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Abstract: This article focuses on model based sparse feature extraction of biomedical signals for classification 
problems, which stems from sparse representation in modern signal processing. In the presented work, a novel 
approach based on sparse principal component analysis (SPCA) is proposed to extract signal features. This method 
involves partitioning signals and utilizing SPCA to select only a limited number of signal segments in order to construct 
signal principal components during the training stage. For signal classification purposes, a set of regression models 
based on sparse principal components of the selected training signal segments is constructed. Within this approach, 
model residuals are estimated and used as signal features for classification. The applications of the proposed approach 
are demonstrated by using both the synthetic data and real EEG signals. The high classification accuracy results 
suggest that the proposed methods may be useful for automatic event detection using long-term observational signals. 
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1. INTRODUCTION 

In many medical diagnoses of human diseases 
including sleep disorder and epilepsy, long-term 
observational biomedical signals are often used for 
detecting related health events. In processing long-
term biomedical signals, signal segmentation 
techniques are often applied to obtain a set of signal 
segments which are more stationary than the case that 
is without doing it. This enables application using some 
modeling techniques such as autoregressive moving 
average models. When applying segmentation to 
biomedical signals, the existence of non-stationarity 
and multi-scale structure may lead to low classification 
accuracy because signal segments from the same 
class may have different characteristics. This implies 
that model estimates using those signal segments will 
be highly volatile and it may be difficult to train a model 
based on the results of parameter estimates. 

In signal classification, one may use as many 
signals as possible for the training process. However, 
this may not be a good idea for complex signals. Signal 
segments from long-term signals are often cross 
correlated, and cannot be treated as independent 
samples. This is particularly true for multichannel 
signals as they are sampled for the same investigation 
purpose. On one hand, the possibly high cross-
correlation among signal segments restricts the use of  
 

 

*Address correspondence to this author at the Ted Rogers School of 
Management, Ryerson University, Toronto, ON M5B 2K3, Canada;  
E-mail: shengkun.xie@ryerson.ca 

many sophisticated statistical techniques for analyzing 
this type of signals; On the other hand, due to the huge 
amount of signal segments and their natural 
complexity, it is of great importance to efficiently 
manage and use these signals in computer aided 
diagnostic systems. This may call for novel techniques 
that are able to help reduce the dimensionality of data 
and to achieve reasonably good classification results. 

Feature extraction of signals is a typical approach 
for data dimension reduction. The objective of feature 
extraction is to obtain a set of signal features so that a 
suitable classification method can be applied. The main 
reason for feature extraction of signals is that much of 
the sampled information does not necessarily 
contribute to high accuracy of classification results. 
Removal of redundant information will lead to a higher 
efficiency in signal analysis. In order to obtain high 
discriminative signal features, sparse representation of 
signals by compressed sensing, principal component 
analysis, independent component analysis, wavelet 
decomposition, empirical modes decomposition or 
matching pursuit has been proposed for various types 
of biomedical signals and images [1-3]. The aim of 
sparse representation is to use only a limited number of 
underlying signal components to represent a given 
signal [4-6]. In signal processing, these underlying 
signals are called basis functions and usually 
constructed by a time-frequency decomposition 
approach such as wavelet decompositions [7]. 
However, the traditional approach for sparse 
approximation of signals is based on decomposing a 
single signal at each time. Thus, it does not take inter-
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signal similarity into account, resulting in a large 
number of basis functions needed for complex signals. 
On the other hand, in signal classification, not all 
training signal segments are necessary. Often selected 
signal segments are contributable to classification, 
therefore it is important to identify those signal 
segments. Because of these reasons, developing 
simultaneous sparse representation of multiple signals 
becomes critical in real-world applications. 

Due to the data dimension reduction property and 
its clustering effect, principal component analysis 
(PCA) [8] becomes a natural choice for clustering 
signal segments. Often first few principal components 
are able to explain major data variation, and their 
variances behave differently. Focusing on only the 
principal components can often lead to better clustering 
effect. PCA is done by searching signals that have 
larger correlations when each principal component is 
calculated. However, the limitation of using PCA is that 
it uses all signal segments when computing principal 
components. Due to signal redundancy, often only a 
subset of signal segments from the whole training data 
set is needed. Because of this, we propose sparse 
PCA (SPCA) to simultaneously select signal segments 
and construct signal principal components. We then 
use the extracted signal principal components to 
construct regression models in order for us to extract a 
set of features for classification. To achieve a better 
classification performance, we also propose a 
classification scheme based on the model residuals. 

