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Abstract: Motivated by HIV retention, we present an application of the smooth test of goodness-of-fit under right-
censoring to time to first occurrence of a recurrent event. The smooth test applied here is an extension of Neyman’s 
smooth test to a class of hazard functions for the initial distribution of a recurrent failure-time event. We estimate the 
baseline hazard function of time-to-first loss to follow-up, using a Block, Borges and Savits (BBS) minimal repair model 
of the data (n = 2,987,72% censored). Simulations were conducted at various percentages of censoring to assess the 
performance of the smooth test. Results show that the smooth test performed well under right-censoring. 
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1. BACKGROUND 

Recurrent events refer to failure-time events where 
individuals or entities experience repeated occurrences 
of the same type of event of interest. The events are 
frequently encountered in many biomedical settings, 
where clinically important events occur repeatedly over 
the course of follow-up. See [1-6] for specific and more 
comprehensive examples of recurrent events. In many 
applications, the gap-time, is the main outcome of 
interest. Several survival models have been proposed 
to handle gap-time in recurrent event (e.g. the Wei-Lin-
Weissfeld total time (WLW-TT) marginal model, the 
Prentice-Williams-Petersen gap-time (PWP-GT) 
conditional model, the Block-Borges-Savits (BBS) 
minimal repair model, the recurrence rate models, the 
semiconditional models, etc.) [6-12]. 

In this paper, we focus on the application of the 
BBS model [13] to the time to first loss to follow-up for 
patients in HIV treatment. The BBS model is more 
appropriate in our scenario, due its flexibility and can 
be adopted in many areas of applications [10, 14]. In 
the BBS model, a system is put on test at time 0. When 
the system fails at time, say t, it undergoes a perfect 
repair with probability !(t)  or an imperfect repair with 
probability q(t) = 1! "(t) . A perfect repair reverts the 
system’s age to 0, whereas a minimal repair leaves the 
system’s age the same as at the age at failure. After 
repair, the testing process is continued, and at each 
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subsequent failure, either a perfect repair is performed 
with probability !(t)  or an imperfect repair is performed 
with probability q(t) , where t  is the age of the system. 
The assumption here is that repairs take negligible 
time. Although the BBS model is primarily utilized in the 
reliability and operations research settings, it is also 
applicable to other areas since it admits as special 
cases some of the models commonly encountered in 
practice [11] (e.g. by taking !(t) = 0  we obtain a 
nonhomogeneous Poisson process as a special case 
of the model that is commonly used in biomedical 
settings). 

This work is motivated by the problem of retention 
of patients in HIV care. During “retention”, patients are 
known to be alive and receiving highly active 
antiretroviral therapy (HAART) by the end of a follow-
up period. An “exit" from an ART program is defined as 
a discontinuation of ART for any reason, including 
death, loss to follow-up (LTFU), stopping ARV 
medications while remaining in care and transfer to 
another ART facility. ART treatment discontinuation 
and poor adherence can lead to drug resistance and 
sub-optimal benefits in an HIV treatment programs. 
Patients with clinical AIDS who discontinue ART will 
likely die within a relatively short time [15]. High rates of 
attrition from treatment programs thus pose a serious 
challenge to program implementers and constitute an 
inefficient use of scarce treatment resources in sub-
African countries. 

A patient who experiences LTFU default’s 
treatment. S/he can be traced back to ART program 
and either initiated ART afresh (perfect repair) or 
continued on the same regimen (imperfect repair). 
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Long-term retention of patients in ART treatment 
programs is critical to achieving long term benefits of 
ART. Most large-scale ART treatment providers, 
particularly in sub-Saharan Africa, face the challenge of 
LTFU. Attrition from ART treatment programs is 
generally divided into four categories: death, active on 
ART, transfer-out and loss to follow-up (LTFU)) [15]. 

