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Abstract: Statistical approaches for drug effectiveness studies after liver transplant have used a survival model with 
changes in treatment as a time-dependent covariate. However, the approach requires that changes in the time-
dependent covariate be unrelated to survival outcome. Usually this is not the case, as one drug may be discontinued and 
an alternative chosen due to the declining health status of the patient. Other approaches examine only subjects who 
remain on the same drug over a time window, which discards valuable data and may lead to biased effects since this 
excludes data related to early deaths and to individuals who perform poorly on the drug and had to switch treatments. 
Because of these issues there are conflicting results seen in the evaluation of immunosuppressive drug effectiveness 
after liver transplant. We propose a joint survival outcome model with a time-to-drug-change event and a terminal event 
in graft failure that is useful in drug effectiveness studies where subjects are discontinued from an immunosuppressant 
(in favour of alternative treatment) due to health reasons. We also include a longitudinal biomarker component. The 
model takes account of the dependencies across out- comes through shared random effects. Using a Markov chain 
Monte Carlo approach, we fit the joint model to data from liver transplant recipients from the Scientific Registry for 
Transplant Recipients. 
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1. INTRODUCTION 

In some fields of medicine, the dynamics of 
treatment and treatment failures require special 
consideration in statistical analysis. Transplantation is 
one of these fields. Transplant recipients must maintain 
a lifelong immunosuppressive regime, and a failure of 
one regime requires a change to an alternative drug. A 
failure in immunosuppressive treatment regime is 
usually related to patient and graft survival, since the 
change in treatment is on the causal pathway to graft 
failure. Some analyses have used a standard Cox 
proportional hazards survival model with treatment 
changes included as a time-dependent covariate [1,2]. 
However, assumptions of this model require that 
changes in the time-dependent covariate be unrelated 
in this way to the survival outcome. Ignoring this 
assumption may lead to biased results [3]. In 
transplantation, one drug may be discontinued and an 
alternative chosen due to graft rejection or the declining 
health of the patient for some other reason and so drug 
failures are typically indeed related to the survival 
outcomes. The primary objective of this paper is to 
develop a method for analyzing the efficacy of 
immunosuppressive treatment after liver transplant that  
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accounts for potential dependencies between drug 
failures and survival. Since the change in drug may be 
directly related to health status, we propose that 
treating it as a time-to-event process in a joint outcome 
model with time-to-graft-failure will provide less biased 
results. Modelling drug failures as a time-to-event 
process has not been considered in analyses of 
survival after organ transplant in registry data. 

The joint modelling of two time-to-event processes 
can be used for drug studies where the duration on and 
survival of a patient on a particular drug is of interest, 
especially in situations where the termination of the 
initial treatment drug is driven by the deteriorating 
health status of the patient. There is an association 
between failures of immunosuppressive treatment and 
graft survival, since treatment failures are likely 
triggered by another event that increases the risk of 
death or graft failure (e.g., organ rejection, or cancer 
occurrence). We suggest that jointly modelling graft 
survival and time-to-drug-failure in a joint survival 
outcome model with frailty terms linking the two 
outcomes is preferable in this situation. We consider an 
individual frailty to account for unobserved 
heterogeneity between patients. In addition, we are 
able to add a longitudinal component to thejoint model 
with the variable creatinine, which is collected every 
year after transplant. Creatinine is important both as a 
general health indicator, as well as an indicator of 
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treatment drug toxicity which may also lead to 
treatment switching. 

Much of the research in modelling two time-to-event 
processes started with the joint analysis of recurrent 
events and a terminating event. These models allow for 
a recurrent and a terminal event that are not 
independent. An important early paper in this proposed 
a Cox proportional hazards model with shared frailty for 
recurrent events and a terminal event in an MCMC 
approach [4]. The unobserved frailty in the model 
measures the latent health status of the patient and it is 
related to both the recurrent event and the terminal 
event. A shared frailty joint model accommodating 
multivariate longitudinal and bivariate time-to-event 
data with extension to a multivariate survival 
component was proposed in the setting of cure 
fractions [5]. Other important work in the area of 
multiple time-to-event processes includes [6] where the 
authors propose a joint frailty model using a non-
parametric likelihood method. Both [4] and [6] offer a 
thorough review of the history of research in this area 
from the 1990s to the mid 2000s. Another important 
paper uses two additive shared frailties to model trial 
and treatment heterogeneity in a meta-analysis [7]. Liu 
and Huang [8] is one of the few papers to consider 
repeated longitudinal events and two or more time-to-
event processes, using a shared random effects model. 
The hazard of the terminal event (death) depends on 
both the longitudinal random effects (CD4 counts) and 
the frailty term from the recurrent event (infection). 
More recently, Musoro [9] proposed as hared frailty 
model for multiple longitudinal outcomes and multiple 
repeated events (infections) without a terminal event 
using an MCMC approach for inference. 

The use of a joint modelling approach for modelling 
two event processes which did not includea recurrent 
event, but one that must come before the other, was 
first undertaken by Elashoff [10] in a competing risks 
setting. Methods for multiple failure times in the setting 
of competing risks and semi-competing risks data have 
become very popular, with further papers from Elashoff 
[11] followed by Williamson [12] and many others. Most 
recently, illness-death models have been applied to 
semi-competing risks data [13-15]. 