This paper extends our prior research on feature 
extraction via SPCA (e.g., [9, 10]. The essential 
difference is that the presented work proposes a 
systematic classification scheme based on SPCA and 
regression model residuals, and discuss on a general 
framework of sparse representation for signal 
classification. This work also examines the proposed 
method in a more detailed way by comparing the 
results to our prior work of using wavelet functional 
linear model [11]. This work is also related to our prior 
work of using dynamic PCA with non-overlapping 
moving window technique [12]. The main idea is quite 
similar and they all involve in signal segmentation and 
focus on extracting sparse signal features, with 
objective of achieving sparsity and reasonably good 
classification results. However the presented work uses 
SPCA to select a limited number of signal for 
constructing principal component, the prior work used 
PCA to extract signal principal components and 
combine PCs with signal energy measure to be feature 
vector for classification. 

The remainder of the paper is organized as follows. 
In Section 2, the methods that are often used for 
sparse approximation of signals are discussed. Section 
3 presents our classification scheme based on sparse 
variable approximation. In Section 4 we discuss the 
experimental results of using synthetic data and real 
EEG data. In Section 5 we report our concluding 
remarks. 

2. SPARSE REPRESENTATION FOR SIGNAL 
CLASSIFICATION  

Suppose one deals with a G -class classification 
problem, where the class is labeled by g , for 

 g =1,…,G . In the training data set, it is assumed that 
there are lg  signals in the g th class. Each signal is 
then partitioned into a set of signal segments, denoted 
by

 
{Xig}i=1,…,pg ,g=1,…,G , where Xig  !   !

n . Here n  is the 

length of the signal segments, pg  is the number of 
signal segments in the class g . The total number of 
the signal segments for the training process is 
p =

g=1

G
! lg pg . The objective of the classification is to 

determine the class membership of a test signal Y . 

Sparse representation for signal classification 
(SRSC) [13] is an important technique to transform the 
signal {Xig}  into a set of discriminative signal features. 
The objective is trying to identify a set of low 
dimensional discriminative signal features that facilitate 
the use of a simple classification method to achieve a 
reasonably good classification result. From this 
perspective, SRSC is quite different from sparse 
methods used for signal analysis such as signal de-
noising or signal compression (e.g., [14]), where the 
focus is the signal re-construction with sparse 
components. In this section, we review some existing 
sparse methods that are often used in signal 
classification. These methods are subject to their own 
limitations when applied to signal classification. 

2.1. Simple Sparse Approximation 

Let  {!w "!
n :w " "}  be a collection of basis 

functions in the n -dimensional complex inner-product 
space. Sparse approximation is focused on identifying 
a sequence of basis function indices,  !1,…,!M " !  
(often  M << d ) and estimating their coefficients, 
denoted by cm

(ig) , for each n!1  signal Xig  so that Xig  
can be represented by the following  

Xig =
m=1

M

!cm
(ig)"

#m
(ig) + e

(ig).           (1) 
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where !
"m
(ig)  are selected basis functions from a given 

dictionary and e(ig)  represents the noise component 
that is unexplained by sparse approximation. Since this 
signal approximation is applied to each signal segment 
independently, it is often called simple sparse 
approximation. In finding the sparse solution of (1), a 
greedy algorithm such as matching pursuit [7] or its 
variant (e.g., [15]) is often applied. As an alternative 
approach, variable selection via L1  regularization can 
also be applied [16]. The most popular approach to this 
problem is to transform the original sparse 
approximation problem to a L1  regularized optimization 
procedure [17]. This leads to the following optimization 
problem  

 
arg

Cig!!
min " Xig "#Cig "

2 +$ "Cig "1,          (2) 

where !  is the pre-defined n! n  dictionary matrix. 

 ! Xig !"Cig !
2  is the 2-norm that calculates the signal 

approximation error. !  is the penalty parameter that 
controls the sparsity. The sparsity is often specified by 
the total number of non-zero elements in Cig  that is 
represented by the 1-norm  !Cig !1  in the equation (2) . 
The solution is obtained either through a greedy 
algorithm or via convex linear programming [18, 19]. 

In signal classification, the feature extraction 
problem can be formulated as sparse approximation of 
signals. When this is the case, a test signal with the 
same length as Xig  is mapped onto !

"m
(ig) , to obtain 

signal features for classification. Note that achieving 
signal sparsity via a simple sparse representation of 
signal is done by controlling the signal reconstruction 
error. The exacted feature vector Cig  is not necessarily 
discriminative. This is because the simple sparse 
approximation decomposes a signal at each time and it 
does not take inter-signal similarity into consideration.  