Here, we fit the BBS model and test the baseline 
hazard of the model using a smooth tests of goodness-
of-fit. The smooth test of goodness-of-fit problem 
considered here is an extension of Neyman’s smooth 
test [16] to recurrent events models. Assuming that the 
LTFU data accrual follows a BBS model, the test 
involves testing the null hypothesis that the initial 
hazard function of the lifetime is 
H 0 :!(") # {!0 (";$) :$ # %}  versus the alternative 
hypothesis H1 :!(") # {!0 (";$) :$ % &}  where the 
functional form of !0 (";#)  is known, except for the p !1  
vector ! . The parameter !  is a nuisance parameter in 
this testing problem and !  is a p ! r  vector space [11]. 
The smooth tests are score tests and have been shown 
by [17, 18] to be powerful against a wide range of 
alternatives. Furthermore, smooth tests of goodness-
of-fit are considered to be a compromise between 
omnibus tests and directional tests. This work presents 
the first attempt to fit HIV retention data to a recurrent 
event model and then assessing the fit using a smooth 
test of goodness-of-fit. The motivating premise is that 
of a practical clinical setup where the primary purpose 
of the inference is risk of LTFU, tracking defaulters in 
ART treatment, and prediction of the risk of LTFU. This 
is common in clinical setting where patients in an ART 
are expected to remain in a treatment program with the 
goal of suppressing viral load. Further, in such 
situations, particularly in sub-Saharan Africa, the 
challenge has been how to model the hazard rate 
function more efficiently. 

The formulation of the smooth test presented here 
is through hazard functions, which permits the 
derivation to obtain omnibus as well as directional tests 
[18]. Since the smooth tests are score tests, they are 
endowed with asymptotic optimality properties. A major 
contribution of this paper is the application of the BBS 
model to a primary HIV retention dataset and the 
assessment of the model using the smooth test of 
goodness-of-fit. In modelling the LTFU data, we utilize 
stochastic formulation, which allows a direct estimation 
of nuisance parameters [19]. By fitting LTFU data to a 
parametric family of baseline hazard functions, we are 
able to make more efficient inferences about the risk. 

In section 2, we revisit the general framework of 
BBS model and development of a smooth test of 

goodness-of-fit for the initial baseline function. Monte 
Carlo simulation results pertaining to the finite sample 
size properties of the tests are presented in section 3. 
In section 4, we present model fitting and analysis of 
results including motivation for fitting LTFU data. We 
discuss overall results in section 5. Finally, we provide 
the concluding remarks and limitations of the study in 
section 6. 

2. GENERAL FRAMEWORK 

Let  {!0 = 0,!1,!2 ,!}  be a sequence of failure 
times generated under a minimal repair model, with !i  
being continuously distributed with probability density 
function f  and hazard function ! . Let 

 !0 = 0 <!1 <!2 <!  be successive failure times of a 
component, and  U1,U2 ,!  is a sequence of i.i.d 
Uniform [0,1]  random variables which are independent 
of the failure times. The sequence 

 (!0 = 0,!1,!2 ,!,!" ) , where  ! = inf{k " {1, 2,!} : 
Uk < p(!k )} , is an epoch of the BBS model. Since a 
perfect repair restores a component to as good-as-new 
state, it suffices to observe a component only until the 
time of its first repair, a situation that is naturally similar 
to time to first loss to follow-up (LTFU) in a typical HIV 
clinical setting. See [1, 4, 10, 12-14, 20-24] for other 
applications of BBS models. 

2.1. Smooth Test of Goodness-of-Fit 

Our interest here is to test the null hypothesis 
H 0 :!(") = !0 (") , where !0 (")  is a completely specified 
hazard function. The smooth test of goodness-of-fit is 
derived by nesting the hypothesised hazard function 
!0 (")  to a larger parametric family of hazard functions 
to get  

= {!k (";# ) = !0 (")exp{#
T$(")} :# % Rk},         (1) 

where k  is some fixed positive integer and !(")  is a 
k !1  vector of locally bounded predictor process [12, 
18-20, 23]. Note that, the null hypothesis 
H 0 :!(") = !0 (")  can be rewritten as H 0

* :! = 0 . 