In this paper we utilize a joint model with a 
longitudinal component in log (creatinine), and 
abivariate survival model comprised of a time-to-drug-
failure process and a time-to-graft-survival process. 
This is a novel approach to drug efficacy analysis in 
transplantation. While [8] considered a longitudinal 

outcome with a recurrent process and a terminal event, 
a model with two survival events and a longitudinal 
component has not been previously considered. We 
hypothesize that higher creatinine levels are correlated 
with a greater risk of drug failure and also with greater 
risk of failure of the transplanted liver. We also 
hypothesize that having a change from initial drug 
therapy is associated with a greater risk of graft failure. 
In Section 2.1 we describe the development of our two 
time-to-event process joint model. In Section 3 we 
motivate the need for this type of model in the analysis 
of graft survival after liver transplantation. We end with 
a final section containing a discussion and future 
projects. 

2. STATISTICAL METHODS 

2.1. Joint Longitudinal and Survival Sub-Models 

The longitudinal component related to modelling the 
trajectory of log(creatinine) is a longitudinal mixed 
effects model that is linked to both survival models via 
random effects. We examine graft failure up to three 
years post transplant. Let yij represent the longitudinal 
marker log(creatinine) for subject i, i = 1, ..., n, at time-
point mij, j = 1, ...ni. The mixed effects model is 

 yij = !0 + !1mij + "xij! + b0i + b1imij+ #ij j = 1,…, ni ; i = 1,…, n  

where β0 and β1 are the intercept and slope; xij are a 
set of covariates with respective vectors of regression 
parameters β. The random effects b0i, b1i are 
independent and normally distributed. Let bi= (b0i,b1i). 
The variance-covariance matrix of bi, D = diag (ν1,ν2). 
Then we assume the measurement error εij ~ N(0,σ2) is 
independent of the bi. 

The longitudinal process influences two time-to-
event processes: time-to-drug-failure and time-to-graft-
failure. For the ith individual, let tki represent lifetime, k 
= 1,2, with t1i representing time-to-drug-failure with 
shape parameter α1, and t2i representing time-to-graft-
failure with shape parameter α2. The scale parameter 
λki can vary across individuals and events types. We  
re-parameterize λki as 

log(!ki ) = "zki# k +Wki + $kcik = 1, 2  

where zki and γk are the covariates and corresponding 
regression coefficients and where φ1= φ. The Wki link 
the random effects from the longitudinal model to the 
time-to-drug-failure model, where W1i = !1b̂0i +!2b̂1i ,  and 

the time-to-graft-failure model (W1i = !1b̂0i + !2b̂1i ).  
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The ζ and ρ are association parameters measuring 
the relationship between the vector of random effects bi 
and the time-to-event processes. The ci are subject-
specific frailty terms which link the two responses. In 
the graft failure component, φ measures the 
association between ci and risk of graft failure. We 
assume that the repeated measures of creatinine are 
correlated through the random effects bi, and the 
hazard of the terminal event depends on the 
longitudinal component and the time-to-drug-failure 
component through bi and ci respectively. The frailty 
term ci is assumed independent of bi. 

The data we use is taken from the Scientific 
Registry for Transplant Recipients (SRTR). The SRTR 
data system includes data on all donor, wait-listed 
candidates, and transplant recipients in the U.S., 
submitted by the members of the Organ Procurement 
and Transplantation Network (OPTN). The Health 
Resources and Services Administration (HRSA), U.S. 
Department of Health and Human Services provides 
oversight to the activities of the OPTN and SRTR 
contractors. A detailed description of the database is 
available in [16]. 

3. APPLICATION: A JOINT MODEL FOR THREE 
YEAR GRAFT SURVIVAL AFTER LIVER 
TRANSPLANT USING REGISTRY DATA 

The goal of our investigation is to apply a new 
method for assessing effectiveness of immuno-
suppression after liver transplantation, and to identify 
risk factors for graft failure while taking into account the 
initial immunosuppression and time on a particular drug 
or drug combination. Through joint modelling of the 
time-to-drug-failure and time-to-graft-failure processes, 
we can account for the association between time on 
initial drug therapy and graft survival. Time-to-drug-
failure can be extended to a recurrent event format 
following the methods of [6,8] or others, however we 
provide an example with the time to first occurrence 
only, to provide a simplified model that establishes 
whether there is an association between creatinine, 
time on initial drug, and graft survival. We hypothesize 
that higher creatinine values (i.e. larger random effects) 
and a shorter time-on-initial-drug (i.e. larger frailty) 
increase the risk of graft failure. The time-to-drug-
failure frailty serves as a surrogate indicator for many 
possible health events since someone who is doing 
well after transplant is less likely to experience a 
change inimmunosuppressive regime. 

Estimation was carried out with a Bayesian 
approach and a Markov chain Monte Carlo (MCMC) 

algorithm in R [17] and Just Another Gibbs Sampler 
[18] to obtain estimates of the posterior distributions, 
and with the priors specified in JAGS as non-
informative where the components of γ1 and γ2 are ~ 
N(0,10000), αk ~ Unif(0,1), and ρ1, ρ2 and ζ1, ζ2 are 
N(0,10000). The ci ~ N(0,1/σc), with σc ~ Unif(0,10000). 
The prior distributions for the random effects bi were 
specified as N(0, D) with the diagonal components of D 
~ Unif(0,10000). We ran three chains for 500,000 
iterations with 400,000 burn-in, which took 
approximately 30 hours. Convergence was judged by 
the Brooks-Gelman-Rubin (BGR) convergence 
diagnostic [19]. We used the deviance information 
criterion (DIC) for model comparison. Covariates were 
removed from the model if the credible interval 
contained zero. 