2.2. Sparse Discriminative Feature Extraction 

In order to take inter-signal similarity into account, 
the simultaneous sparse approximation (SSA) [20] was 
proposed. It looks for the sparse solution by 
considering all signal segments in all classes 
simultaneously. The signal segments are organized 
into a n! p  data matrix, denoted by X ! [x1, x2,…, xn ]

" , 
where xk =

 
[X11(k),…,Xl11

(k),X(l1+1)1(k),…,Xl1!p11
(k),…,  

XlG!pGG
(k)]"  is a p!1  column vector, for k =1,…,n , and 

p =
g=1

G
! lg pg  is the total number of signal segments 

within the training set. The SSA problem can be 
formulated as follows  

  
arg

Cij!
n

min ! X "#C !2 +$
g=1

G

%
i=1

lg

%
j=1

pg

% !Cij !1,         (3) 

where !  is a penalty parameter and C = [C11 ,  … , Cl11
, 

C(l1+1)1 ,  … , Cl1!p11
,  … , ClG!pGG

]  is the vector of 

extracted features, where Cij  is the feature vector of 
Xij . Again the  !Cij !1  is the 1-norm of Cij  that 
calculates the total number of non-zero elements in the 
vector. In signal classification, those basis functions 
that are associated with non-zero components of Cij  
are identified and a given test signal segment is 
mapped onto those basis functions to obtain a set of 
features for determining class membership. The 
advantage of this approach is to analyze signals 
simultaneously, and it potentially leads to automatic 
selection of training signals so that only limited amount 
of signal segments will be used for obtaining signal 
features. The limitation of this type of sparse 
approximation is that the classification performance 
may be influenced by the choice of a dictionary as it is 
pre-defined. 

In order to improve the effectiveness and the 
discrimination power of extracted features obtained 
from (3), one may further reduce the dimension of 
feature vector Cij  through a L2  regularization. This 
method selects the most discriminative signal features. 
It replaces the reconstruction error in the objective 
function of the optimization problem (3) by Fisher’s 
discrimination power, which is defined as  

 

D(C) =
!
g=1

G

!pg (mg "m)(mg "m)
# !2

g=1

G

!sg
2

,         (4) 

where  

 
mg =

1
lg pg i=1

lg

!
j=1

pg

!Cij , sg
2 = 1

lg pg i=1

lg

!
j=1

pg

! !Cij "m !
2,        (5) 

and  

m = 1
p g

G

!
i=1

lg

!
j=1

pg

!Cij ,           (6) 

are respectively, the sample mean vector for class g , 
the sample variance vector for class g  and the grand 
mean vector for all classes. The L2  regularization 
problem by using the Fisher’s discrimination becomes  

 
arg

Cij!R
n

maxD(C)+"
g=1

G

#
i=1

lg

#
j=1

pg

# !Cij !1,          (7) 
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where !  is again a penalty parameter taking negative 
value. This approach does not use the pre-defined 
dictionary and it produces a set of empirical basis 
functions directly from the data. For feature extraction 
of a given test signal segment, it will map onto those 
extracted basis functions from (4).  

2.3. Sparse Representation Based on Transform 
System 

The signal sparse representation discussed above 
involves in finding a small set of basis functions to 
approximate the signal matrix X . In fact, the sparse 
approximation of signals can also be done by using a 
pre-defined sparse dictionary. This approach replaces 
a continuous basis function by a sparse vector. For 
instance, in sparse approximation of given signal y(t)  
by discrete wavelet transform (DWT), which can be 
defined as y(t) =

jk! yjk" j ,k (t) , where j  and k  are 

integers [21], the basis function ! j ,k (t)  is generated by 

shrinking by a factor 2! j  and translating by 2 j k  from 
the mother wavelet ! , that is, ! j ,k (t) = 2

" j /2! 2" j t " k( ) , 
where the j  subscript represents the dilation number 
and the k  subscript represents the translation number. 
In sparse representation of signals, the sparseness 
constraints are applied to wavelet coefficients and only 
those components that correspond to significantly large 
value are selected through wavelet shrinkage 
approaches, e.g. hard thresholding or soft thresholding 
[22], [23]. This approach is possible as signal energy is 
mainly preserved at a small number of wavelet 
coefficients. However, similar to the simple sparse 
approximation, it does not utilize inter-signal similarity 
when extracting signal features. 

3. SIGNAL CLASSIFICATION BASED ON SPARSE 
VARIABLE APPROXIMATION 

In the discussion above we assumed that a set of 
basis functions are given so that a search algorithm 
can be applied to identify the most relevant basis 
functions to represent the signals. In this case, the 
successful application of sparse techniques heavily 
depends on the appropriate choice of dictionary. An 
alternative to this is to obtain a set of basis functions 
directly from X. To achieve this, PCA via singular value 
decomposition (SVD) of X can be used. However, in 
PCA, the loading matrix of X (i.e., a matrix consisting of 
eigenvectors of X) is typically non-sparse, so that the 
underlying principal components (i.e., extracted feature 
vectors) often have low discrimination power [24]. To 
improve the effectiveness of PCA method in signal 
classification, sparse PCA (SPCA) was proposed. This 
method was originally proposed in [25] for the purpose 
of multivariate data dimension reduction. In this paper, 
we discuss SPCA from signal classification 