The score processes associated with !  have been 
derived by [12, 18-20, 23] to yield  

U! (t;! ) =
j=1

n

" 0

t
# $(s)dM j (s;! ),          (2) 

where  M j (s;! ) = N j (s)" Aj (s;! ), j =1, 2,!,n , N j (s)  is 
the counting process defined on a filtered probability 
space  (!,F = ("t : t # 0),P)  and Aj (s;! )  is the 
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 F ! compensator of N j (s) . The asymptotic ! -level 

smooth test of goodness-of-fit for H 0
* :! = 0  (or 

equivalently H 0 :!(") = !0 (") ) can be generated by the 
test statistic (see [19])  

S(t) = 1
n
U! (t;! )

T "#1($)U! (t;! ),          (3) 

where !"1(#)  is the generalized inverse of !(") . We 
reject H 0  whenever S(t) ! "

k*;#
2 , where !

k*;"
2  is the 

(1!")100th  percentile of the chi-square distribution with 
degree of freedom k* = rank[!(t)] . For a 
comprehensive coverage of the choice of the 
processes !(") , polynomial specification ( k ), 
smoothing process of !(") , achieved power of S(t)  and 
asymptotic distribution of S(t) , see [3, 12, 17-20, 23]. 

3. SIMULATION 

We conducted Monte Carlo simulations to 
investigate the performance of the smooth tests. 
Similar tests have been examined in extensive 
simulation studies [18-20]. The goal of simulations was 

to compare the empirical significance levels of the tests 
with the specified nominal asymptotic levels as the 
sample size and the degree of censoring are varied. 
These comparisons indicate which tests qualify as 
good omnibus tests and which tests have good control 
of Type I error among a wide range of alternatives. 
Simulations were also helpful in determining 
appropriate values of the smoothing parameter k  (i.e. 
k = {1, 2, 3, 4} ). Since we are fitting the BBS model with 
the probability of perfect repair !(") = 1 , we considered 
simulations for n = {20, 50,100, 200, 500,1000} . 

In the simulations, the initial failure-time variables 
were generated according to the exponential 
distribution with mean ! = 8 , the Weibull distribution 
with shape parameter !  and scale parameter !  and 
the Gamma ( ! = 3," = 4 ) distribution. The failure-time 
variables ( T1,T2 ,!Tn ) were generated using the 
chosen alternative, and the censoring variables 
( C1,C2 ,!,Cm ) were distributed according to the 
exponential distribution with mean 1. By utilizing the 
resulting randomly censored data  {(Z, i), i =1,!,n} , 
the null hypothesis was tested according to the 
different 5% asymptotic level tests. The percentage out 
of the replicates that a test rejected H 0  was then 

Table 1: Empirical Control of the Type I Error Rate Under H 0 :!(")  is Distributed as Exponential (! = 8 ) at ! = 0.05 . The 
Failure Times under the Null Hypothesis were Generated According to a BBS Model 

  Empirical Type I error rate (70% Censoring)  

Sample size, n  n=20   n=50  n=100  n=200   n=500   n=1,000  

!1    0.0452   0.0406   0.0422   0.0394   0.0323   0.0401  

!2    0.0418   0.0455   0.0497   0.0453   0.0498   0.0428  

!3    0.0560   0.0485   0.0443   0.0490   0.0545   0.0563  

!4    0.0568   0.0491   0.0553   0.0598   0.0654   0.0570  

Censoring %   Empirical Type I error rate (50% Censoring) 

Sample size, n  n=20   n=50  n=100  n=200   n=500   n=1,000  

!1    0.0366   0.041   0.0333   0.0394   0.0303   0.0371  

!2    0.0422   0.0459   0.0373   0.0453   0.0363   0.034  

!3    0.0457   0.049   0.0398   0.05   0.0401   0.0482  

!4    0.0564   0.0496   0.0403   0.0528   0.0509   0.0491  

Censoring %   Empirical Type I error rate (20% Censoring) 

Sample size, n  n=20   n=50  n=100  n=200   n=500   n=1,000  

!1    0.0311   0.0322   0.0334   0.0304   0.0423   0.0309  

!2    0.0384   0.0385   0.0398   0.0376   0.0486   0.0394  

!3    0.043   0.0424   0.0438   0.0422   0.0525   0.0447  

!4    0.044   0.0432   0.0446   0.0431   0.0533   0.0558  
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Table 2: Empirical Control of the Type I Error Rate under H 0 :!(")  is Distributed as Weibull ( ! = 6 , ! =10 ) at ! = 0.05 . 
The Failure Times under the Null Hypothesis were Generated According to a BBS Model 