We analyzed those patients age 16 and older, 
receiving a first cadaveric liver transplant in the United 
States between January 1, 2000 and December 31, 
2002. There were 10,015 subjects, with 1,757 (17.5%) 
events (graft failure, defined as death or retransplant) 
in the first three years post-transplant. Immuno-
suppressive therapy is recorded at baseline and 
discharge from hospital after transplant, then at six 
months, and yearly. Exact dates for treatment failures 
are not given, so the data are interval censored. To 
simplify the analysis we took the midpoint of the 
interval as the date of treatment change. If a subject 
also died during the interval where a treatment change 
was recorded, we took the midpoint of the start of the 
interval and the date of death as the day of treatment 
change. We do not use the data collected on the date 
of death or retransplant, since this would introduce bias 
as only those who die have a measurement at this 
unspecified time-point. If we could not determine 
baseline treatment, the subject was removed from the 
analysis. We chose to analyze baseline immuno-
suppression by combination (rather than as any 
exposure or not, as in [2, 20]), since this accounts for 
any interaction or synergistic effects between SRL and 
the calcineurin inhibitors (CYA or TAC). This also 
allows us to see the effects of SRL uncontaminated by 
other drugs. 

4. RESULTS 

The SRTR collects immunosuppressive therapy for 
only the first five years after transplant. Most of the 
changes from initial therapy occur within the first year. 
Of the 10,015 subjects without missing data, 2,468 
(25%) changed their initial therapy within the first three 
years post-transplant. Table 1 shows the number of 
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subjects on each drug combination and how many 
changed therapies by year 3. This table shows the 
great disparity in treatment switching among the 
various regimes. 

Table 1: Summary of the Number of Individuals (n) on 
Initial Drug Therapies and the Number and 
Percent that Changed (n Changed (%)) from 
Initial Therapy within Three Years Post-
Transplant 

Initial treatment n n changed (%) 

TAC  8218 1554 (18.9%) 

SRL + TAC 533 405 (76.0%) 

SRL 149 26 (47.7%) 

CYA 1026 416 (40.5%) 

SRL + CYA 89 67 (75.3%) 

Treating drug failure as a time-to-event process is 
important to acknowledge the large amount of drug 
switching taking place in every group except TAC and 
to account for it in the analysis. We only examine 
primary immunosuppressive therapy in this model. For 
the sake of simplicity, induction therapy such as 
thymoglobulin or anti-CD25 antibody, and adjuvant 
immunosuppression such as steroids, azathioprine, or 
mycophenolate mofetil, are not considered at this time. 
Figure 1 shows Kaplan-Meier curves for graft survival 
by initial drug therapy. Those started on CYA + SRL, 
SRL alone, or TAC alone enjoy the best survival. 
Figure 2 shows Kaplan-Meier curves for time to drug 
failure for each therapy. Here we see that SRL alone or 
in combination (SRL + TAC, SRL + CYA) has the 
shortest time to drug failure. Of the 2,468 who 
terminated initial therapy, 80% did so in the first year 
post-transplant. 

 
Figure 1: Graft survival by initial immunosuppression. 

 

 
Figure 2: Time-to-drug-failure, by initial immunosuppression. 
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We analyzed HCV positive and HCV negative 
subjects separately on account of non-proportional 
hazards in this variable. There were 4,513 subjects 
(952 graft failure events) who were HCV positive and 
5,502 subjects (805 graft failure events) who were HCV 
negative. Recurrence of HCV is universal after 
transplant, however the speed at which it progresses 
depends on different factors such as viral load, donor 
age and other risks that are not completely understood. 
There is growing evidence that this includes 
immunosuppressive regime [21, 22]. Table 2 shows the 
number of subjects on each immunosuppressive 
regime in each cohort. Other variables considered 
included recipient and donor age in decades, recipient 
and donor gender, gender mismatch between recipient 
and donor, donor BMI, whether a non-heart-beating 
donor was used, hepatocellular carcinoma (HCC), 
previous malignancy (pre-transplant), recipient race, 
recipient blood type, whether a split liver was received, 
and whether the recipient was infulminant hepatic 
failure at the time of transplant. Donor BMI was missing 
in three subjects so the average was substituted. We 
also tested for covariate interactions with HCC status. 
We incorporated into our analysis longitudinal values of 
creatinine up to three years post-transplant. 

Table 2: Summary of Initial Drug Therapies by HCV 
Status 

HCV positive cohort 

Initial treatment n (%) 

TAC   3741(82.9%)  
 

SRL + TAC   223 (4.9%) 

SRL   69 (1.5%) 

CYA   440 (9.7%) 

SRL + CYA 40 (0.9%) 

HCV negative cohort 

Initial treatment n (%) 

TAC   4477 (81.3%)  

SRL + TAC   310 (5.6%) 

SRL   80 (1.5%) 

CYA   586 (10.7%) 

SRL + CYA 49 (0.9%) 

 

Missing values were allowed in creatinine since the 
longitudinal trajectory can still be estimated. There 
were a maximum of 5 longitudinal values (day of 
transplant, 6 months, year 1, year 2, year 3). The mean 

number of creatinine observations per subject was 3.3 
and the median was 3. We found a lower DIC when we 
did not include the slope random effect from the 
longitudinal component in both time-to-event 
processes, and so the models for both cohorts included 
only an intercept random effect in the longitudinal 
component of the model. This could be because the 
value of the overall slope β1 and its estimated random 
effects are very small (0.006) in the longitudinal model, 
or possibly because in our three year analysis there are 
not enough repeated measurements of creatinine to 
improve the model when this random effect is included. 
The final model for each cohort was chosen after 
considering DIC as well as Cox Snell residuals for the 
graft survival component. 