perspective, which is different from data dimension 
reduction point of view. In our approach, we treat each 
signal segment as a set of realization of a random 
variable, therefore the data matrix X  is modeled as a 
set of realizations of a p -variate random vector. Our 
objective is to approximate this random vector by a 
sparse one. That is, using SPCA we aim to select 
partial variables from the p -variate random vector to 
construct a dictionary matrix. The selection of relevant 
variables reduce amount of signal segments from the 
training set to be used. This method is particularly 
important in long-term signal classification problem. 
Since not all information collected is contributable to 
signal classification, it is necessary to remove the 
redundant information from the training set if there is 
any. 

In the PCA approach, sparsity is often achieved by 
retaining only a limited number (i.e., pre-defined) of 
principal components. Each principal component is 
iteratively obtained from maximizing the data variation 
explained for each principal component. Suppose that 
we consider the first M  major PCs and let 
A= [!1,!2,…,!M ]  and B= [!1,!2,…,!M ]  be the score 
matrix and loading matrix, respectively, where !i  and 
!i  are p -dimensional column vectors. Finding the 
solution of sparse loading matrix B  leads to the 
following optimization problem  

 
arg

A,B
min

i=1

n

! ! xi " AB#xi !
2 +$2

m=1

M

! ! %m !
2 +

m=1

M

!$1,m ! %m !1,      (8) 

subject to A!A = IM"M , where !2  and !1,m  are 
regularization parameters. Here, IM!M  is an identity 
matrix. The orthogonality of A  ensures an optimal 
design matrix for signal approximation, which is desired 
from signal representation perspective. The first term in 
(8) controls the signal reconstruction error, the second 
term aims to regularize PCA (also called ridge 
regression based PCA in the statistical literature) and 
the third term is responsible for constructing sparse 
principal component loadings. As usual  ! !m !1  is the 1-
norm of !m  that compute the total number of non-zero 
elements of vector !m . If p >> n , !2  can be set to be 
infinity and the right hand side of Equation (8) can be 
simplified to the following  

 
argmin

i=1

n

! ! xi " AB#xi !
2 +

m=1

M

!$1,m ! %m !1.         (9) 

In finding the optimal solution of A  and B , the 
value of !1,m  is automatically selected through LASSO 
regularization paths [26], therefore, there is no need to 
specify the value of !1,m . Due to the orthogonality of A , 
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the solution of 
 
argmin

i=1

n
! ! xi " AB

#xi !
2  is equivalent to 

the solution of
 
argmin

m=1

M
! ! X"m # X$m !

2 . Therefore, for 

a given A , each !m  in B  that minimizes  

 m=1

M

! ! X"m # X$m !
2 +%2 ! $m !

2 +%1,m ! $m !1{ }      (10) 

will also minimize (8). Note that, for a given A , the 
solution that minimizes (10) is the elastic net estimate 
of B  [26]. Thus, finding the solution of (8) can be 
achieved via an iterative process of finding the elastic 
net estimate of B . This iterative process updates the 
initial value of A =UV !  by computing the SVD of 
X !XB =UDV ! . 

Due to dimension reduction of principal components 
and regularization of PCA via L1  penalty, SPCA (i.e., 
through the L2  penalty) provides us a set of sparse 
latent components, i.e. sparse principal components, 
along with a set of sparse loading vectors. The sparsity 
of the loading matrix results in a limited number of 
signal segments that account for most of the inter-
signal variation. Therefore, the sparse principal 
component loading vector !m  may consist of many 
zero elements, which suggests that the signal 
segments with zero coefficients do not contribute to the 
construction of the m th principal component. The 
small value of M  leads to sparse approximation of 
signal by a low dimensional feature vector in the 
classification step. 

In order to further explain our proposed method, the 
m th principal component loading vector !m  is re-

written as !m = [!m
(1)" , !m

(2)" ,  … , !m
(G )" ]" , where 

!m
(g) =

 
[!1,m

(g),…,! pg ,m
(g) ]" , for 1! g !G  and 1! m !M . Here 

!m
(g)  is a sparse column vector that consists of the m th 

principal component loadings of all signal segments in 
class g , and !i,m

(g)  is also a row vector that corresponds 
to m th principal component loading vector for the i th 
signal segment of class g . We then construct multiple 
linear regression models for a given signal segment by 
using these M  principal components as regressors. 
Within this approach, each given new signal segment 

 Yi ! !
n  is first normalized (subtract its sample mean 

and then divided by its sample standard deviation) and 
then regressed, respectively, by a set of extracted PCs 
that are belonged to the same class g . The regression 
models are constructed as follows  

Yi =
m=1

M

!cm
(i,g)X (g)"m

(g) + ei
(g),         (11) 

for  g =1,2,…,G  and  i =1,…,lg , where ei
(g)  is the g th 

model residual vector for signal segment Yi . 