 Empirical Type I error rate (70% Censoring)  
Sample size, n  n=20   n=50  n=100  n=200   n=500   n=1,000  

!1    0.0352   0.0406   0.0422   0.0494   0.0423   0.0371  

!2    0.0431   0.0411   0.0401   0.0411   0.0411   0.0431  

!3    0.0444   0.0423   0.0677   0.069   0.0663   0.0471  

!4    0.0798   0.0919   0.081   0.0788   0.0703   0.0998  

  Empirical Type I error rate (50% Censoring) 
Sample size, n  n=20   n=50  n=100  n=200   n=500   n=1,000  

!1    0.0466   0.041   0.0333   0.0494   0.0403   0.0301  

!2    0.0471   0.0466   0.0411   0.0494   0.0455   0.0411  

!3    0.0516   0.0511   0.0594   0.0503   0.0571   0.0479  

!4    0.0533   0.0666   0.0811   0.0777   0.0603   0.0578  

  Empirical Type I error rate (20% Censoring) 
Sample size, n  n=20   n=50  n=100  n=200   n=500   n=1,000  

!1    0.0311   0.0322   0.0334   0.0304   0.0323   0.0309  

!2    0.0471   0.0466   0.0371   0.0394   0.0403   0.0371  

!3    0.0499   0.0511   0.0454   0.0422   0.0471   0.0455  

!4    0.0521   0.0596   0.0511   0.0484   0.0509   0.0588  

 

Table 3: Empirical Control of the Type I Error Rate under H 0 :!(")  is Distributed as Gamma( ! = 3," = 4 ) at ! = 0.05 . The 
Failure Times under the Null Hypothesis were Generated According to a BBS Model 

  Empirical Type I error rate (70% Censoring) 
Sample size, n  n=20   n=50  n=100  n=200   n=500   n=1,000  

!1    0.0444   0.0354   0.0423   0.0394   0.0323   0.0371  

!2    0.0497   0.0396   0.0474   0.0453   0.0398   0.0428  

!3    0.0531   0.0423   0.0506   0.049   0.0445   0.0563  

!4    0.0537   0.0529   0.0512   0.0598   0.0854   0.077  

  Empirical Type I error rate (50% Censoring) 
Sample size, n  n=20   n=50  n=100  n=200   n=500   n=1,000  

!1    0.0366   0.031   0.0333   0.0394   0.0403   0.0371  

!2    0.0422   0.0459   0.0373   0.0453   0.0463   0.044  

!3    0.0557   0.049   0.0498   0.059   0.0601   0.0482  

!4    0.0964   0.0696   0.0503   0.0598   0.0909   0.0991  

  Empirical Type I error rate (20% Censoring) 
Sample size, n  n=20   n=50  n=100  n=200   n=500   n=1,000  

!1    0.0331   0.0322   0.0355   0.0304   0.0323   0.0309  

!2    0.044   0.0385   0.0422   0.0476   0.041   0.0394  

!3    0.0599   0.0624   0.0663   0.0722   0.0564   0.0447  

!4    0.0691   0.1122   0.1072   0.0931   0.0875   0.1058  
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Table 4: Empirical Control of the Type I Error Rate under H 0 :!(")  is Distributed as Weibull ( ! = 5," =15 ) at ! = 0.05 . 
The Failure Times under the Null Hypothesis were Generated According to a BBS Model 

  Empirical Type I error rate (70% Censoring) 

Sample size, n  n=20   n=50  n=100  n=200   n=500   n=1,000  

!1    0.0415   0.0331   0.0395   0.0361   0.0382   0.044  

!2    0.0464   0.037   0.0442   0.0417   0.0452   0.0493  

!3    0.0496   0.0395   0.0472   0.0551   0.0695   0.0526  

!4    0.0502   0.04   0.0478   0.0559   0.0704   0.0533  

  Empirical Type I error rate (50% Censoring) 

