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Abstract: The basket trial is a recent development in the clinical trial practice. It conducts the test of the same treatment 
on several different related diseases in a single trial, and has the advantage of reduced cost and enhanced efficiency. A 
natural question is how to assess the performance of the group sequential basket trial against the classical group 
sequential trial? To our knowledge, a formal assessment hasn’t been seen in the literature, and is the goal of this study. 
Specifically, we use the receiver operating characteristic curve to assess the performance of the mentioned two trials. We 
considered two cases, parametric and nonparametric settings. The former is efficient when the parametric model is 
correctly specified, but can bemis-leading if the model is incorrect; the latter is less efficient but is robust in that it cannot 
be wrong no matter what the true data generating model is. Simulation studies are conducted to evaluate the experiments, 
and it suggests that the group sequential basket trial generally outperforms the group sequential trial in either the 
parametric and nonparametric cases, and that the nonparametric method gives more accurate evaluation than the 
parametric one for moderate to large sample sizes.  
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1. INTRODUCTION 

The basket clinical trial design (For example, [1-4]) 
is a recent practice in the clinical trial filed. Different 
from traditional clinical trials, which examines one 
treatment for one targeted disease, the basket design 
examines one treatment on several different (but often 
related) diseases in a single trial. By this way, it 
explores much more potential of the treatment, and 
save possible costs and time, if separate trials were 
conducted on the different diseases. Another motivation 
for this type of design is to examine a common 
response (such as a biomarker response) across 
multiple diseases (tumors). The number of patients with 
a putative biomarker within a single disease is small, 
which makes it difficult to enroll adequate number of 
patients in a conventional trial, and the basket trial 
which pool the responses from the same biomarker 
from all the patients with different diseases makes the 
trial possible. The basic assumption under the rationale 
for basket trial is that the fundamental classification of 
disease is the response, not disease type [5-9]. The 
dis-advantage of this trial is that inactive responses 
from some disease patients may dilute the pooled 
signal and trigger failure of the entire trial. Thus this type 
of trial have been used primarily for exploratory settings 
[10].  
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The receiver operating characteristic (ROC) curve is 
common tool for evaluating the performance of test 
statistic. It is the plot of the true positive rate (TPR) (i.e. 
probability of identifying a diseased subject when the 
subject is truly diseased) versus false positive rate 
(FPR) (i.e. probability of identifying a diseased subject 
when the subject is not diseased). It is also widely used 
in biostatistics, medical diagnostic biomarkers, 
radiology, psychophysical and medical imaging 
research, military monitoring, and industrial quality 
control (Metz, 1978) [11]. The ROC curve indicates the 
trade-off between the TPR and FPRunder different 
thresholds. It has many advantages and overcomes the 
limitation of using isolated measurements of TPR and 
FPR. The ROC curve is plotted by connecting all the 
points generated by possible thresholds[12]. It has wide 
applications in biomedical research works (for example, 
[13, 14]).  

Here we consider the ROC analysis for basket 
phase II clinical trial. Two cases are considered, the 
parametric and nonparametric settings. The former is 
efficient when the parametric model is correctly 
specified, but can be mis-leading if the model is 
incorrect; the latter is less efficient but is robust in that it 
cannot be wrong no matter what the true data 
generating model is. Simulation studies are conducted 
to evaluate the experiments, and it suggests that the 
group sequential basket trial generally outperforms the 
group sequential trial in either the parametric and 
nonparametric cases, and that thenonparametric 
method gives more accurate evaluation than the 
parametric one for moderate to large sample sizes.  
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2.THE METHOD 

Group sequential (or multi-stage) design is 
commonly used in phase II and III clinical trials to 
evaluate a new treatment against some existing one(s) 
[15-24]. In contrast to the none-sequential clinical trial, 
the group sequential trial has the feature that it can 
early stop the trial before the planned end, ifextreme 
outcome is detected at some intermediate stage. Thus, 
group sequential basket design is natural in stage II 
clinical trial. A natural question is how to assess the 
performance of the group sequential basket trial against 
the classical group sequential trial? To our knowledge, 
a formal assessment hasn’t been seen in the literature, 
and is the goal of this study. Specifically, we use the 
receiver operating characteristic curve, a commonly 
used tool for assessing the performance of test statistic, 
for our evaluations. 

In this study we concentrate on continuous response. 
The trial has ݇  stages, at stage ݈ , there are 
independent responses ݔ௜௝  for the ݅ -th patient with 
disease type ݆ , ݆ = 1, . . . ,݀; ݅ = 1, . . . ,݊௟௝(݈ = 1, . . . ,݇) . 
Note that for fixed ݅, ݔ௜௝ has at least one non-zero entry 
but not all of them non-zero, as each patient may not 
have all the diseases. For each fixed ݆, ݊௟௝ > ݊௥௝  for 
ݎ > ݈, and we assume that the non-zero ݔ௜௝ ’s are iid 
௝ߤ)ܰ , (௝ଶߪ . For phase II clinical trial, often the total 
number of patients ݊ = ∑ ∑ ௟݊௝

ௗ
௝ୀଵ

௞
௟ୀଵ  is small (typically 

10 < ݊ < 100 ), 2 ≤ ݀ ≤ 10  and 2 ≤ ݇ ≤ 10 . The 
hypothetical population mean response is ߤ =
ଵߤ) , . . . ௗ)ᇱߤ, . We are interested in testing the null 
hypothesis 

଴௝ܪ ௝ߤ: ≤ ,଴௝ߤ ଵ௝ܪ		ݏݒ ௝ߤ: >  ଵ௝  (1)ߤ
= ଴௝ߤ + ,ߜ (݆ = 1, . . . ,݀) 

where ଴ߤ = ,଴ଵߤ) … ଴ௗ)ᇱߤ,  is the given vector of 
threshold values for the responses to be effective, and 
 is the vector of pre-specified meaningful differences ߜ
for each of the diseases. Although the observations 
 ௜௝’s are independent, but the diseases themselves areݔ
dependent via the shared common factor(s), for 
example, the common marker(s) which brought the 
patients to the trial. Denote ࢏ݔ = ,૚࢏ݔ) … ᇱ(ࢊ࢏ݔ, , and 
ࢄ = (ܺ૚, . .  .be an iid copy of it but without zeroentry (ࢊܺ,
We use frailty to model the dependence among the 
disease responses ࢄ. Let ܥ  be the shared common 
factor of the diseases, we assume that conditioning on 
 ,the responses form the diseases are independent ,ܥ
thus the joint law of ࢄ  is given by 
(ࢄ)ܲ = ࡼ∫ ࡯|ࢄ) = ࢉࢊ(ࢉ)ࡼ(ࢉ = 	 ∫∏ ࢊࡼ

ୀ૚࢐ ൫ܺ࢐ห࡯ =
ࢉࢊ(ࢉ)ࡼ(ࢉ . In particular, we assume ܲ( ௝ܺ|ܥ = ܿ) =
଴ߤ)ܰ + ௝ߟܿ  ௝ is a parameter to be estimated, andߟ ,(௝ଶߪ,
ܥ ∼ ,ߠ)ܰ ߬ଶ), where (ߠ, ߬ଶ) can either be obtained from 
prior studies, or estimate from the current data. Assume 
ܾ − ௝ଶߟ > 0(݆ = 1, . . . , ݀), then  

ࢄ ∼  (2)   ,(Ω,ࢼ)ࡺ

where, ߚ,Ω,ܾ and related notations are given in the 
Appendix. Thus we can assume (࢏ݔ)ݒ݋ܥ = Ω , the 
Pearson covariance matrix.  

