404 0.0596 0.0326 0.0001 0 0 0.0403 0.0270 
0.08 3.1208 0.5918 0.1832 0.0238 0.0270 0.0730 0.0471 0.0005 0 0 0.0265 0.0259 
0.1 3.1015 4.2024 0.2312 0.0254 0.0252 0.0748 0.0495 0.0012 0 0 0.0240 0.0253 
0.5 2.4304 3.7244 4.3946 0.1101 0.0015 0.0985 0.1586 0.0616 0.0601 0.0601 0 0 
1 2.2747 1.3500 7.5685 0.2122 0.0025 0.0975 0.2377 0.1868 0.1843 0.1402 0 0 
2 3.7352 -1.8508 7.8123 0.3181 0.0028 0.0972 0.3140 0.3221 0.3193 0.2168 0 0 
3 3.8066 -0.8789 7.5968 0.3982 0.0032 0.0968 0.3669 0.4294 0.4262 0.2701 0 0 
4 2.4517 -1.2185 7.1248 0.4562 0.0031 0.0969 0.4152 0.4972 0.4941 0.3183 0 0 
5 4.5725 0.1347 6.5919 0.4920 0.0054 0.0946 0.4515 0.5325 0.5271 0.3569 0 0 
10 2.5069 -2.7955 5.2387 0.6473 0.0087 0.0913 0.5992 0.6954 0.6867 0.5079 0 0 
30 1.7302 -2.7131 3.2087 0.8337 0.0286 0.0714 0.8039 0.8634 0.8348 0.7325 0 0 
40 -0.3488 0.0214 2.7992 0.8764 0.0421 0.0579 0.8538 0.8990 0.8569 0.7959 0 0 
50 1.1060 -3.0332 2.5140 0.9063 0.0561 0.0439 0.8778 0.9349 0.8788 0.8339 0 0 
60 9.6382 2.0775 2.3004 0.9274 0.0700 0.0300 0.8935 0.9612 0.8912 0.8635 0 0 
70 1.2111 5.7723 2.1313 0.9437 0.0808 0.0192 0.9128 0.9746 0.8938 0.8936 0 0 

100 -0.5579 -1.8288 2.1325 0.9746 0.1000 0 0.9492 1 0.9000 0.9492 0 0 
300 -6.2150 -1.0295 3.6622 1 0.1000 0 1 1 0.9000 1 0 0 
500 -5.9096 1.3254 4.9059 1 0.1000 0 1 1 0.9000 1 0 0 
1000 7.3755 -1.5548 6.9129 1 0.1000 0 1 1 0.9000 1 0 0 
2000 -20.1732 -2.4341 9.7693 1 0.1000 0 1 1 0.9000 1 0 0 
5000 38.5150 -1.4164 15.1238 1 0.1000 0 1 1 0.9000 1 0 0 
10000 16.3573 2.0443 21.7477 1 0.1000 0 1 1 0.9000 1 0 0 
20000 46.7002 2.0201 29.2970 1 0.1000 0 1 1 0.9000 1 0 0 
50000 -90.0415 -1.1883 50.7818 1 0.1000 0 1 1 0.9000 1 0 0 
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     a       b 
Figure 15: Dependences of the risk function and error probabilities of CBM depending on the variance of basic hypothesis. 

a) Probabilities of incorrect making decision. b) Probabilities of no making decision. 

increase. Because !0 " 0.1  and !1 " 0 , the following 
takes place p01 ! 0.9  and p11 ! 1 . At the same time, 
the risk function r! 1 . Because of increasing regions 
of acceptance of both hypotheses, the regions which 
do not belong to hypotheses acceptance regions 
become empty and hence the appropriate probabilities 
p02  and p12  become equal to zero.  

 The graphs of dependences of the risk function and 
error probabilities of the considered methods on the 
length of the domain of definition of the uniformly 
distributed random variable with the alternative 

hypothesis are given below. The optimality of CBM in 
comparison with two other tests is obvious (similarly to 
the first example given in Figure 7).  

5. DISCUSSION 

The computation results show that the choice of a 
priori probabilities on the basis of a preliminarily stated 
aim does not make sense, because it deteriorates the 
results of the test. A priori probabilities must be chosen 
on the basis of objective information [14, 26], and, the 
more objectively they are chosen, the better is for the 
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final results. The choice of a priori probabilities on the 
basis of the sample which is used for making a 
decision is not a good solution of the problem either, 
because they are subjective probabilities which are 
determined by a concrete sample, i.e. by the 
information contained in the concrete sample. The 
purpose of the a priori probabilities in the Bayesian 
statement is to decrease the subjective factor (which is 
contained in a concrete sample as it is determined by 
concrete (subjective) values of the random component) 
on the basis of previous knowledge and experience for 
neutralization of the concrete values of the random 
component. If there is no objective information for 

determination of the a priori probabilities of tested 
hypotheses, it is better to choose equal values of these 
probabilities for all hypotheses.  