Sample size, n  n=20   n=50  n=100  n=200   n=500   n=1,000  

!1    0.0435   0.0383   0.0311   0.0361   0.037   0.0333  

!2    0.0487   0.0429   0.0348   0.0417   0.0426   0.0397  

!3    0.052   0.0458   0.0472   0.0551   0.0561   0.0437  

!4    0.0527   0.0464   0.0677   0.0759   0.1069   0.0946  

  Empirical Type I error rate (20% Censoring) 

Sample size, n  n=20   n=50  n=100  n=200   n=500   n=1,000  

!1    0.0333   0.0388   0.0318   0.0364   0.0375   0.0362  

!2    0.0397   0.0446   0.0381   0.0432   0.0456   0.0442  

!3    0.0437   0.0583   0.0619   0.0574   0.0607   0.0791  

!4    0.0846   0.089   0.1028   0.0683   0.0817   0.0802  

 

calculated. The bootstrapping procedure was applied 
1,000 times to each generated dataset to obtain the 
significance level of the test. Within the context of 
model selection, size estimates were based on the 
proportion of replications that indicate acceptable fit, 
with a larger number of replications resulting in smaller 
CIs (higher power, more accuracy) around the 
estimates. The data-generating process was performed 
using the SimSurv function of the prodlim package from 
R.  

To investigate the performance of the different tests, 
we evaluated the exponential, Weibull and Gamma null 
hypothesis against their generalised alternatives for the 
initial distribution of failure ages. Hence, given the 
values of different parameters, values for each 
alternative were generated. Simulations were done for 
the 5% asymptotic level tests. We also performed 
simulations for values of ! = 6 , ! =10  and ! = 5," =15  
for the Weibull initial distribution and found the results 
to be consistent with those presented by [18-20, 25]. 
Examining the performance of the directional tests, we 
again noticed that we are able to achieve required 
significance levels. Tables 1, 2, 3 and 4 summarize the 
percentage rejection of the tests for the exponential 
alternatives, Gamma alternatives and Weibull 

alternatives. For the exponential alternative, the !1,!2  
and !3 , have the highest power under H 0 . The 
directional tests based on !i , i =1, 2, 3, 4 , are sensitive 
for the Gamma-type distributions. The fact that the !1  
test is powerful for this alternative is expected because 
this test was derived against such alternatives, 
whereas the observation that the !4  test is not 
powerful for this alternative is also expected because 
the normalized total-time-on-test statistic is invariant to 
changes in scale [19]. Against the Weibull-type, 
Gamma-type and exponential alternatives, the !1  test 
performed best, followed by the !2  test. 

4. FITTING HIV RETENTION DATA 

4.1. Motivation for Analysis of HIV Retention Data 

HIV/AIDS has consistently been a major challenge 
in Kenya. The national prevalence is currently 
estimated to be 6% and there are at least 1.6 million 
Kenyans living with HIV (PLHIV) with at least 800,000 
of PLHIV on ART [26]. In practice, the quality of the 
ART services is measured against the rate of retention 
of PLHIV on ART. With the advent of the United Nation 
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AIDS (UNAIDS) programme on HIV/AIDS targets in 
2013, the focus have turned to interventions that 
quicken elimination of HIV/AIDS at the global, regional, 
country, province, district and city levels [27]. The 
strategy popularly known as 90 ! 90 ! 90  targets that by 
2020, 90% of people living with HIV know their HIV 
status, 90% of people who know their status are 
receiving ART treatment and 90% of people on HIV 
treatment have a suppressed viral load so that their 
immune system remains stronger and the likelihood of 
their infection being passed to others is greatly 
reduced. This strategy is currently being implemented 
in Kenya and this paper focuses on statistical 
innovation that hinges on one of the pillars: the third 
90% i.e. viral suppression. Viral suppression is 
achievable by retaining patients on ART for long. There 
are potential benefits whenever a PLHIV’s viral load is 
reduced to an undetectable level (i.e. people with 
undetectable viral loads are generally healthier than 
those people with higher levels of virus in their blood 
and are also less likely to transmit HIV to their sexual 
partners [28]). High retention rate in ART treatment 
plays a crucial role in maintaining viral load 
suppression [28-33]. See [34] for excellent summary on 
the relevance of LTFU and the rationale for fitting LTFU 
data to a parametric distribution. 