Now let Ω be the given covariance matrix. Typically 
the test statistic ܵ࢒ = ( ,૚ܵ࢒ . . . ,   ᇱ are of the form(ࢊܵ࢒

ܵ࢒ = Ωି
૚
૛(

૚
ඥ݊࢑૚

෍࢏ݔ૚

௡࢒૚

ୀ૚࢏

, … ,
૚

ඥ݊ࢊ࢑
෍ࢊ࢏ݔ

௡ࢊ࢒

ୀ૚࢏

)ᇱ, ࢒) = ૚, . . .  .(࢑,

 (3) 

Thus, under the right boundary of ܪ଴ ܵ࢒ , ∼
௟௞ߤ where ,(࢑࢒ࡰ,࢑࢒ࣆ)ࡺ = Ωିଵ/ଶ(ߤ଴ଵ ௟݊ଵ/ඥ݊௞ଵ, 

. . . , ଴ௗߤ ௟݊ௗ/ඥ݊௞ௗ)ᇱ and ௟௞ࡰ = ݀݅ܽ݃{݊௟ଵ/݊௞ଵ , . . . , ௟݊ௗ/݊௞ௗ} , 
a ݀-dimensional diagonal matrix.  

In practice, it is also of interest to test the effect of 
the treatment on each of the disease types, which can 
be formulated as ܪ଴,௝ ௝ߤ: ≤ ଴௝ߤ  vs ܪ௔,௝ ௝ߤ: > ଵ௝ߤ =
଴௝ߤ + ݆) ,௝ߜ = 1, . . . , ݀). If ܪ଴,௝ is rejected, we conclude 
that the treatment is likely to be effective for this 
disease.  

To test ܪ଴,௝ vs ܪ௔,௝ , a simple way is just use the 
statistic ݊௞௝

ିଵ/ଶ∑ ௜௝ݔ
௡೗ೕ
௜ୀଵ  at the ݈ -th interim stage 

(݈ = 1, . . . , ݇), for disease type ݆(݆ = 1, . . . ,݀). However, 
this is the classical trial, not the basket trial. In the latter 
trial, we want to use the information across all the 
diseases to perform each single hypothesis.  

For this, at the ݈-th stage, we want to test ܪ଴,௝ vs 
݆)௔,௝ܪ = 1, . . . , ݀)  to see which disease type(s) are 
significant, which are not. Let ݊௟ = ∑ ݊௟௝ௗ

௝ୀଵ (݈ = 1, . . . , ݇). 
To borrow information from all the disease types, let 
ሜܵ௟ = ∑ ௡೗ೕ

௡೗
ௗ
௝ୀଵ ௟ܵ௝  and ̄ߤ௟ = ∑ ௡೗ೕ

௡೗
ௗ
௝ୀଵ ௟௝ߤ , we use the 

conditional statistic  

௟ܵ,௝| ሜܵ௟ ∼ ෤௝ߤ)ܰ  ෤௝ଶ),  (4)ߪ,

where ෤௝ߤ = ௟,௝ߤ + ௟݊௝
ଶ /(݊௞௝݊௟)ܦ௟ିଵ( ሜܵ௟ − (௟ߤ̄ ௟ܦ , =

∑ ௟݊௝
ଷௗ

௝ୀଵ /(݊௞௝݊௟ଶ), and ߪ෤௝ଶ = ݊௟௝/݊௞௝ −݊௟௝ସ /(݊௞௝݊௟)ଶܦ௟ିଵ . 
The level ߙ cut-off point is obtained accordingly, which 
depends on ሜܵ௟ and is random.  

If ܪ଴,௝ is rejected at stage ݈, then data on the ݆-th 
disease will be removed, and the trial moves on based 
on the remaining data.  

2.1. Brief Review of ROC and AUC Analysis 

The receiver operating characteristic (ROC) curve 
and the area under the curve (AUC) are common tools 
for assessing the performance of a test statistic. Here 
we derive the ROC and AUC for our case. We firstgive a 
brief review of these concepts. The ROC and AUC are 
used to characterize the relationship between the true 
positive rate (TPR) and the false positive rate (FPR) of a 
test statistic ܶ. TPR is the probability of identifying an 
abnormal location when the result of this location is truly 
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abnormal, and FPR is the probability of identifying an 
abnormal location when the result of this location is truly 
normal. Let ܦ  denote the disease status, ܦ = 1 
means truly diseased, ܦ = 0 for no disease. Let ܨ be 
the distribution function of ܶ under the null hypothesis 
of no disease, and ܩ be that of ܶ under the alternative, 
given a threshold value (ݐ)ܴܲܶ ,ݐ = ܲ(ܶ > ܦ|ݐ = 1) =
1− (ݐ)ܩ  and (ݐ)ܴܲܨ = ܲ(ܶ > ܦ|ݐ = 0) = 1 − (ݐ)ܨ , 
and the ROC curve is defined as  

(ݑ)ܥܱܴ = 1 −ଵ(1ିܨ)ܩ− 0,((ݑ < ݑ < 1.  (5) 

Typically, ܶ is constructed such that large value of 
ܶ corresponds to evidence in favor of the alternative, so 
ܲ(ܶ > ܦ|ݐ = 1) = 1− (ݐ)ܩ ≥ ܲ(ܶ > ܦ|ݐ = 0) = 1−
(⋅)ܩ or ,(ݐ)ܨ ≤ (⋅)ଵିܨ ,(⋅)ܨ ≤  ଵ(⋅), and as a resultିܩ
(ݑ)ܥܱܴ ≥ 0)ݑ < ݑ < 1), with `` = " only if ܩ(⋅) =  .(⋅)ܨ
Let ܺ = ܦ|ܶ) = 0)  and ܻ = ܦ|ܶ) = 1) . The AUC is 
defined as the mean value of the ROC curve,  

ܥܷܣ = ∫ ܴଵ଴ ݑ݀(ݑ)ܥܱ = ܲ(ܻ > ܺ). (6) 

The last equality follows as ܲ(ܻ > ܺ) = ∫[ 1−
(ݔ)ܨ݀[(ݔ)ܩ = ∫ [ଵ଴ 1 − ݒ݀[((ݒ)ଵିܨ)ܩ = ∫ [ଵ଴ 1−
−ଵ(1ିܨ)ܩ It is apparent that 0.5 .ݑ݀[((ݑ ≤ ܥܷܣ ≤ 1. If 
we have two treatments, then we have two ROC curves, 
and their performances are evaluated by comparing 
their ROC curves. Large ܥܷܣ  corresponds to better 
test (treatments). 