The PCs are obtained by calculating X (g)!m
(g) , where 

X (g)  is a n! lg pg  sub-matrix, consisting of only the g th 
class signal segments. Note that we do not use the full 
sparse loading vector !m , but we use the partial sparse 
loading vector !m

(g)  for the regression. This is because 
that the g th regression model represents regression of 
a test signal segment by the g th class signal segments 
only. It is equivalent to retaining only the PC loadings 
that correspond to the g th class signal segments and 
shrinking the loadings of the other classes to be zero, 
for the g th regression model. Since !m

(g)  is a sparse 
vector, only the selected signal segments within the 
g th class are used to construct signal principal 
components, therefore this approach filters out many 
signal segments that do not contribute to classification.  

3.1. Regression Model Residuals Based 
Classification 

The conventional approach of using linear 
regression model for data classification often focuses 
on classifying the model coefficient vector C (i,g) = [c1

(i,g) , 
c2
(i,g) ,  … , cM

(i,g) ] . Each cm
(i,g)  is calculated based on the 

regression model discussed above. This type of 
approach requires further feature selection on C (i,g)  as 
well as an effective classifier in order to predict the 
class membership of signal Y . For the data we 
consider, this approach has been shown to be less 
effective for signal classification when a simple 
classifier is applied. This is often due to the fact that the 
signal segments are cross-correlated so that the 
extracted features are highly overlapped. 

In residual analysis of regression, the 
characteristics of model residuals are important for 
model checking and model validation when the 
objective is modeling. For model based feature 
extraction problem, our goal is to discriminate signals. 
We still focus on the goodness of fit for the model and 
try to minimize the standard error for each model. After 
such minimization, we then consider the model 
residuals as useful features. In fact, the discriminative 
power of the model residuals becomes more important 
to us. Often it is the case that model residuals behave 
differently when different models are fitted to a test 
signal segment. Because of this, classification can be 
done using regression model residuals ei

(g) , which are 
estimated by the mean absolute distance measure 

 

1
n
!Yi ! m=1

M
" cm

(i,g)X (g)#m
(g) !1 , a robust estimator for ei

(g) . 

From the signal segmentation procedure, we know that 
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each signal Y  with the observational time T  is 
segmented into a total !T / n"  segments each of the 
length n . Using the model (11), we estimate the model 
residual ei

(g)  for each i th segment Yi  of the signal Y  
and compute the average of ei

(g) , which is denoted by  

RY
g = 1

!T / n" i=1

!T /n"

#ei
g .         (12) 

The class membership of Y  is then determined by 
the one nearest neighbor classification method that 
uses the model residual RY

g  and the estimated model 
residuals obtained from the training data. Because the 
estimate of model residuals makes use of the labeling 
information of signals, it is then expected that the 
extracted features likely behave as clusters. This 
flowchart of our proposed classification scheme is 
represented in Figure 1, and it is summarized as 
follows  

Classification scheme: input:  Xtraining ! [x1, x2,…, xn ]
"  

and a segmented signal,  Y1,Y2,…,Y!T /n" , obtained from a 
test signal Ytest ;  

initialize A  and B ; A  and B  are not converged,  

find elastic estimate of B  by (10);  

compute the SVD of X !XB =UDV ! ;  

update A  by UV ! ;  

return B= [!1,!2,…,!M ] ;  

rewrite !m  as !m = [!m
(1)" ,!m

(2)" ,…,!m
(G )" ]" , where 

!m
(g) =

 
[!1,m

(g),…,! pg ,m
(g) ]" , for 1! g !G  and 1! m !M ; and 

each element of the vector is non-zero;  

do regression using the model (11);  

compute RY
g  by Equation (12);  

return RY
g ;  

classify RY
g  using a simple classifier.  

return class membership of Ytest ; With this 
classification scheme, we aim for a simple classification 
method such as the one nearest-neighbor (1-NN) or 
Fisher’s linear discriminate (FLD), in order to determine 
the class membership of a test signal. The 1-NN 
classifier assigns a test signal to the class of its closest 
neighbor in the feature space by comparing the 
Euclidian distances of the feature vector for a test 

signal and the feature vectors obtained from the 
training set. 

 
Figure 1: Flowchart of the proposed classification scheme. 