Results from the best fitting joint model for the HCV 
positive cohort are shown in Table 3. Most of the 
covariates listed in Table 3 have a significant effect on 
time-to-graft-failure or time-to-drug-failure. The 
covariate gender was kept in the longitudinal model 
because it improved the DIC even though the credible 
interval contained zero. The random effect b0i was an 
important linkage term between the longitudinal and the 
graft failure sub-models. In the longitudinal component, 
we saw a lower log(creatinine) over time in female 
subjects, while a higher log (creatinine) was seen in 
older subjects, those in fulminant failure at time of 
transplant, those who were diabetic at transplant, and 
those with a higher donor BMI. The only covariate 
significant in the time-to-drug-failure sub-model was 
treatment. Being on any initial treatment other than 
TAC significantly shortens the time to change of initial 
immunosuppressive therapy. The greatly increased risk 
of drug failure from initial immunosuppressive regime 
fits with the degree of treatment switching seen. The 
linkage parameter ζ was not significantly associated 
with to time-to-drug-failure. 

In the time-to-graft-failure component, we found that 
none of the immunosuppressive treatments are 
significantly different from the reference drug TAC in 
terms of impact on graft survival, after taking into 
account covariates and the time-to-drug-failure frailty 
effect. The model is structured so that drug effects are 
tested in comparison to TAC, the most commonly used 
treatment. Risk of graft failure is increased for those 
who are of African American race compared to all other 
races, for those who had any previous malignancy, and 
for increased donor age. We found no significant effect 
for HCC status in the model, even with the variable for 
previous malignancy removed, and no interaction 
between initial drug therapy and HCC status. 
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Table 3: Posterior Means for the Log Hazard, Hazard, Standard Error and Quantiles from the HCV Positive Cohort 
Joint Model. (ns=not significant; AA = African American; F = female) 

Parameter Mean Hazard Std err CI (lower) CI (upper) 

Longitudinal sub-model: 

intercept  -0.056  0.026  -0.105  -0.006  
slope  0.006    0.0002 0.006  0.006  

age in decades   0.004  0.0005  0.003  0.005  
fulminant failure  0.361  0.116  0.138  0.589  

gender (F)  -0.116   0.010  -0.137  -0.096 (ns)  
diabetes  0.068  0.018  0.032  0.102  
race (AA)   0.032    0.006   0.022   0.044 

baseline trt: TAC (ref)  ---   ---   ---   ---  
SRL + TAC 0.012   0.021  -0.028  0.055 (ns)  

SRL   0.021    0.036  -0.047  0.089 (ns) 
CYA 0.040   0.015  0.010  0.069  

CYA + SRL -0.038    0.047  -0.128  0.054 (ns) 
ν1(variance of b0i)  0.064     0.060 0.067  

Time-to-drug-failure sub-model: 

intercept   -9.761   0.097   -9.952  -9.580  
baseline trt: TAC alone (ref)  ---    --- ---   ---  

SRL + TAC  7.522   0.401  6.755   8.310  
SRL  3.705   0.609  2.545   4.895  
CYA 3.022   0.251   2.527  3.514 

CYA + SRL  9.523    1.102  7.436  11.715  
σc (variance of ci)  14.929   13.682 16.374 

Time-to-graft-failure sub-model: 

α (shape parameter)   0.933   0.028   0.879  0.986  
intercept   -8.681   0.215   -9.088  -8.263 

donor age (decades)  0.016  1.016  0.002  0.012  0.020  
race (AA)  0.182 1.200   0.036  0.114 0.248  
gender (F)   0.128    0.075   -0.021   0.272 (ns) 

previous malignancy   0.451  1.568 0.107  0.239   0.660 
baseline trt: TAC (ref)  --  --  --  --  

SRL + TAC  -0.101   0.158 -0.426  0.190 (ns)  
SRL  -0.462    0.321  -1.146  0.142 (ns) 
CYA  0.040   0.108   -0.184   0.243 (ns)  

CYA + SRL -0.210    0.373   -0.977   0.493 (ns) 
ρ�  0.447   1.564   0.160   0.131   0.770 
φ 0.046  1.047   0.011  0.023  0.068 
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Figure 3: HCV positive cohort: Histograms of subject-specific intercept random effects from the longitudinal model, by initial 
treatment. Positive random effects are associated with increased risk of graft failure. 