2.2. Parametric ROC 

In many clinical trial studies, parametric models are 
used for testing the hypothesis and ROC analysis. In 
particular, the normal model is commonly used: 
ܨ ∼ ,ଵߤ)ܰ (ଵଶߪ  and ܩ ∼ (ଶଶߪ,ଶߤ)ܰ . Let Φ(⋅)  be the 
distribution function of ܰ(0,1) and Φିଵ(⋅) its inverse 
or quantile function. Write ିܨଵ(1− (ݑ =  or ,ݐ

1− ݑ = (ݐ)ܨ = Φ((−ݐ − (ݑ−1)ଵିܨ ଵ), and getߪ/(ଵߤ =
ݐ = ଵߤ +   ,In this case .(ݑ−1)ଵΦିଵߪ

(ݑ)ܥܱܴ = 1 −Φ(
−ଵ(1ିܨ (ݑ ଶߤ−

ଶߪ
)

= 1−Φ(
ଵߤ − ଶߤ
ଶߪ

+
ଵߪ
ଶߪ
Φିଵ(1−  ((ݑ

= Φ(ఓమିఓభ
ఙమ

− ఙభ
ఙమ
Φିଵ(1− ((ݑ = Φ(ఓమିఓభ

ఙమ
+ ఙభ

ఙమ
Φିଵ(ݑ)),ݑ ∈

[0,1].  (7) 

The last equality above holds because for a 
standard normal random variable ܼ, 1 −Φ(ݒ) = ܲ(ܼ >
(ݒ = ܲ(ܼ < (ݒ− = Φ(−ݒ) ; and set Φିଵ(1− (ݑ = ݐ , 
then ݑ = 1−Φ(ݐ) = ܲ(ܼ > (ݐ = ܲ(ܼ < (ݐ− = Φ(−ݐ) , 
which gives Φିଵ(1−ݑ) = ݐ = −Φିଵ(ݑ).  

Now come to our problem. Suppose at stage ݈, we 
observe ܵ࢒

૙ = ( ૚ܵ࢒
૙ , . . . , ࢊܵ࢒

૙ )ᇱ  from the standard 
treatment, and ܵ࢒

૚ = ( ૚ܵ࢒
૚ , . . . , ࢊܵ࢒

૚ )ᇱ  from the new 
treatment (݈ = 1, . . . , ݇).  

ܵ࢒
૙ = Ω૙

ି૚/૛(෍࢏ݔ૚

௡࢒૚
૙

ୀ૚࢏

/ට݊࢑૚૙ , . . . ,෍ࢊ࢏ݔ

௡ࢊ࢒
૙

ୀ૚࢏

/ට݊ࢊ࢑૙ )ᇱ

∼ ૙࢑࢒ࣆ)ࡺ ࢑࢒ࡰ,
૙ ), 

with ௟௞଴ߤ = Ω଴
ିଵ/ଶ(ߤ଴ଵ݊௟ଵ଴ /ඥ݊௞ଵ଴ , . . . ଴ௗ݊௟ௗ଴ߤ, /ඥ݊௞ௗ଴ )ᇱ  and 

௟௞ࡰ
଴ = ݀݅ܽ݃{ ௟݊ଵ

଴ /݊௞ଵ଴ , . . . , ݊௟ௗ଴ /݊௞ௗ଴ }.  

ܵ࢒
૚ = Ω૚

ି૚/૛(෍࢏ݕ૚

௡࢒૚
૚

ୀ૚࢏

/ට݊࢑૚૚ , . . . ,෍ࢊ࢏ݕ

௡ࢊ࢒
૚

ୀ૚࢏

/ට݊ࢊ࢑૚ )ᇱ

∼ ૚࢑࢒ࣆ)ࡺ ࢑࢒ࡰ,
૚ ) 

with ௟௞ଵߤ = Ωଵ
ିଵ/ଶ(ߤଵଵ݊௟ଵଵ /ඥ݊௞ଵଵ , . . . ଵௗ݊௟ௗଵߤ, /ඥ݊௞ௗଵ )ᇱ  and 

௟௞ࡰ
ଵ = ݀݅ܽ݃{ ௟݊ଵ

ଵ /݊௞ଵଵ , . . . , ݊௟ௗଵ /݊௞ௗଵ }.  

We want test ܪ଴,௝ ଵ௝ߤ: ≤ ଴௝ߤ  vs ܪ௔,௝ : ଵ௝ߤ > ଵ௝ߤ = ଴௝ߤ +
݆) ,௝ߜ = 1, . . . , ݀). Let ݊௟଴ = ∑ ௟݊௝బ

ௗ
௝ୀଵ  and ݊௟ଵ = ∑ ݊௟௝భௗ

௝ୀଵ , 
(݈ = 1, . . . , ݇). To borrow information from all the disease 

types, let പܽݎ ௟ܵ
଴ = ∑

௡೗ೕ
బ

௡೗
బ

ௗ
௝ୀଵ ௟ܵ௝

଴  and ̄ߤ௟଴ = ∑
௡೗ೕ
బ

௡೗
బ

ௗ
௝ୀଵ ௟௝଴ߤ , we 

use the conditional statistic  

௟ܵ,௝
଴ | ሜܵ௟଴ ∼ ,෤௝଴ߤ)ܰ ෤௟௝଴ߪ) )ଶ), 

where ෤௟௝଴ߤ = ௟௝଴ߤ + (݊௟௝଴ )ଶ/(݊௞௝଴ ݊௟଴)ܦ௟଴ିଵ( ሜܵ௟଴ − (௟଴ߤ̄ ௟଴ܦ , =
∑ (ௗ
௝ୀଵ ݊௟௝଴ )ଷ/(݊௞௝଴ ( ௟݊