6. CONCLUSION  

The optimality of CBM for testing composite 
hypotheses is shown. In particular, there is shown that 
the risk of the Lindley’s paradox does not exist for it. 
Superiority of CBM in comparison with the Bayesian 
test with classical and Bernardo’s choice of the a priori 
probabilities of tested hypotheses is shown with 
theoretical consideration that is supported by 
computation results of many characteristics of different 

(Figure 16). Continued. 

 

 
Figure 16: Dependences of the risk function and error probabilities on the length of the domain of definition of the uniformly 
distributed random variable with the alternative hypothesis in the considered tests for example 2. 
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practical examples. Necessity in testing composite 
hypotheses arises very often at solving many practical 
problems. In particular, they are very important in many 
medical and biological applications. It is shown that, 
CBM keeps the optimal properties at testing composite 
hypotheses and, therefore it gives great opportunities 
for making reliable decisions in theory and practice.  
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APPENDIX 

The code of the program for computation of Example 1 

% Example for normal versus normal 

 %  
  %  
  clear all 
  format short 

% m - Number of generated random values for 
computation integrals;  
% n - sample size, i.e. dimension of the normal vector; 
% a - restriction level alfa; 
% LamL, LamU - Lower and upper values of Lambda;  
% Lam - Lambda corresponding to the solution of 
restriction equation; 
% miu0, miu1 - mathematical expectations for H0 and 
H1;  
% sig, sig1 - variances for H0 and H1; 
% p – a priori probability of H0; 

m=10000; 
n=5; 

a=0.05; 

LamL=0.0001; 
LamU=1000; 

miu0=1;  
miu1=3; 

sig=1;  
sig1=30; 

p=0.01; 

for i1=1:30 % generating random numbers for 
improving generator's quality 
 cn(i1)=randn; % normally distributed random 

numbers 

end 

ind=0; 

% computation of the integrals in restriction 

I=0; 

while abs(I-(1-a))>0.00001 % cycle for solution of 
restriction equation, i.e. finding Lam 

Lam=(LamL+LamU)/2; 

I0=0; 
I1=0; 
Ib0=0; 
Ib1=0; 
Ip01=0; 
Ip02=0; 
Ip11=0; 
Ip12=0; 

ind=ind+1; 

for j=1:m 

 xe0=0; 
 xe1=0; 

 for i=1:n 
 x0(i)=miu0+sqrt(sig)*randn; 
 x1(i)=miu1+sqrt(sig1+sig/n)*randn;  
 xe0=xe0+x0(i); 
 xe1=xe1+x1(i); 
 end 

xe0=xe0/n; % mathematical expectation of normal 
vector at H0; 
xe1=xe1/n; % mathematical expectation of normal 
vector at H1; 

% computation for acceptance region of H0;  

cc=((1-p)/p)*((sig/n)/(sig1+sig/n))^0.5;  

d0=(xe0-miu0)^2/(2*sig/n)-(xe0-
miu1)^2/(2*sig1+2*sig/n); 

if   d0>100 
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 d0=100; 
end 

if   d0<-100 
 d0=-100; 
end 

g0=cc*exp(d0); 

% computation for acceptance region of H1; 

d1=(xe1-miu0)^2/(2*sig/n)-(xe1-
miu1)^2/(2*sig1+2*sig/n); 

if   d1>100 
 d1=100; 
end 

if   d1<-100 
 d1=-100; 
end 

g1=cc*exp(d1); 