The sparse feature extraction plus a simple 
classifier for signal classification is a typical approach 
for high dimensional data classification. In this work we 
emphasize on researching novel sparse feature 
extraction approach and developing its classification 
scheme. Within our proposed method, a signal is first 
partitioned into a set of signal segments and sparse 
PCA is used to learn a subset of most relevant signal 
segments. Since the principal component loading 
vectors can be treated as a dictionary, this approach 
can be considered as learning a window-wise sparse 
dictionary from the specific data. However, the 
difference between the traditional sparse 
representation and our approach is that we aim to 
obtain an average of signal dissimilarity measures (i.e., 
model residuals) using a localized regression based on 
the extracted sparse principal components, instead the 
traditional approach of sparse representation for 
classification focuses on extracting sparse signal 
features based on the signal similarity measure (i.e., 
model coefficients). Because the regression models 
are constructed for a signal based on different types of 
regressors that are characterized by different classes, 
the model residuals will behave similarly within the 
class and will be dissimilar among classes. This is why 
our approach leads to more appealing results when 
model residuals are used for classification. 

4. EXPERIMENTAL RESULTS 

In this section we demonstrate the utility of our 
developed method in signal classification. This 
experimental study is first based on the synthetic data, 
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and then on real EEG data. For the application to EEG 
data, the signals from the given database have been 
partitioned into signal segments of relatively small 
length, but there were from a long-term observational 
study.  

4.1. Synthetic Data 

The synthetic data that we considered is available in 
physionet (http://www.physionet.org/physiobank/ 
database/synthetic/tns/). There are the following types 
of signals: (1) correlated stationary signals, denoted by 
S1 ; (2) signals with sinusoidal trends, denoted by S2 ; 
(3) signals with different local standard deviations, 
denoted by S3 ; (4) signals with spikes, denoted by S4 . 
S1  signals were simulated using a first order 
autoregressive model with parameter value !1 = 0.1  for 
the group 1, and !2 = 0.5  for the group 2. S2  signals 
were simulated again using first order autoregressive 
model with added sinusoidal trends that have 
amplitude As . The group 1 signal has !1 = 0.9  and 
As = 2 , and the group 2 signal has !2 = 0.1  and As = 2 . 
S3  signals were simulated using first order 
autoregressive model with changing local standard 
deviations. For group 1 signal, the model parameter 
values of !1 = 0.1 , standard deviation ! 1 =1 with 
probability 0.95 and ! 2 = 4  with probability 0.05 were 
used, while the group 2 signal using !1 = 0.9 , standard 
deviation ! 1 =1 with probability 0.05 and ! 2 = 4  with 
probability 0.95. As about the S4  signals, the group 1 
signal contains spikes that have amplitude Asp =1  and 
were simulated using probability p = 0.05 , while group 
2 is spikes signal only, and spikes were simulated 
using probability p = 0.05  and amplitude Asp =10 . For 
more details of simulation mechanism, we refer readers 
to [27], [28]. We choose these types of signals because 
they are representative signals that share common 
characteristics with biomedical signals. Figure 1 shows 
examples of time series plots of signal types S3  and 
S4 . The objective of this illustration is to see the 
performance of sparse variable approximation coupled 

with model residuals in signal classification problems, 
in terms of both sparsity of signal segments used for 
principal component construction and classification 
accuracy. Table 1 reports the sparsity of the principal 
component loading vectors. It specifies which signal 
segments are included for calculation of principal 
components. The sparsity is defined as the ratio of the 
number of nonzero elements and the length of signal 
segments. A small value of sparsity indicates high level 
of the sparseness of the principal component loading 
vectors, therefore a small number of signal segments 
are selected. From Table 1, one can see that the level 
of sparsity for non-stationary signals, i.e. S3  and S4 , is 
much higher than the one for stationary signals, i.e. S1  
and S2 . That is, the sparsity measure as defined in this 
paper is much smaller. For example, less than 4% of 
signal segments are needed for constructing principal 
components of S4 . On the other hand, the sparsity 
measure is decreasing with the increase of the number 
of ith  principal component. This is due to the fact that 
data variance explained by the ith  principal 
components is decreasing with the increase of i . 
Based on the selected signal segments, the 
classification scheme discussed in Section 3 is applied 
to the classification problems for all types of signals. 
The obtained classification accuracy is reported in 
Table 2. From the results in Table 2, one can see that 
with an appropriate choice of signal segment length, 
the classification accuracies of all classification 
problems that we consider are nearly perfect. Within 
this experiment, we also observe that the classification 
accuracy is increased with the increase of signal 
segment length n . This is due to the fact that the 
longer the length of signal segments is, the better the 
chance that the difference between signals can be 
captured. 

4.2. EEG Data 

For application of the proposed method to 
biomedical signals, we use a set of EEG signals. EEG 
signals have been widely used for long-term monitoring 
of epilepsy as well as its diagnosis problem. They are 
typically multi-scale and non-stationary in nature. This 
database is from the University of Bonn, Germany. 