଴)ଶ) , and (ߪ෤௟௝଴ )ଶ = ݊௟௝଴ /݊௞௝଴ −
( ௟݊௝

଴ )ସ/(݊௞௝଴ ݊௟଴)ଶܦ௟଴ିଵ . The level ߙ  cut-off point is 
obtained accordingly, which depends on ሜܵ௟଴  and is 

random. Similarly, let ݊௟ଵ = ∑ ௟݊௝
ଵௗ

௝ୀଵ , ሜܵ௟ଵ = ∑ ௡೗ೕ
భ

௡೗
భ

ௗ
௝ୀଵ ௟ܵ௝

ଵ  

and ̄ߤ௟ଵ = ∑
௡೗ೕ
భ

௡೗
భ

ௗ
௝ୀଵ ௟௝ଵߤ ,  

௟ܵ,௝
ଵ | ሜܵ௟ଵ ∼ ,෤௝ଵߤ)ܰ ෤௟௝ଵߪ) )ଶ), 

where ෤௝ଵߤ = ௟௝ଵߤ + ( ௟݊௝
ଵ )ଶ/(݊௞௝ଵ ௟݊

ଵ)ܦ௟ଵିଵ( ሜܵ௟ଵ − (௟ଵߤ̄ ௟ଵܦ , =
∑ (ௗ
௝ୀଵ ݊௟௝ଵ )ଷ/(݊௞௝ଵ ( ௟݊

ଵ)ଶ) , and (ߪ෤௟௝ଵ )ଶ = ݊௟௝ଵ /݊௞௝ଵ −
( ௟݊௝

ଵ )ସ/(݊௞௝ଵ ݊௟ଵ)ଶܦ௟ଵିଵ.  

The ROC curve of the basket trial for the ݆ -th 
disease at the ݈-th interim trial is  

෨ܴܱܥ௟ ,௝(ݑ) = Φቌ
෤௟௝ଵߤ − ෤௟௝଴ߤ

෤௟௝ଵߪ
+
෤௟௝଴ߪ

෤௟௝ଵߪ
Φିଵ(ݑ)ቍ , ݑ ∈ [0,1] 

(݆ = 1, . . . , ݀; ݈ = 1, . . . ,݇). (8) 

In contrast, the classical trial uses data ௟ܵ ,௝
ଵ  and ௟ܵ,௝

଴ , 
separately for each ݆ without conditioning on ሜܵ௟ଵ and 
ሜܵ௟଴ , and the corresponding ROC curve for the ݆ -th 
disease at the ݈-th interim trial is  

(ݑ)௟,௝ܥܱܴ = Φ(
௝ଵߤ − ௝଴ߤ

௟௝ଵߪ
+
௟௝଴ߪ

௟௝ଵߪ
Φିଵ(ݑ)),ݑ ∈ [0,1](݆

= 1, . . . ,݀; ݈ = 1, . . . , ݇), 

with ௟௝ଵߪ) )ଶ = ௟݊௝
ଵ /݊௞௝ଵ  and (ߪ௟௝ଵ )ଶ = ݊௟௝଴ /݊௞௝଴ . Since 

෤௟௝ଵߪ ≤ ௟௝ଵߪ  and ߪ෤௟௝଴ ≤ ௟௝଴ߪ , ROC curve of the basket group  
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sequential trial is expected to have better performance 
than that of the classical group sequential trial. 

2.3. Nonparametric ROC 

When a specific parametric model is not justified for 
the observed data, the nonparametric method is 
preferred for robustness. In this case, the ROC curve 
will be constructed using the empirical distribution 
functions. However, different from the classical clinical 
trial, for the case of basket trial, to construct the 
empirical distribution for each disease, we need to 
borrow information from data on other diseases. To 
incorporate such shared side information, we use the 
method of empirical likelihood.  

We consider the set-up for empirical likelihood (EL) 
as in Qin and Lawless (1994) [25]. We first give a 
general description of the method. Suppose the side 
information can be incorporated into the EL through a 
݀ -dimensional known function 
(ݔ)݃ = (݃ଵ(ݔ), . . . ,݃ௗ(ݔ))ᇱ via the relationship  

)݃]ܧ ଵܺ)] = ૙, 

whereܧ[⋅] denotes the expectation with respect to the 
data distribution function ܨ . Since the empirical 
likelihood is a nonparametric maximum likelihood 
estimate of the distribution function, under some 
possible constraint(s), it is a step function with jumps at 
the data points, so we can set ݓ௜ = )ܨ ௜ܺ)(݅ = 1, . . . , ݊). 
The EL is defined as  

(ܨ)ܮ = ෑݓ௜

௡

௜ୀଵ

, 

where the ݓ௜ s are the nonparametric maximum 
likelihood estimated empirical masses assigned to the 
observation ܺ௜s. With the side information constraints, 
the EL is  

max
௪

ෑݓ௜

௡

௜ୀଵ

	subject to	෍ݓ௜

௡

௜ୀଵ

= 1	and	෍ݓ௜

௡

௜ୀଵ

݃( ௜ܺ) = ૙. 

Let ݐ = ,ଵݐ) . . . , ௗ)ᇱݐ  be the Lagrange multipliers 
corresponding to the constraint of ݃(⋅), and as in Owen 
(1990) [26], we get  

௜ݓ =
1
݊

1
1 + ᇱ݃(ܺ௜)ݐ

, 

whereݐ௝ = )௝ݐ ଵܺ, . . . ,ܺ௡)(݆ = 1, . . . , ݀) are determined by  

෍
݃( ௜ܺ)

1 + )ᇱ݃ݐ ௜ܺ)

௡

௜ୀଵ

= ૙. 

Then the weighted empirical distribution function 
with the side information incorporated is  

(ݔ)෨௡ܨ = ∑ ௜ݓ
௡
௜ୀଵ ௜ܺ)ܫ ≤  (9) .(ݔ

 

It was shown in Yuan et al. (2012) [27] that inference 
using the weighted empirical distribution function is 
more efficient than that using the empirical distribution 
function without the weights. Also, since there are no 
closed form expressions for the ݓ௜’s, they showed the 
following formula, with Ω =  and assume [(ܺ)ᇱ݃(ܺ)݃]ܧ
non-singularity,  

௜ݓ =
1
݊

௔.௦. ቌ1− Ωିଵ(௜ݔ)݃
1
݊
෍݃
௡

௞ୀଵ

ቍ(௞ݔ) + 

ܱ(݊ିଵ log log(݊)).  (10) 

Thus, computationally, the ݓ௜ ’s are well 
approximated by the first term in the right hand side 
above.  