The subject-specific intercept random effect b0i from 
the longitudinal component has a significant link with 
graft survival through the association parameter (ρ1), 
with a hazard ratio of 1.567 for each one unit change in 
the random effect. The random effects themselves 
range from -0.69 to 1.43, and so the hazard can be as 
beneficial as 0.73 for those with lower than average 
creatinine levels, and as high as 1.90. When grouped 
by drug the random effects do not show any distinct 
patterns (see Figure 3). The individual log frailty ci from 
the time-to-drug-failure component has a significant link 
through the association parameter φ to the graft 
survival model in the HCV positive cohort, where it 
increases survival time for those with negative frailties, 
and decreases survival time for those with positive log 
frailties. Negative log frailties are associated with a 
lower risk of a drug failure event. Therefore, failure of 
initial therapy is associated with shorter graft survival. 
This is medically sensible since a change in treatment 
is often precipitated by an adverse event such as 
rejection. 

Histograms of individual log frailties grouped by 
whether a drug failure occurred are shown in Figure 4, 
and plots grouped by initial treatment are shown in 

Figure 5. The value of the frailty can be quite large, 
with a range of approximately -6 to +7, so the 
estimated coefficient for the individual frailty in the 
survival model, while small at 0.046 (hazard: exp(0.046 
× log frailty)), can have a large effect depending on the 
value of the subject specific frailty, with a hazard ratio 
ranging from a beneficial 0.76, to an increased hazard 
of 1.38. Note however, that there is quite a wide range 
of individual frailties for all drug therapies (see Figure 
5). The variance of the subject-specific frailty is 10.5, 
which shows there is a great deal of unobserved 
heterogeneity between subjects. To put the results into 
context, Table 4 shows these effects for each treatment 
combination, comparing the mean, minimum and 
maximum frailties of subjects who did not change 
therapy to those who did. For the group on initial 
therapy of TAC alone who did experience a drug failure 
event, the mean frailty shows the highest risk of graft 
failure (mean hazard: 1.25), suggesting that subjects 
who do not do well on the ‘gold standard’ TAC are at 
greatest risk of graft failure. 

Results from the best fitting joint model for the HCV 
negative cohort are shown in Table 5. The random 
effect for the intercept b0iwas seen as an important 
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Figure 4: HCV positive cohort: Histograms of individual log frailties from time-to-drug-failure model, by whether initial treatment 
was changed. Positive frailties are associated with increased risk of graft failure. 

 

 
Figure 5: HCV positive cohort: Histograms of individual log frailties from time-to-drug-failure model, by initial 
immunosuppression. Positive frailties are associated with increased risk of graft failure. 
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Table 4: Summary of Frailty Effects on Graft Failure by Initial Drug Therapy for the HCV Positive Cohort 

Initial treatment  No drug failure: Mean 
(min, max) 

Hazard (min, max)   Had drug failure: Mean 
(min, max) 

Hazard (min, max) 

TAC   -1.1 (-4.3, 1.3)   0.8, 1.1   4.9 (3.4, 7.1)   1.2, 1.4  

SRL + TAC  -3.9 (-6.0, -1.3)   0.8, 0.9   1.2 (0.2, 3.5)  1.0, 1.2  

SRL  -2.2 (-3.9, 0.1)  0.8, 1.0  2.7 (1.7, 4.5)   1.1, 1.2  

CYA  -2.2 (-4.6, 0.5)   0.8, 1.0  3.0 (1.9, 4.9)  1.1, 1.3  

SRL + CYA  -4.5 (-5.7, -2.7)   0.8, 0.9  0.6 (-0.02, 2.0)   1.0, 1.1  

 
Table 5: Posterior Means for the Log Hazard, Hazard, Standard Error and Quantiles from the HCV Negative Cohort 

Joint Model 

Parameter   Mean   Hazard  Std err  CI (lower)   CI (upper) 

Longitudinal sub-model: 

intercept  -0.128   0.019 -0.165  -0.091  

slope  0.005    0.0002 0.005  0.005  

age in decades   0.007  0.0004  0.006  0.008  

fulminant failure  0.104   0.018  0.068  0.140  

gender (F)  -0.154   0.009  -0.173  -0.137  

diabetes  0.052  0.016  0.021  0.084  

donor BMI  0.0002   0.00007  0.0001  0.0003  

baseline trt: TAC alone (ref)  ---   ---   ---   ---  

SRL + TAC -0.041   0.018  -0.078  -0.006  

SRL  -0.005    0.036  -0.074  0.063 (ns) 

CYA 0.015   0.014  -0.011 0.104 (ns) 

CYA + SRL  0.014    0.045  -0.073  0.104 (ns) 

ν1(variance of b0i)  0.075     0.071 0.079  

Time-to-drug-failure sub-model: 

intercept   -9.949   0.081  -10.110  -9.792  

baseline trt: TAC alone (ref)  ---  ---  ---   ---  

SRL + TAC  7.249   0.336  6.594  7.916  

SRL   4.112    0.565  3.029  7.916  

CYA  2.643   0.220  2.206  3.075  

CYA + SRL 5.844   0.735  4.437  7.356  

σc (variance of ci) 15.152    14.085 16.129 

α(shape parameter)   0.848   0.029   0.789  0.906  

Time-to-graft-failure sub-model: 

intercept   -8.134   0.226  -8.584  -7.683  

HCC   0.527 1.694  0.135 0.253 0.790 

donor age (decades)   0.010  1.011  0.002  0.006  0.014  

gender   -0.212  0.809   0.077   -0.355   -0.060  

baseline trt: TAC (ref)  --  --  --  --  

SRL + TAC 0.233   0.145  -0.067  0.516 (ns)  

SRL  -0.199  0.321   -0.836 0.380 (ns)  