Table 1: The Sparsity of the Principal Component Loading Vectors. For S1  and S2  there are 4096 Signal Segments for 
Learning Principal Components. There are 1024 and 2048 Signal Segments for S3  and S4 , Respectively 

Dataset  1st PC  2nd PC  3rd PC  4th PC  5th PC  6th PC  

S1  0.2947  0.2776  0.2793  0.2763  0.2546  0.2341 

S2  0.9919  0.2668  0.1045  0.0657  0.0598  0.0600 

S3  0.1708  0.0480  0.0020  0.0000   0.0000  0.0000  

S4   0.0142  0.0304  0.0132  0.0117  0.0107  0.0014  
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Table 2: Classification Errors for Classification Problems of Different Type of Synthetic Data Based on 10-Fold Cross-
Validation Using Supervised Sparse Variable Approximation Classification Scheme. n  is the Optimal Length 
of Signal Segments 

Classification problems Overall error False positive rate False negative rate 

S1  ( n = 25 )  0.000 ± 0.000  0.000 ± 0.000  0.000 ± 0.000  

S2  ( n = 25 )  0.000 ± 0.000  0.000 ± 0.000  0.000 ± 0.000  

S3  ( n = 28 )  0.016 ± 0.000  0.000 ± 0.000  0.031 ± 0.000  

S4  ( n = 26 )  0.000 ± 0.000  0.000 ± 0.000  0.000 ± 0.000 

A,C ( n = 27 )  0.000 ± 0.000  0.000 ± 0.000  0.000 ± 0.000  

A,D ( n = 27 )  0.000 ± 0.000  0.000 ± 0.000  0.000 ± 0.000  

B,C ( n = 27 )  0.007 ± 0.013  0.004 ± 0.008  0.010 ± 0.025  

B,D ( n = 27 )  0.004 ± 0.007  0.004 ± 0.008  0.004 ± 0.013 

A;B,C;D ( n = 27 )  0.001 ± 0.002  0.000 ± 0.000  0.002 ± 0.004 

 

 

 
Figure 2: (a) and (b) are the time series plot of the first 210  time points of the signals with different local standard deviation. (c) 
and (d) are the plots for the signals with spikes. 
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Figure 3: (a) and (b) are the time series plots of the 4096 time points of the signals sampled from a normal person. (c) and (d) 
are the plots for the same length of signals sampled from an epileptic patient. 

There are four different sets of non-seizure signals, 
denoted as A, B, C, and D. Data in sets A and B are 
normal surface EEG signals with eyes closed and 
open, respectively. Data in sets C and D are 
transcranial EEG recordings coming from patients 
suffering from epilepsy. Each class contains 100 single 
channel scalp EEG segments of 23.6 second duration 
and sampled at 173.61 Hz (i.e., T =4096). 

We focus on classifying different types of signals, 
i.e. surface and transcranial EEG recordings. We 

consider five classification problems including A, C; A, 
D; B, C; B, D; and A; B, C; D. In the last classification 
problem, data set A and B is combined to be normal 
data and C and D are formed into abnormal data that 
indicates the presence of epilepsy. Figure 2 shows the 
EEG samples for both normal surface recordings and 
transcranial recordings. Using our proposed method, 
these signals are transformed into a two-dimensional 
feature space spanned by the two model residuals. The 
extracted features in terms of model residuals of two 
classes are shown in Figures 4 and 5 for the first four 

 
Figure 4: Scatter plots of signal residuals from the regression models applied to the test signal segments. The class 1 signals 
are normal EEG signals (i.e., set A) and the class 2 signals are epileptic EEG signals. 
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classification problems. The fact that these extracted 
features become clusters in the feature space leads to 
a high classification accuracy. 

Table 3 shows comparisons of classification errors 
obtained from different approaches that we take. For 
an appropriate choice of the length of signal segments, 
i.e. n = 27  (it is based on 10-fold cross-validation 
procedure), our proposed method (i.e., model residuals 
based) is able to achieve a nearly perfect classification 
accuracy using 1-NN as a classifier. However, when 
the method uses the model coefficient, it fails in 

classifying these EEG signals for both two classifiers. 
The FLD method performs poorly. This may imply the 
non-linearity of extracted features (i.e. model 
coefficients). Generally speaking, with an increase in 
n , the bias of the estimate of model residuals 
increases as the number of signal segments available 
decreases. Our method achieves a high accuracy with 
a small n  which implies a small bias of model residual 
estimate. 

We also compare the classification result for the 
classification problem A; B, C; D to the ones that use 

 
Figure 5: Scatter plots of signal residuals from the regression models applied to the test signal segments. The class 1 signals 
are normal EEG signals(i.e., set B) and the class 2 signals are epileptic EEG signals. 