Now for our problem, denote ࢞ = ,૚ݔ) . . . ,  ᇱ, and(ࢊݔ
௟ߤ̄ ,ߤ ௝ removed. Recall the notationsݔ with ࢞ be ࢐ିݔ , 
෤௟,௝଴ߤ  and ߤ෤௟,௝ଵ  given in Section 2.2. Let  

ሜܺ௟௝ = ݊௟௝ିଵ෍ݔ௜௝

௡೗ೕ

௜ୀଵ

, (݆ = 1, . . . ,݀; ݈ = 1, . . . , ݇), 

෤௟௝ߤ = ௟௝ߤ + ௟݊௝
ଶ /(݊௞௝݊௟)ܦ௟ିଵ( ሜܵ௟ − (௟ߤ̄ ௟ܦ , = ∑ ௟݊௝

ଷௗ
௝ୀଵ /

(݊௞௝݊௟ଶ), ߪ෤௝ଶ = ݊௟௝/݊௞௝ −݊௟௝ସ /(݊௞௝݊௟)ଶܦ௟ିଵ. Let  

݃௟௝଴ (ݔ) = ݔ − ෤௟௝଴ߤ , (݆ = 1, . . . , ݀; ݈ = 1, . . . ,݇). 

Since  

௟௝଴݃ൣܧ ൫ݔ௝ห࢐ିݔ൯൧ = ૙	ൣࡱ࢔ࢋࢎ࢚ ࢐݃࢒
૙൫࢐ݔ൯൧ = 

]ࡱ]ࡱ ࢐݃࢒
૙(࢐ିݔ|࢐ݔ)]] = ૙. 

Let 

Ω௟௝଴ = ௟௝଴݃]ܧ ( ௝ܺ)]ଶΩ෡௟௝଴ =
1

௟݊௝
଴ ෍(

௡೗ೕ
బ

௜ୀଵ

௜௝ݔ − ෤௟௝଴ߤ )ଶ. 

Let ݓ௟௝,௜
଴  be the weights obtained via ݃௟௝(ݔ) given 

above, based on the responses {ݔ௜௝ : ݅ = 1, . . . , ௟݊௝
଴ }, and 

define the weighted empirical distribution function for 
the ݆-th disease at stage ݈, for the standard treatment 
group, by  

(ݔ)෨௟௝ܨ = ෍ݓ௟௝,௜
଴

௡೗ೕ
బ

௜ୀଵ

௜௝ݔ൫ܫ ≤  .൯ݔ

(݆ = 1, . . . , ݀; ݈ = 1, . . . ,݇). (11) 

Similarly, let  

݃௟௝ଵ (ݕ) = ݕ − ෤௟௝ଵߤ , (݆ = 1, . . . ,݀; ݈ = 1, . . . , ݇). 

Since  

௟௝ଵ݃ൣܧ ൫ݕ௝ห࢐ିݕ൯൧ = ૙	࢐࢒݃ൣࡱ࢔ࢋࢎ࢚૚൫࢐ݕ൯൧ = 
]ࡱ]ࡱ ࢐݃࢒

૚(࢐ିݕ|࢐ݕ)]] = ૙. 
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Let  

Ω௟௝ଵ = ]ܧ ௟݃௝
ଵ ( ௝ܻ)]ଶΩ෡௟௝ଵ =

1
݊௟௝ଵ

෍(

௡೗ೕ
భ

௜ୀଵ

௜௝ݕ − ෤௟௝ଵߤ )ଶ. 

Let ݓ௟௝,௜
ଵ  be the weights obtained via ݃௟௝ଵ  given (ݕ)

above, based on the responses {ݕ௜௝ : ݅ = 1, . . . , ௟݊௝
ଵ }, and 

define the weighted empirical distribution function for 
the ݆ -th disease at stage ݈ , for the new treatment 
group, by  

(ݕ)෨௟௝ܩ = ∑ ௟௝,௜ݓ
ଵ௡೗ೕ

భ

௜ୀଵ ௜௝ݕ)ܫ ≤ .(ݕ (݆ = 1, . . . , ݀; ݈ = 1, . . . ,݇).
 (12) 

Then we define the nonparametric ROC curve for 
basket trial, for the ݆-th disease at stage ݈, based on 
the weighted empirical distribution functions, as  

෨ܴܱܥ௟௝(ݑ) = 1 − −෨௟௝ିଵ(1ܨ)෨௟௝ܩ 0,((ݑ < ݑ < 1. (݆ =
1, . . . , ݀; ݈ = 1, . . . ,݇).  (13) 

In contrast, the nonparametric ROC curve for the 
classical trial, for the ݆-th disease at stage ݈, based on 
the weighted empirical distribution functions  

(ݑ)௟௝ܥܱܴ = 1 − −௟௝ିଵ(1ܨ)௟௝ܩ 0,((ݑ < ݑ < 1. (݆
= 1, . . . , ݀; ݈ = 1, . . . , ݇), 

with ௟௝ܩ  and ܨ௟௝  being the empirical distribution 
functions based on the data {ݕ௝௜ : ݅ = 1, . . . ,݊௟௝ଵ }  and 
:௝௜ݔ} ݅ = 1, . . . ,݊௟௝଴ }  respectively. Since ෨ܴܱܥ௟௝(⋅)  is 
constructed with auxiliary information from data across 
all the diseases, it is expected to have better 
performance than its counterpart ܴܱܥ௟௝(⋅) without such 
information.  

3. SIMULATION STUDY 

In this section, we conduct simulation studies to 
compare the ROC curves for basket sequential clinical 
trial vs the classical sequential trial, for both the 
parametric and nonparametric cases. 

3.1. Simulation Study for Parametric ROC 

We first give results for the parametric case. Denote 
௟଴࢔ = (݊௟ଵ଴ , . . . ,݊௟ௗ଴ )  and similarly for ࢔௟ଵ = (݊௟ଵଵ , . . . , ௟݊ௗ

ଵ ) , 
(݈ = 1, . . . , ݇) . We simulated the data for ݀ = 5 
diseases, for ݇ = 2  stages. The mean values and 
sample sizes are given in Table 1 below.  

Here ߤଵ,௔ represents the mean response vector of 
treatment arm with small gap comparing with the mean 
response of control group ߤ଴ . Similarly, ߤଵ,௕  is the 
mean vector with moderate gap, and ߤଵ,௖  denotes 
mean vector with largedifference between treatment 
group and control group. In the fifth row, ࢔ଵଵ represents 
the sample size vector of treatment arm in stage one 
and ࢔ଵ଴  be the sample size vector of control arm in 
stage one in the sixth row. Analogously, ࢔ଶଵ  and 

 denote the sample size vectors of treatment group	ଶ଴࢔
and control group in stage two respectively.  

Table 1: Simulation Setup for 5 Disease 

Disease 1 2 3 4 5 

 ଵ,௔ 1.3 1.0 1.6 1.2 1.4ߤ

 ଵ,௕ 1.8 1.5 2.1 1.6 1.9ߤ

 ଵ,௖ 2.5 1.9 2.9 2.5 2.7ߤ

 ଴ 1.2 0.9 1.5 1.0 1.3ߤ

 ଵଵ 10 12 8 13 9࢔

 ଵ଴ 45 60 40 55 50࢔

 ଶଵ 20 24 16 26 18࢔

 ଶ଴ 100 110 95 105 100࢔

 

The ROC’s for the data in Table 1 are plotted in 
Figures 1-3. Real line is the ROC for basket trail, the 
upper dashed line is the ROC for independent trial. The 
diagonal line is drawn for reference only.  