CYA  0.167   0.112   -0.059   0.388 (ns)  

CYA + SRL  -0.707  0.516  -1.777  0.211 (ns)  

ρ� 0.632 1.881 0.153  0.337  0.929 

φ 0.064  1.066  0.012  0.039  0.088  
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linkage term between the longitudinal and the graft 
failure sub-models (but again, not in the time-to-drug-
failure sub-model). We saw a lower log(creatinine) over 
time in female subjects and in subjects on SRL + TAC, 
while a higher log(creatinine) was seen in older 
subjects, those in fulminant failure at time of transplant, 
those who were diabetic at transplant, and those with a 
higher donor BMI. This last result, while the effect is 
small, is nevertheless interesting and could be 
investigated further. It is possible that a donor with a 
higher BMI has more fatty tissue in the liver, resulting in 
more difficult postoperative recovery and higher 
creatinine. Fatty liver can also lead to more 
inflammation and therefore higher doses of 

immunosuppression. It is also interesting that this effect 
was not seen in the HCV positive cohort, possibly 
because HCV positive subjects are often counselled 
against accepting a marginal donor organ with 
increased risk due to fatty liver. 

Similar to the HCV positive cohort, the only 
covariates significant in the time-to-drug-failuresub-
model were baseline treatment. Being on any initial 
treatment other than tacrolimus significantly shortens 
the time to failure of initial immunosuppressive therapy. 
In the graft survival component, no immunosuppressive 
treatment was significantly different from the reference 
drug TAC in terms of impact on graft survival. Risk of 

 
Figure 6: HCV negative cohort: Histograms of subject-specific intercept random effects from the longitudinal model, by initial 
treatment. Positive random effects are associated with increased risk of graft failure. 
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graft failure is increased for those who have HCC, for 
those who are African American, and for increased 
donor age. Gender was kept in the model because it 
improved DIC. We also tested all variables for 
interaction with HCC status and did not find any 
significant interaction. 

Another interesting feature of this analysis is the 
strong effect of the longitudinal random effect for 
log(creatinine) in the graft survival sub-model. A one 
unit increase in log(creatinine) has a hazard ratio of 
1.881 (compared to 1.567 in the HCV positive cohort). 
The subject-specific randomeffect ranges from -0.971 
to 1.469, so the hazard can be reduced for negative 
random effects (hazardratio 0.541) or increased to as 
much as 2.530 for the largest random effect. It is 
possible that this HCV negative cohort, having a wider 
variety of indications for liver transplant compared to 
the more homogeneous HCV positive cohort, comprise 
a group with diseases that involve more renal 
decompensation. When grouped by drug (see Figure 
6), the intercept random effects are similar to the HCV 
positive cohort, i.e. no distinct pattern by drug 
(compare to Figure 3). 

The individual frailty ci from the time-to-drug-failure 
component also has a significant linkage through the 
association parameter φ in the time-to-graft-failure 
model for the HCV negative cohort, where it increases 
survival time for those with negative frailties, and 
decreases survival time for those with positive frailties. 

This result is slightly larger than in the HCV positive 
cohort, with a higher risk seen in the negative cohort. 
Histograms of individual log frailties grouped by 
whether a drug change occurred are shown in Figure 7, 
and plots grouped by initial treatment are shown in 
Figure 8. The value of the frailty also had a wider range 
than the HCV positive cohort (-6.5 to +9). Figure 8 
shows the wide range of individual frailties for all drug 
therapies. The variance of the subject-specific frailty 
was similar to the positive cohort, showing there is a 
great deal of unobserved heterogeneity between 
subjects. 

Table 6 shows the frailty effects for each treatment 
combination, comparing the frailties of subjects who did 
not change therapy to those who did in the HCV 
negative cohort. Again we seethe greatest mean frailty 
in those who had baseline drug failure on TAC. The 
overall picture emerging here is that subjects who must 
discontinue baseline immunosuppressive therapy 
indeed have a poorer outcome, as expected, due to 
events precipitating drug failure. The calcineurin-
sparing combinations of SRL + CYA and SRL + TAC 
stand out (in both cohorts) for having the largest 
negative mean frailty in those who did not experience 
drug failure, and the smallest positive mean frailty in 
those who did have a drug failure event. This translates 
to a lower risk of graft failure regardless of failures in 
treatment. The effect of initial drug regime on graft 
survival must be considered in the context of the time-
to-drug-failure, in order to understand the overall risk to 

 
Figure 7: HCV negative cohort: Histograms of individual log frailties from time-to-drug-failure model, by whether drug failure 
occurred. Positive frailties are associated with increased risk of graft failure. 
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Figure 8: HCV negative cohort: Histograms of individual log frailties from time-to-drug-failure model, by initial 
immunosuppression. Positive frailties are associated with increased risk of graft failure. 