% computation of integrals in restriction; 

if g0<Lam 
 I0=I0+1; % I0 and I1 integrals in restriction for H0 

and H1 
end 

if g1>1/Lam 
 I1=I1+1; 
end 

% Computation of error probabilities  

if g1<Lam 
 Ib0=Ib0+1; 
end 

if g0>1/Lam 
 Ib1=Ib1+1; 
end 

if 1/Lam<=g0&g0<=Lam 
 Ip01=Ip01+1; 
end 

if Lam<=g0&g0<=1/Lam 
 Ip02=Ip02+1; 
end 

if 1/Lam<=g1&g1<=Lam 
 Ip11=Ip11+1; 
end 

if Lam<=g1&g1<=1/Lam 
 Ip12=Ip12+1; 
end 

% End of computation of error probabilities  

end % for j=1:m 

I=p*I0/m+(1-p)*I1/m;  

if I>(1-a) 
 LamU=Lam; 
else 
 LamL=Lam; 
end 

ind 

end % while 

 alfa0=1-I0/m; 
 alfa1=1-I1/m; 

 beta0=Ib0/m; 
 beta1=Ib1/m; 

 p01=Ip01/m; 
 p02=Ip02/m; 

 p11=Ip11/m; 
 p12=Ip12/m; 

 r=(1-p)*beta0+p*beta1 

Lam 
I 
alfa0 
alfa1 
beta0 
beta1 
p01 
p02 
p11 
p12 

The code of the program for computation of Example 2 

% Example for normal versus uniform  

 %  

  %  
  clear all 
  format short 

% m - Number of generated random values for 
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computation integrals;  
% n - sample size, i.e. dimension of the normal vector; 
% a - restriction level alfa; 
% LamL, LamU - Lower and upper values of Lambda;  
% Lam - Lambda corresponding to the solution of 
restriction equation; 
% miu0, miu1 - mathematical expectations for H0 and 
H1;  
% sig, sig1 - variances for H0 and H1; 
% p – a priori probability of H0; 

m=10000; 
n=5; 

a=0.05; 

LamL=0.0001; 
LamU=1000; 

miu0=3;  
A=10; 

sig=50000;  

p=0.5; 

for i1=1:30 % generating random numbers for 
improving generator's quality 
 cu(i1)=rand; % uniformly distributed random 

numbers  
end 

% computation of the integrals in restriction 

I=0; 

while abs(I-(1-a))>0.00001 % cycle for solution of 
restriction equation, i.e. finding Lam 

Lam=(LamL+LamU)/2; 

I0=0; 
I1=0; 
Ib0=0; 
Ib1=0; 
Ip01=0; 
Ip02=0; 
Ip11=0; 
Ip12=0; 

for j=1:m 

 xe0=0; 
 xe1=0; 

 for i=1:n 

 x0(i)=0; 
 x1(i)=0; 
 end 

 for i=1:n 
 x0(i)=miu0+sqrt(sig)*randn; 
 x1(i)=-A+2*A*rand; 
 xe0=xe0+x0(i); 
 xe1=xe1+x1(i); 
 end 

 xe0=xe0/n; % mathematical expectation of normal 
vector at H0; 

 xe1=xe1/n; % mathematical expectation of uniform 
vector at H1; 

% computation for acceptance region of H0;  

pp=(1-p)/p; 
a1=1/(2*A); 
a2=1/(n/(2*pi*sig))^0.5; 
g0=pp*a1*a2*exp(n*(xe0-miu0)^2/(2*sig)); 

% computation for acceptance region of H1; 

g1=pp*a1*a2*exp(n*(xe1-miu0)^2/(2*sig)); 

% computation of integrals in restriction; 

if g0<Lam 
 I0=I0+1; % I0 and I1 integrals in restriction for H0 

and H1 
end 

if g1>1/Lam 
 I1=I1+1; 
end 

% Computation of error probabilities  

if g1<Lam 
 Ib0=Ib0+1; 
end 

if g0>1/Lam 
 Ib1=Ib1+1; 
end 

if 1/Lam<=g0&g0<=Lam 
 Ip01=Ip01+1; 
end 

if Lam<=g0&g0<=1/Lam 
 Ip02=Ip02+1; 
end 
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if 1/Lam<=g1&g1<=Lam 
 Ip11=Ip11+1; 
end 

if Lam<=g1&g1<=1/Lam 
 Ip12=Ip12+1; 
end 

% End of computation of error probabilities  

end % for j=1:m 

I=p*I0/m+(1-p)*I1/m; 

if I>(1-a) 
 LamU=Lam; 
else 
 LamL=Lam; 
end 

end % while 

 alfa0=1-I0/m; 
 alfa1=1-I1/m; 

 beta0=Ib0/m; 
 beta1=Ib1/m; 

 p01=Ip01/m; 
 p02=Ip02/m; 

 p11=Ip11/m; 
 p12=Ip12/m; 

 r=(1-p)*beta0+p*beta1 

Lam 
I 
alfa0 
alfa1 
beta0 
beta1 
p01 
p02 
p11 
p12 
xe0 
xe1 
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