Figure 1 shows the ROC’s of basket and classical 
trails for the simulated five diseases, with large mean 
differences (gap) for case and control, the AUC is 
computed in the bracket below, with number on the left 
be the AUC for the basket trail, and on the right for that 
of the classical trial. We see that the ROC of the former 
is apparently higher overall, and the AUC is larger.  

Figure 2 shows the ROC’s of basket and classical 
trails for the simulated five disease, with small mean 
difference. In this case the ROC’s for the two types of 
trails are close and both not significant.  

Figure 3 shows the ROC’s of the two types pf trails 
for the simulated five disease, with moderate mean 
difference. In this case we see from the ROC’s that the 
advantage of the basket trial is apparent.  

Overall, according to the three figures for five 
diseases above, we can witness that the basket design, 
with side information from all the disease data, performs 
better than the traditional design, this can be indicated 
by larger AUC. Meanwhile, the plotwith large gap shows 
the best result among the three, which means as the 
gap between treatment arm and control group 
increasing, the result becomes more apparent. 
Generally speaking, ROC curves behave better in stage 
one than stage two in all three plots. More specifically, 
based on Figure 1, the largest distance between AUC is 
about 0.166 and the smallest one is about 0.011. From 
Figure 2, the biggest gap between AUC is 0.032. On the 
contrary, the closest distance is about 0.002. According 
to Figure 3, the widest difference is about 0.101 and the 
most narrow one is about 0.002.  
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Figure 1: Parametric ROC Curve for 5 simulated diseases (large gap). Upper row: stage I; lower row: stage II. 

 

 

 
Figure 2: Parametric ROC Curve for 5 simulated diseases (small gap). Upper row: stage I; lower row: stage II. 
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Figure 3: Parametric ROC Curve for 5 simulated diseases (moderate gap). Upper row: stage I; lower row: stage II. 

Below we perform a simulation with nine diseases, 
the setup is shown in Table 2.  

Table 2: Simulation Data for 9 Disease 

Disease 1 2 3 4 5 6 7 8 9 

 ଵ 2.5 1.9 2.9 2.5 2.7 3.1 2.8 2.4 2.6ߤ

 ଴ 1.2 0.9 1.5 1.0 1.3 1.7 1.4 1.1 1.2ߤ

 ଵଵ 10 12 8 13 9 10 11 7 10࢔

 ଵ଴ 45 60 40 55 50 49 50 51 52࢔

 ଶଵ 20 24 16 26 18 20 22 14 20࢔

 ଶ଴ 100 110 95 105 100 98 100 102 104࢔

 

The corresponding ROC’s are show in Figures4-5. 
We see that the advantage of basket trial over the 
classical one is apparent. The conclusions are similar to 
the case of five diseases.  

3.2. Simulation Study for Nonparametric ROC.  

Now we use the setup in Table 1 to examine the 
performance of the nonparametric ROC’s. In Figure 6, 
for a fixed disease, we compare the empirical ROC 
(dashed line step function) with the parametric normal 
ROC (dotted line) and the true ROC (solid line) obtained 
from the true underlying distributions. The sample sizes 
for case and control are given below the figures. We 
see that for small sample size (݊ଵ, ݊଴) = (10,45), the 
advantage of the empirical ROC is not clear. As the 
sample size increases, the empirical one becomes 

more and more close to the real one, while the ROC 
from normal model yields biased estimate of the real 
ROC.  

In Figure 7, we compare the empirical ROC’s 
(dashed line) for the basket trail with side information 
incorporated, given in (10)-(12), to the empirical ROC 
(solid line) from the classical trial. Again, the ROCs from 
the basket trail out performs those of the classical trial.  

3.3. A Hypothetical Basket Clinical Trial 

A basket clinical trial has been conducted by Hyman, 
et al. (2015) [28] to evaluate the efficacy of a 
therapeutic oral treatment, Vemurafenib. The drug is an 
inhibitor of BRAF V600E enzyme which can improve 
the survival rate in melanoma patients whose cancer 
has a V600E BRAF mutation. To investigate the 
treatment effect on nonmelanoma cancer patients, the 
trial enrolled 122 patients with nonmelanoma cancers. 
The study included patients with non-small-cell lung 
cancer (NSCLC), ovarian cancer, colorectal cancer, 
cholangiocarcinoma, breast cancer, and multiple 
myeloma, and cancer due to any other BRAF V600 
mutation. Among these groups, the three commonly 
occured disease groups are colorectal cancer (CC) with 
݊ଵ = 37  patients, NSCLC with ݊ଶ = 20  patients, 
Erdheim-Chester disease (ECD) or Langerhans cell 
histiocytosis (LCH) with ݊ଷ = 18 patients.  

The original trial used the survival rates as patients’ 
final outcomes. The outcomes such as the percentage 
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Figure 4: Parametric ROC Curve, Stage I for 9 simulated diseases. 

 

 

 

 
Figure 5: Parametric ROC Curve, Stage II for 9 simulated diseases. 
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Figure 6: Nonparametric ROC Curve, Stage I for 5 simulated diseases. 

 

 

 
Figure 7: Nonparametric ROC Curve, Stage II for 5 simulated diseases. 
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of tumor shrinkage may capture more information so 
that the trial may be better powered. Since the normal 
approximation is reasonable for percentages, we use 
the percentage of tumor shrinkage as patients’ 
outcomes in this hypothetical example. According to a 
retrospective review in Dadu, et al. (2014) [29], most 
patients treated by Vemurafenib had tumor shrinkage 
ranging from 3% to 58%. We consider the three most 
common groups with the pre-specified samples sizes. 
Here ݀ = 3. We assume a two-stage group sequential 
design, and equal allocation between treatment and 
control for each disease. In the first stage, tumor 
shrinkage is observed from ଵ݊ଵ

ଵ = 10  CC patients 
treated by Vemurafenib, and ଵ݊ଵ

଴ = 9  control CC 
patients. Similarly, the numbers of patients observed at 
the first stage from other two diseases are ଵ݊ଶ

ଵ = 5 and 
݊ଵଶ଴ = 5 for NSCLC, ݊ଵଷଵ = 5 and ݊ଵଷ଴ = 5 for ECD or 
LCH. The numbers of patients at the second stage for 
these three diseases are ݊ଶଵଵ = 9 and ݊ଶଵ଴ = 8 for CC, 
݊ଶଶଵ = 5  and ݊ଶଶ଴ = 5  for NSCLC, and ݊ଵଷଵ = 4  and 
݊ଵଷ଴ = 4 for ECD or LCH. We are interested in testing 
the null hypothesis  