4.2. Data Description 

Data comprised all patients who were initiated ART 
at two government hospitals in Kenya. Patients under 
observation were enrolled between 1st of October 2011 
and 31st December 2014. The event of interest was 
time to first LTFU. Data was collected routinely 
whenever patients came for clinical check-up or drug 
refill. The time between ART initiation to first LTFU was 
given in months. Time to first LTFU was defined as 
missing routine clinical appointment within 48 hours 
from the scheduled appointment date. Out of those 
initiated on ART, 854 patients experienced LFTU while 
the rest were right-censored. See [34] for details about 
the data. 

4.3. Application to HIV Retention  

4.3.1. Modelling LTFU 

Let  !1,!2 ,!,!n  be the gap-time between started on 
ART to LTFU for PLHIV. The date of start of ART for 
each patient is independent and the start time of 
observation is set at 0. The gap time is the period 
between start of ART until time t, when the patient 
experiences LTFU (failure) during the observation 
period. Patients who experience other exits (i.e. 
transfer-out or death) are censored. Patients who 
remain active on ART at the end of the observation 
period are also censored. A patient who experiences 
LTFU (failure) can still be recovered back (repaired) to 

ART treatment through a mechanism called defaulter 
tracing. Such patients are still exposed to the risk of 
LTFU even after recovery and so the event can recur 
several times. The setting is routine hospitals visits, 
hence the risk for the second, third and subsequent 
episodes of LTFU is the same as the first. Let  S1,S2 ,!  
be the successive event times (LTFU) for the A  
process, and let  T1,T2 ,!  be the successive event 
times of the B  process. To obtain a realization of a 
BBS (!, p)  model, events in the A  process 
correspond to the imperfectly repaired failures, 
whereas events in the B  process are associated with 
the perfectly repaired failures. The equivalence is then 
seen by noting that the process A+ B  is a 
nonhomogeneous Poisson process with intensity 

function 
0

(!)
" #(s)ds , and, given that at time t  an event 

has occurred, the probability that it is from the B  
process is p(t) . 

4.3.2. Model Fitting 

Here, we begin by checking the difference in 
residual behaviour and result to be detected in the 
hypothesis testing.  

 
Figure 1: Comparing baseline hazard for time to first 
occurrence of LTFU.  

The residuals graphically showed moderate signs of 
a different behaviour for violated models when the 
sample size is small and censoring is present. This 
indicates that for small samples with a higher degree of 
censoring the residuals could be sensitive for model 
violations. The advantage of using smooth test in the 
next subsection is that, the test is not affected by 
sample size, number of covariates and the level of 
censoring. We now check the fit for the distribution of 
the initial distribution.  
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Table 6: Smooth Tests of Up to Order 4 for the BBS 
Model with Initial Distribution Weibull 
( ! = 6," = 30 ) against an Initial Distribution of 
Generalized Weibull Family 

 !   Test statistic   p-value  

!1    2.211   1.0  

!2   3.334  0.811  

!3   4.121   0.565 

!4    5.011   0.323  

 

5. DISCUSSION 

We extended the application of the BBS model to 
HIV retention data by setting loss to follow-up data to 
represent recurrent event scenario. This was motivated 
by LTFU data comprising of typical records of patients 
with repeated LTFU and repeated time-to-failure 
measurements of multiple patients. First, we reviewed 
the BBS model and generally discussed its features 
and applicability. The BBS model is used to estimate 
the baseline hazard function. Furthermore, applying the 
BBS model to fit LTFU is more straightforward, 
particularly when the analysis involves several 
recurrent observations. Smooth tests for assessing 
model fit for BBS model were presented. The 
application of the tests to assess overall fit of the BBS 
model have also been revisited. The BBS model is 
often used in reliability studies. In this paper, we 
demonstrate that the model can be extended to cover 
other scenarios particularly in public health. The BBS 
model is flexible and a typical HIV retention data can 
be fitted to the model. This finding emphasizes the 
point that BBS model and time-to-event analyses can 
be used to model LTFU. An analysis of the time to first 
event also shows the flexibility of the model. The 

application to the LTFU data is special in that we have 
attempted to show varied applications of the BBS 
Model. The procedures for estimating the parameters 
of a general and flexible class of the models for 
recurrent events have been revisited and its properties 
examined through simulation studies. Some data sets 
in the biomedical and reliability or engineering settings 
can be reanalyzed using BBS models. 