 
Table 6: Summary of Frailty Effects on Graft Survival by Initial Drug Therapy for the HCV Negative Cohort 

Initial trt   No drug failure: Mean 
(min, max)  

Hazard (min, max)  Had drug failure: Mean 
(min, max) 

Hazard (min, max) 

TAC   -1.3 (-5.0, 1.4)   0.7, 1.1   5.7 (4.4, 9.1)   1.3, 1.8  

SRL + TAC  -4.8 (-6.5, -1.9)   0.7, 0.9   1.6 (0.6, 4.3)  1.0, 1.3  

SRL  -3.3 (-4.9, -0.7)  0.7, 1.0  3.3 (2.0, 4.7)   1.1, 1.4  

CYA  -2.6 (-5.4, 0.5)   0.7, 1.0  4.0 (2.7, 6.8)  1.2, 1.5  

SRL + CYA  -4.3 (-5.5, -1.3)   0.7, 0.9   2.3 (1.3, 3.4)   1.1, 1.2  

 

each subject. Stable subjects who do not need to 
change baseline treatment have the best outcome, 

regardless of initial regime. For those who do have to 
switch treatments, those at highest risk seem to be the 
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small group who must switch from TAC alone to some 
other treatment. This suggests an interesting new area 
of research into the dynamics of drug failure on TAC 
compared to any other treatment, exploring what risks 
are specific to this group. 

We compared our model to a model using the often 
employed standard Cox proportional hazards model, 
with initial treatment as a baseline covariate. We also 
included log(creatinine) from the day of transplant as a 
covariate (86 were missing and so the mean was 
substituted for these cases). Using a stepwise 
procedure, the covariates that remain significant in the 
model are similar to both of the joint models presented 
above, although not identical. The significant covariates 
from this model for the HCV positive cohort are 
presented in Table 7. There were no significant 
differences in graft survival by baseline treatment for 
the HCV positive cohort. The hazards for the significant 
covariates are very similar to the joint model, and the 
standard errors are almost the same. The Cox 
proportional hazards model has a smaller effect for 
log(creatinine) compared to the random effects in the 
joint model, and the values for log(creatinine) are 
smaller (range: -2.3 to 2.9) than the values for the 
random effects and so this translates to a smaller effect 
overall compared to the intercept random effect for 

creatinine in the joint model. The joint model also has 
the added hazard from covariate φ and its association 
with the frailty ci in the time-to-drug-failure model. 

In addition, we compared our model to a Cox 
proportional hazards model that treats the use of SRL 
as a time-dependent covariate. Significant findings are 
shown in Table 8. We treated SRL as a time-
dependent indicator variable where it takes a value of 1 
if the subject is started on SRL (incombination or alone) 
at transplant, and changes to 0 when the subject 
changed treatment. Here we see that the effect for SRL 
is very significant (p = 0.029) and the hazard is 1.262 
for a subject starting on SRL, and this is a result that 
we did not see in either of the previous models. This 
shows the biased results that are obtained when a 
time-dependent covariate is used in a Cox proportional 
hazards model when a change in the time-dependent 
covariate is also related to outcome. Some of this bias 
could stem from the dramatic differences in treatment 
switching. Subjects whos witch treatment early are 
those with adverse events who therefore experience 
more graft failure. Results from other covariates such 
as donor age, log(creatinine), gender and previous 
malignancy are similar to the previously illustrated 
models. 

Table 7: Results from a Standard Cox Proportional Hazards Model for the HCV Positive Cohort 

Parameter Coefficient Hazard Std Error p 

donor age (decades)  0.016 1.016  0.002  < 0.001  

log(creatinine) day 0  0.220   1.246   0.070  0.002  

gender (F)   0.141  1.152  0.074 0.057 

previous malignancy   0.385  1.470  0.111  < 0.001 

HCC  0.197   1.217   0.112   0.078 

race (AA)   0.163   1.177   0.034  < 0.001 

Table 8: Results from a Cox Proportional Hazards Model with Time-Dependent SRL Treatment Covariate for the HCV 
Positive Cohort 

Parameter Coefficient Hazard Std Error p 

any SRL (time-dependent)  0.233 1.262 0.107 0.029 

donor age (decades)  0.010 1.016 0.002 < 0.001 

log(creatinine) day 0 0.155 1.168 0.060 0.010 

gender (female)  0.126 1.134 0.064 0.048 

race (African American)  0.164 1.178 0.029 < 0.001 

any CYA at baseline 0.634 1.885 0.279 0.023 

previous malignancy  0.388 1.474 0.094 <0.001 
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The comparisons to the Cox proportional hazards 
model for the HCV negative cohort show similar 
findings. In the HCV negative cohort, when we apply 
the standard Cox proportional hazards model to graft 
survival we get the significant results seen in Table 9. 
Again, baseline treatment is not significant factor for 
graft survival in any combination. The effects for donor 
age and gender are similar to the joint model. 

In the Cox model with time dependent treatment 
effect for SRL, we again see a greatly increased risk for 
any SRL exposure, with significant results shown in 
Table 10. This analysis shows that using two time-to-
event processes to analyze drug failure and graft 
failure, along with a longitudinal component in 
creatinine, is a valuable approach. The model has 
captured the increased risk to graft failure that is 
present with a sharp change in the biomarker, or with 
an adverse event that precipitates drug failure. 