ߤ:଴ܪ ≤ ଴ߤ ߤ:ଵܪ	ݏݒ, > ଵߤ = ଴ߤ +  ,ߜ

where the mean tumor shrinkage ߤ଴ = (0.10,0.20,0.58)ᇱ 
is assumed from aforementioned range on patients 
treated by Vemurafeni. Here we let ߜ = 0 . The 
multivariate normal distribution of the tumor size 
shrinkage is assumed to be  

ࢄ ∼  .(Ω,ࢼ)ࡺ

Take ߠ = 0, then by the formula in the Appendix, 
ߚ =  ,଴. The diagonal elements in the covariance matrixߤ
Ω , calculated from the variance expression for 
percentages, are (0.3,0.4,0.5) for three diseases. The 
correlation is assumed to be 0.1 for three diseases 
within the same patient. The hypothetical example 
dataset was simulated from this multivariate normal 
distribution.  

With the normal distribution assumption, we apply 
the parametric ROC method to the simulated dataset. 
To borrow information from all the disease types, the 
values for ሜܵ௟଴ = (0.121,0.247) and ̄ߤ௟଴ = (0.253,0.242), 
are obtained from the simulated dataset. The 
conditional statistic has the distribution:  

௟ܵ ,௝
଴ | ሜܵ௟଴ ∼ ,෤௝଴ߤ)ܰ ෤௟௝଴ߪ) )ଶ), 

where ෤௟௝଴ߤ = (−0.221,0.041,0.382)(݈ =
1), (−1.080,−0.261, 0.285)(݈ = ௟଴ܦ ,(2 = (0.408,0.363), 
and 
෤௟௝଴ߪ) )ଶ = (1.009,0.972,1.206)(݈ =
1), (0.995,0.987, 0.980)	(݈ = 2) . The level ߙ = 0.05 
cut-off point is obtained accordingly. Let ௟݊

ଵ = (20,18), 
ሜܵ௟ଵ = (0.332,0.014) and ̄ߤ௟ଵ = (1.60,1.589),  

௟ܵ,௝
ଵ | ሜܵ௟ଵ ∼ ,෤௝ଵߤ)ܰ ෤௟௝ଵߪ) )ଶ), 

 

where ෤௝ଵߤ = (1.287,1.676,2.070)(݈ = 1), (1.224,1.658,
2.066)	(݈ = 2) ௟ଵܦ , = (0.418,0.377) , and (ߪ෤௟௝ଵ )ଶ =
(0.982,0.974,1.209)(݈ = 1), (0.906,0.971,0.981)(݈ = 2) . 
The parametric ROC curves under normal model for the 
three diseases at the first and second interim looks are 
given by  

(ݑ)௟,௝ܥܱܴ = Φ(
෤௟,௝ଵߤ − ෤௟,௝଴ߤ

෤௟,௝ଵߪ
+ ෤௟ߪ ,௝

଴ ෤௟,௝ଵߪ Φିଵ(ݑ)),0 < ݑ < 1, (݆

= 1,2,3; ݈ = 1,2). 

We also illustrate the application of our 
nonparametric method. The ROC curves are 
constructed using the empirical distribution functions. 
Let  

݃௟௝଴ (ݔ) = ݔ − ෤௟௝଴ߤ , (݆ = 1, . . . , ݀; ݈ = 1, . . . ,݇), 

where ෤௟௝଴ߤ = (−0.317,−0.006,0.322)  is given in the 
previous paragraph. The weights ݓ௟௝,௜

଴  are obtained via 
݃௟௝(ݔ) , based on the simulated dataset, and the 
weighted empirical distribution function for the ݆ -th 
desease at stage ݈, for the control group, by  

(ݔ)෨௟௝ܨ = ෍ݓ௟௝,௜
଴

௡೗ೕ
బ

௜ୀଵ

௝,௜ݔ)ܫ ≤ .(ݔ (݆ = 1, . . . , ݀; ݈ = 1, . . . ,݇), 

where 870, 0.1731737, 0.2762839, 0.2076634)(j=2), 
௟௝,௜ݓ 0.170644613 0.041840711 0.003823371)

଴ =
(0.107,0.106,0.120,0.125,0.134,0.055,0.143,0.127,0.093) 
(݆ = 1), (0.104,0.239,0.173,0.276,0.208)(݆ = 2),
(0.004,0.042,0.171,0.067,0.717)(݆ = 3) according to 
Equation (10). For the Vemurafeni group,  

݃௟௝ଵ (ݕ) = ݕ − ෤௟௝ଵߤ , (݆ = 1, . . . ,݀; ݈ = 1, . . . , ݇), 

where ෤௟௝ଵߤ = (1.225005,1.666252,2.057815) . The 
weights are obtained to be ݓ௟௝,௜

ଵ , and the weighted 
empirical distribution function for the ݆-th disease at 
stage ݈, for the Vemurafenib group, by  

(ݕ)෨௟௝ܩ = ෍ݓ௟௝,௜
ଵ

௡೗ೕ
భ

௜ୀଵ

௝ݕ)ܫ ,௜ ≤ .(ݕ (݆ = 1, . . . , ݀; ݈ = 1, . . . , ݇), 

where 1),(0.35553318 0.17883773 0.10849838 
0.28989895 0.06723176)(j=2), 
௟௝,௜ݓ
ଵ = (0.003,0.043,0.051,0.116,0.010,

0.291,0.071,0.015,0.235,0.166)(݆ =
1), (0.356,0.179,0.108,0.290,0.067)(݆ =
2), (0.094,0.136,0.158,0.357,0.254)(݆ = 3), according to 
Equation (10).  

Based on these estimated distribution functions, the 
six nonparametric ROC curve for the ݆-th disease at 
stage ݈, based on the weighted empirical distribution 
functions, are given by  

(ݑ)௟௝ܥܱܴ = 1− −෨௟௝ିଵ(1ܨ)෨௟௝ܩ 0,((ݑ < ݑ < 1. (݆ = 1,2,3; ݈
= 1,2). 