The importance of HIV retention and adherence is 
also reflected in the 2011 General Assembly Political 
Declaration on HIV/AIDS, which emphasizes the need 
to address factors that limit treatment uptake and 
contribute to poor adherence and calls for the 
mobilization and capacity building of communities to 
support treatment scale-up and patient retention as 
well as programmes that support improved treatment 
adherence [35]. A focus on the client side was also 
underscored by UNAIDS in their 2011–2015 strategy, 
which stated that the demand side of treatment – the 
factors that make people enrol for treatment and 
adhere to it – has not received enough attention [36, 
37]. One of the main challenges to the response to HIV 
treatment is insufficient adherence to treatment. 
Suboptimal viral suppression as a result of LTFU may 
yield a higher risk of developing drug resistance, as 
well as the transmission of HIV. We consider the 
problem of testing that the baseline hazard function 
!(")  of the time to first LTFU equals some specified 
baseline hazard function !0 (") . The goodness-of-fit 
procedures were derived as score tests obtained by 
nesting the null hypothesis in a larger family of hazard 
rate functions and has been studied by [18-20]. The 
resulting smooth test of goodness-of-fit procedures are 
also related to model validation procedures that utilize 
generalized residuals and, consequently, through the 
asymptotic results, the appropriate adjustments needed 
to properly use procedures based on generalized 
residuals can be obtained [18]. Several classes of 
goodness-of-fit tests, both omnibus and directional, can 
also be generated. Because the smooth tests are 

Table 5: Assessing the Initial Distribution. Only the Weibull Distribution Fails to Reject the H 0 : Initial Distribution is 
Weibull, at ! < 0.05  

Distribution   Scale   Chi-square value   p-value  

Weibull   2.11   4.13   0.213  

Exponential   1  8.29   0.016 

Logistic  3.73   21.13  2.6e-05  

Rayleigh   0.5   9.37 0.0093  

Extreme Value   3.97   16.25   3e-04  

Gaussian   7.45   29.83  3.3e-07  

Student t  4.89   21.58  2.1e-05 

Log-normal   0.287  30.39  6.3e-05  
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viewed as score tests, they posses optimality 
properties. Through a simulation study, the 
acceptability of the asymptotic approximations were 
ascertained for the BBS model, and the powers under 
the null hypothesis of the different tests were obtained 
for a wide range of alternatives. 

6. CONCLUSION 

The smooth test of goodness-of-fit for the 
distribution of the initial failure-times of a BBS model 
was considered. An application of the intensity-based 
smooth goodness-of-fit tests developed in [12, 17-20] 
was employed. By varying the smoothing process 
!(") , a generalization to the BBS model to the tests 
was obtained. The results of the Monte Carlo 
simulations shows the tests are powerful directional 
tests. Thus, the smooth test has the potential of being 
applicable in more complex dynamic models in survival 
analysis, reliability, and other settings, where the 
specification of the model is through hazard functions. 
Retention in ART appeared to be poor over time 
whereas loss to follow-up (LTFU) is common in 
resource-limited settings. Recognition of the 
importance of adherence to ART to the success of HIV 
care has gained widespread acceptance over the past 
decade. Today, acknowledgment of the importance of 
engagement in HIV care is necessary to maintain the 
health of HIV-infected populations. 

Some of the limitations of this study include the 
issue of what smoothing degree to use, (k) , and how 
to improve the asymptotic approximations for small to 
moderate sample sizes and in the presence of a high 
degree of censoring. Furthermore, there is a need to 
compare the smooth test, in terms of efficiency, with 
other procedures such as generalizations of the 
Kolmogorov-Smirnov and Cramer-von Mises types of 
tests in the settings considered in this paper.  