5. DISCUSSION 

Analyzing treatment changes as a time-to-event 
process is a preferred approach in observational data 

analysis since it avoids discarding data. It also avoids 
the violation of model assumptions such as when 
treating drug as a time-dependent covariate. Analysis 
of the two time-to-event outcomes of drug failure and 
graft survival using a joint model can account for 
dependence between the two processes without 
making strong assumptions. We allow the important 
information contained in the time-to-drug-failure 
component to influence the hazard of the time-to-graft 
failure component. Transplant registry data, with 100% 
enrolment and follow up until death, is a valuable and 
readily available data source that can provide insight 
into factors affecting health outcomes after liver 
transplant. The time-to-drug-failure process acts as a 
surrogate for time to any adverse event such as 
infection, rejection, cancer occurrence or other, that 
may be unreliably collected in the registry data. This 
two outcome joint model describes the data structure 
well. We believe that use of a straightforward joint 
survival outcome model is appropriate for two reasons: 
first, clinical practice tells us that the association is 
strong between the drug failure and graft failure 
processes, and second, less complex joint modelling 
techniques are more likely to be adopted in practice in 

Table 9: Results from a Standard Cox Proportional Hazards Model for the HCV Negative Cohort 

Parameter Coefficient Hazard Std Error p 

donor age (decades)  0.009 1.009  0.002  < 0.001  

log(creatinine) day 0   0.158  1.171  0.065 0.015  

gender (F)   -0.172   0.842   0.075   0.022  

race (AA)   0.128   1.137   0.042   0.002 

previous malignancy  0.724  2.063  0.133 < 0.001  

Table 10: Results from a Cox Proportional Hazards Model with Time-Dependent SRL Treatment Covariate for the HCV 
Negative Cohort 

Parameter Coefficient Hazard Std Error p 

any SRL (time-dependent)   0.404  1.498   0.095  < 0.001 

donor age (decades)  0.008 1.008  0.002  < 0.001  

log(creatinine) day 0   0.166 1.180  0.055 0.003  

gender (F)   -0.177   0.838   0.064   0.006 

recipient age (decades)   0.005   1.005   0.003   0.057 

HCC   0.226   1.253  0.119   0.059 

previous malignancy  0.758 2.133  0.112 < 0.001 

race (AA)   0.102   1.108   0.036   0.005 

blood type AB   -0.309   0.734   0.149   0.038 

diabetic   0.239   1.270  0.099 0.016 

CYA at baseline   0.276   1.317   0.087   0.002 
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this field. Joint modelling is not commonplace in 
analysis of SRTR data for transplantation, yet despite 
readily available and appropriate data, it has only been 
used in one application of which we are aware [4]. 

We did not find any significant differences between 
baseline treatments when compared to the ‘gold 
standard’ treatment TAC. However in the context of our 
joint outcome model, treatment effects should be 
interpreted on a subject-specific basis conditional on 
the frailty. We found great variability in the frailties. This 
is an indication that treatments alone are not good 
predictors of survival - generally, one treatment does 
provide better on average survival than another, yet 
there is great variability between treatments. When we 
condition on the frailty, we will have a better prediction 
of survival and better understanding of survival by 
treatment patterns. Rather than discard information, we 
have presented a model that includes all available data 
in a way that makes the most scientific sense. The 
longitudinal component takes into account factors 
affecting creatinine level over time. It is a proxy for 
choice of initial treatment, mimicking the physician 
decision process by taking into account all covariates 
affecting the evolution of creatinine over time. Degree 
of renal impairment is an important factor due to 
nephrotoxicity of the immunosuppression treatment. 
Our model offers more insight into the medical process 
and makes scientific sense. The subject-specific 
frailties from the time-to-drug-failure model account for 
latent variables that have a significant effect on graft 
survival, thus accounting for more of the variance in the 
data and enhancing our understanding of the whole 
process while improving the fit of the model. The 
information contained in the frailty covariate φ adds 
valuable dimension to the model that cannot be 
accounted for in traditional models. 

A limitation of this data set is the lack of exact dates 
for treatment failures, and the use of the interval 
midpoint is not ideal, however randomized clinical trial 
data (with exact dates) is not readily available for public 
analysis. Statistical bias related to the use of the 
midpoint is discussed in [23, 24]. To add recurrent 
events to the drug failure model would involve the use 
of doubly interval censored data that are also 
correlated. Furthermore, data on subjects who 
experience treatment failure more than once during a 
data collection interval is not collected with sufficient 
granularity in the SRTR to allow for a joint outcome 
analysis with recurrent events in drug failure. An 
application of joint modelling techniques to detailed 
randomized clinical trial data would provide greater 

understanding of the problem, since clinical trials 
normally collect exact dates. With collection of exact 
dates, many other time-to-event processes could be 
examined for their association with graft survival, such 
as time to post-transplant diabetes, or time to cancer 
occurrence or recurrence. 

Another limitation is that important information such 
as treatment dosage amounts and drug trough levels 
are missing from the registry data. Trough levels 
measure the amount of drug exposure per patient, 
which can vary on a subject-specific basis even when 
subjects are given the same amount of drug. This is 
another interesting avenue worth pursuing with 
transplant data in joint frailty models. The authors 
acknowledge the limitations of this three year 
retrospective analysis using registry data. All models in 
this paper would benefit from more data in the SRL 
arms. In this analysis we suspect that the use of only 
three years of data in the longitudinal component is not 
enough to see a significant effect from the random 
effect from the ζk in the time-to-drug-failure component. 
However our goal was met which showed that joint 
modelling provides added value to analysis of survival 
after liver transplantation. 

The data reported here have been supplied by the 
Minneapolis Medical Research Foundation (MMRF) as 
the contractor for the Scientific Registry of Transplant 
Recipients (SRTR). The interpretation and reporting of 
these data are the responsibility of the author(s) and in 
no way should be seen as an official policy of or 
interpretation by the SRTR or the U.S. Government. 
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