32  International Journal of Statistics in Medical Research, 2017, Vol. 6, No. 1 Dhlakama and Lougue 

CONCLUDING REMARKS 

We evaluated the performances of basket trail and 
the classical trial by comparing their ROCs, with both 
parametric normal model and nonparametric model. 
Simulation studies show that the former is generally 
better in terms of higher ROCs. We find that when the 
total sample sizes for case and control are small, say 
no bigger than (100,100), the parametric method is 
more preferred; when the sample size is (100,100) or 
bigger, the nonparametric ROC gives better fit to the 
true ROC, while that from the normal model can give 
biased result. 
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APPENDIX 

Derivation of (2). Since ܲ( ௝ܺ|ܥ = ܿ) = ଴ߤ)ܰ + ௝ߟܿ  (௝ଶߪ,
and ܥ ∼ ,ߠ)ܰ ߬ଶ),  

(ࢄ)ܲ = නෑࡼ
ࢊ

ୀ૚࢐

࡯|࢐ܺ) =  ࢉࢊ(ࢉ)ࡼ(ࢉ

=
1

ଶ߬/(ௗାଵ)(ߨ2)
1

ௗߪ⋯ଵߪ
න exp{−

1
2
෍

௝ݔ) ଴ߤ− − ௝ܿ)ଶߟ

௝ଶߪ

ௗ

௝ୀଵ

−
1
2

(ܿ − ଶ(ߠ

߬ଶ
}݀ܿ 

=
1

ଶ߬/(ௗାଵ)(ߨ2)
1

ௗߪ⋯ଵߪ
නexp{

−
1
2 (෍

௝ଶܿଶߟ − ௝ݔ)௝ߟ2 − ܿ(଴ߤ + ௝ݔ) − ଴)ଶߤ

௝ଶߪ

ௗ

௝ୀଵ

+
ܿଶ − ߠ2ܿ + ଶߠ

߬ଶ )}݀ܿ 

∝ න exp{ −
1
2

∑ (ௗ
௝ୀଵ ௝ܽߟ௝ଶܿଶ − 2 ௝ܽߟ௝൫ݔ௝ − ଴൯ܿߤ + ௝ܽ

௝ݔ) − (଴)ଶߤ + ܽ଴ܿଶ − 2ܿܽ଴ߠ + ܽ଴ߠଶ

߬ଶߪଵଶ⋯ߪௗଶ
}݀ܿ 

∝ නexp{ −
ܿଶ − 2

௔బఏା∑ ௔ೕ
೏
ೕసభ ఎೕ(௫ೕିఓబ)

௕
ܿ

2ܽ଴߬ଶ/ܾ } exp{

−
∑ ௝ܽ
ௗ
௝ୀଵ ௝ݔ) − ଴)ଶߤ

2ܽ଴߬ଶ/ܾ
}݀ܿ 

∝ න exp{ −
(ܿ − ݁)ଶ

2ܽ଴߬ଶ/ܾ} exp{ −
∑ ௝ܽ
ௗ
௝ୀଵ ௝ݔ) ଴)ଶߤ− − ݁ଶ

2ܽ଴߬ଶ/ܾ }݀ܿ 

∝ exp{ −
∑ ௝ܽ
ௗ
௝ୀଵ ௝ݔ) − ଴)ଶߤ − ݁ଶ

2ܽ଴߬ଶ/ܾ }, 

 

where, ܽ଴ = ௗଶߪ⋯ଵଶߪ , ௝ܽ = ߬ଶ∏ ௜ଶௗߪ
௜ஷ௝ , ܾ = ܽ଴ +

∑ ௝ܽ
ௗ
௝ୀଵ ௝ଶߟ  and ݁ = (ܽ଴ߠ + ∑ ௝ܽ

ௗ
௝ୀଵ ௝ݔ)௝ߟ − ܾ/((଴ߤ . Let 

Ωିଵ = (߱௜௝)ௗ×ௗ, with  

௝߱௝ = ௝ܽ(ܾଶ − ௝ଶ)/(ܽ଴߬ଶܾ),߱௜௝ߟ = ܽ௜ ௝ܽߟ௜ߟ௝/(ܽ଴߬ଶܾ), (݅
≠ ݆). 

Assume ܾଶ − ௝ଶߟ > 0  for ݆ = 1, . . . , ݀ , let ࢙ =
૚ݏ) , . . . , ᇱ(ࢊݏ  with ݏ௝ = ௝ܽߟ௝ܾ2/ߠ , and ૚ = (1, . . . ,1)ᇱ , a 
݀-vector of 1’s. Then  

exp{ −
∑ ௝ܽ
ௗ
௝ୀଵ ௝ݔ) ଴)ଶߤ− − ݁ଶ

2ܽ଴߬ଶ/ܾ }

∝ exp{ −
1
2 ࢞)) − ࢞)૙૚)ᇱΩି૚ߤ − (૙૚ߤ

− ૛࢙ᇱ(࢞−  {((૙૚ߤ

= exp{ −
1
2 ((Ωିଵ/ଶ(࢞ − ࢞)૙૚))ᇱ(Ωି૚/૛ߤ − ((૙૚ߤ

− ૛(Ω૚/૛࢙)ᇱ(Ωି૚/૛(࢞ −  {(((૙૚ߤ

∝ exp{−
1
2

((Ωିଵ/ଶ(࢞ − ૙૚ߤ −Ω࢙))ᇱ(Ωି૚/૛(࢞ − ૙૚ߤ
−Ω࢙))} 

= exp{ −
1
2

࢞)) − ૙૚ߤ − Ω࢙)ᇱΩି૚(࢞ − ૙૚ߤ −Ω࢙))}, 

Thus, ࢄ ∼ ߚ with ,(Ω,ࢼ)ࡺ = ଴૚ߤ + Ω࢙. 

Derivation of (4). Note that  

൬ ௟ܵ௝
ሜܵ௟
൰ ∼ ,(෤,Ω෩ߤ)ܰ ෤ߤ = ቀ

௟ߤ ,௝
௟ߤ̄
ቁ ,Ω෩

= ቆ ௟݊௝/݊௞௝ , ݊௟௝ଶ /(݊௞௝݊௟)
݊௟௝ଶ /(݊௞௝݊௟), ௟ܦ

ቇ, 

where ௟ߤ ,௝  is the ݆ -th entry of ߤ௟௞ = Ωିଵ/ଶ(ߤ଴ଵ݊௟ଵ/
ඥ݊௞ଵ, . . . , ଴ௗ݊௟ௗ/ඥ݊௞ௗ)ᇱߤ ௟ߤ̄ , = ∑ ௟ߤ ,௝

ௗ
௝ୀଵ ௟݊ /݊௟ , and 

௟ܦ = ∑ ݊௟௝ଷௗ
௝ୀଵ /(݊௞௝ ௟݊

ଶ) . Thus, ௟ܵ௝| ሜܵ௟ ∼ ෤௝ߤ)ܰ (෤௝ଶߪ, , with 
෤௝ߤ = ௟,௝ߤ + ݊௟௝ଶ /(݊௞௝݊௟)ܦ௟ିଵ( ሜܵ௟ − (௟ߤ̄  and ߪ෤௝ଶ = ݊௟௝/݊௞௝ −
݊௟௝ସ /(݊௞௝݊௟)ଶܦ௟ିଵ. 
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