LIST OF ABBREVIATIONS 

AIDS = Acquired Immune Deficiency Syndrome 

HIV = Human Immunodeficiency Virus 

LTFU = Lost To Follow-Up 

ART = Antiretroviral Therapy 

BBS = Block, Borges and Savits 

PLHIV = People Living with HIV 

UNAIDS = United Nations AIDS 

CPH = Cox Proportional Hazard 

A-G = Andersen-Gill 

WLW-TT = Wei-Lin-Weissfeld total time  

PWP-GT = Prentice-Williams-Petersen gap time 

CCC = Comprehensive Care Center 

WHO = World Health Organization 

IQR = Inter-quartile range 

SD = Standard deviation 

HAART = Highly Active Antiretroviral Therapy 

GOF = Goodness-of-fit  
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APPENDIX 

The BBS Model 

Generally, the BBS model has two parameters [12]: 
a lifetime distribution function F , which we have 
assumed to be continuous, and a function 
p[0,!)" [0,1] . Thus, we write the model as BBS 
(F, p) . Because there is a one-to-one correspondence 
between F  and its hazard function ! , given by  

!(t) =
0

t
" dF(#)
1$ F(#)

= $ log(1$ F(t))         (4) 

and  

F(t) = 1! exp{!"(t)},           (5) 

we can therefore specify a BBS model and rewrite it as 
BBS (!, p)  [12]. Under a model of minimal repair, the 
sequence {! j} j=1

"  is a Markov process, and the 
conditional survivor function of ! j  given  !0 ,!1,!,! j"1  
is  

S (t |! j"1 ) =
S (t)

S (! j"1 )
, t #! j"1, j #1,  

where S =1! F  is the survivor function. Let  U1,U2 ,!  
be a sequence of identically distributed and 
independent standard uniform variables, which are 
independent of the ! j ’s. Let 

 ! = min{k " {1, 2,!} :Uk # p($k )} . An epoch in the 
BBS (!, p)  model is the sequence  !1,!1,!,!" . 
Because the system’s effective age is restored to 0 
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after a perfect repair is performed, it suffices to observe 
the system until the ! th  failure, which occurs at time 
!" . Hence we focus on the feature of an epoch of a 
BBS (!, p)  model. The probability mass function, 
f! (k) , for a BBS (!, p)  is given by (see [12])  

 

f! (k) =
1

(k "1)! 0

#

$ exp{"%(&)}' [%*(&)]k"1

p(&)((&)d&, k =1, 2,!,
        (6) 

where !*(") =
0

"

# $*(s)ds  and !*(s) = [1" p(s)]!(s) .  

Smooth test of goodness-of-Fit for BBS Model 

We consider the stochastic formulation developed 
by Hollander et al. [23]. 

Let  N
* = {(N1

* (t),N2
* (t),!,Nn

* (t))}  be a multivariate 
counting process defined by 

 
Nj
* (t) =

k=1

!

" I(# jk $ t), j =1, 2,!  and filtration 

  F
* = {Ft

* : t ! F}  defined by 
  
Ft

* = F0! j=1
n

" Fjt
* , where  

  
Fjt

* =!{{N j
*(s) : s " t}U{Ujk : k #1}},         (7) 

with   F0  containing all null sets of  F [19]. Suppose n  
independent BBS epochs {! jk :1" j " n,1" k " # j}  

associated with n  units, are observed, where the j th  
unit has time-dependent covariate process X j (!)  [20]. 
Define the stochastic processes 

  N = {N1(t),N2 (t),!,Nn (t) : i ! F}  with 

 
N j (t) = N j

*(t !" j# j
), j =1, 2,!  and the corresponding 

filtration  F = {Ft : t ! F}  is given by 
 
Ft =! j=1

n F j (t"# j$ j
)

* . 

The compensator F  of N  is given as 

  A = {A1(t),A2 (t),!,An (t) : t ! F} , with  

 
Aj (t) =

0

t

!Yj (s)"(s)ds, j =1, 2,!,n,         (8) 

where Yj (s) = I{! j" j
# s} , and !(")  is the baseline 

hazard function. 
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