Table 3: Classification errors for different classification problems of EEG data based on 10-fold cross-validation 
using, respectively, our classification scheme, classification using 1-NN and the coefficients estimated from 
supervised sparse variable approximation and the linear discriminate analysis of the coefficients. n  is the 
optimal length of signal segments 

Classification Problems Our Classification Scheme Coefficients + 1-NN Coefficients + FLD 

A,C ( n = 27 )  0.0000  0.3570  0.4923  

A,D ( n = 27 )  0.0000  0.3308  0.4846 

B,C ( n = 27 )  0.0070  0.3082  0.4924  

B,D ( n = 27 )  0.0040  0.3121  0.4858 

A;B,C;D ( n = 27 )  0.0000  0.3334  0.4850 

 

Table 4: The comparison of average classification error for the classification problem of using A and B, the normal 
surface signals, and C and D, the transcranial EEG recodrings between the method that uses wavelet 
variances as the input of various classifiers and the proposed method coupled with the optimal choice of 
length of signal segment N = 27 . Different lengths of signal segments are used for wavelet variance 
approach in order to demostrate the effect of signal segment length on classification accuracy.  

  1-NN  3-NN  SVM   SPCA+1-NN 

N = 27         0.10% ± 0.20% 

N = 210    0.38% ±  0.24%   0.64% ±  0.31%  10.66% ±  0.76%   

N = 211    0.15% ±  0.24%   0.29% ±  0.22%  2.95% ±  0.63%   

N = 212   0.00% ±  0.00%   0.00% ±  0.00%  0.00% ±  0.05%    
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wavelet based functional linear model [11] with various 
length choice of signal segments. In this comparison, 
the optimal classification result that uses N = 27  for this 
proposed method is comparable to the result that use 
wavelet based linear functional model with larger signal 
segment size (i.e. N = 212 ). The main difference 
between these two methods is that the present method 
requires a smaller segment size, but the method in [11] 
need a much bigger size of signal segment. This may 
be due to the process of selecting only discriminative 
signal segments. 

5. DISCUSSIONS 

The EEG data set that we use in this work has been 
also analyzed and presented in many research 
publications including [29-31]. However, most of the 
existing works including [29-31] utilize this data set for 
the seizure detection problem by considering signals 
with seizure onset, which we do not consider in this 
work. We found that the signal power of the seizure 
type was much higher than that of other types such as 
normal and seizure-free epileptic signals. The 
classification between seizure and non-seizure types of 
signals has been widely studied and many promising 
results have been obtained. Therefore, we do not 
consider the classification problem that involves 
seizure type signals. This is because our proposed 
scheme is more suitable for application to signals with 
similar sample standard deviations so that the selection 
of signal segments is mainly based on the signal 
similarity measured by the inter-signal correlation, 
rather than the energy of a signal. Because we did not 
classify the seizure signals, we can not directly 
compare the performance of proposed method to other 
existing studies that focus on the epileptic seizure 
detection problem. However, we conclude that this 
presented work is superior for the data we consider as 
the classification result is almost perfect. There are 
many recent publications including [32-34], to name a 
few, that present research outcome using various 
advanced learning algorithms, but none of them focus 
on sparse signal segment extraction for the training 
process. 

6. CONCLUDING REMARKS 

In this paper we presented a novel classification 
scheme based on sparse PCA for long-term 
observational signals. Our major contribution was to 
propose a simultaneous signal segments selection and 
principal component construction along with the 
construction of regression models for test signal 
segments. The construction of regression models aims 

at obtaining model residuals and use them for 
classification. This makes our work different from 
existing work where model coefficients were used. Our 
experiments showed that the model residuals based 
method perform much better than the model 
coefficients based methods. The promising results 
suggest that the proposed method may be applied to 
event detection problems using biomedical signals. 

The major benefit of using this proposed method is 
the data dimension reduction for the training data set. It 
leads to more robust estimates of signal features for 
classification because only the relevant signal 
segments are selected for constructing principal 
components. The proposed technique are different 
from many existing sparse techniques (e.g., [35]) 
because it focuses on the extraction of selective signal 
segments from the training data set and aims for signal 
features with high discrimination power, rather than 
other techniques that emphasize on signal 
representation by sparse components and the 
classification problem that make use of the sparse 
components. The limitation of this method is that it may 
be not suitable for classification of long-term signals 
with significant difference of signal powers among 
classes. Fortunately, many other basic feature 
extraction methods such as Fourier and wavelet 
methods are good candidates when one has to deal 
with classification of signals with different signal 
powers. Also our approach of extracting signal features 
using linear regression may lead to another aspect of 
limitations as we consider only the linear dependency 
among signal segments. It is of our interest to further 
investigate the impact when dependence structure 
among signal segments is non-linear. This will be left 
as our future work. 
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