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Abstract: Background: Modeling length of stay (LOS) data in healthcare settings using Coxian phase type (PH) 
distributions is becoming increasingly popular. However, dependence on initial values is a persistent difficulty in 
parameter estimations. This paper explores the utility of prior information on the parameters to address this difficulty.  

Methods: Maximum likelihood methods were used to estimate parameters of PH distributions that best fit simulated 
datasets with various sample sizes arising from PH distributions of various numbers of phases and parameters, using 
randomly generated initial values. Estimated values for the parameters resulting from different initial values were 

compared to the known values to assess the extent to which estimates depend on initial values; the impacts of sample 
sizes, existence of prior information, as well as the number of parameters with prior information were assessed. 

Results: Without prior information, parameter estimates depend on initial values for all PH distributions and all sample 

sizes. Prior information on one or more parameters led to more concentrated estimates, with higher number of 
parameters with prior information or larger sample sizes leading to more concentrated estimates. For example, with a 
sample size of 500, the estimates for a parameter with known value of 0.706 without prior information had a wide range 

of 1.523; using prior information for two parameters narrowed that range down to 0.156. For 3-phase PH distributions, 
prior information on 3 parameters appeared to be sufficient to eliminate dependence on initial values, even for small 
sample sizes. For 4-phase PH distributions, prior information on 5 parameters and a moderate sample size were needed 

to eliminate such dependence.  

Conclusions: Combination of prior information on parameters and sufficient sample sizes can eliminate dependence on 
initial values in fitting PH distributions to LOS data. 

Keywords: Coxian phase type distributions, Length of stay data, Maximum likelihood methods, Prior information, 

Dependence on initial values. 

1. INTRODUCTION 

Coxian phase type distributions (PH distributions), a 

special type of Markov chain model that describes 

duration until an event occurs in terms of a process 

consisting of a sequence of latent phases [1-3], are 

becoming increasingly popular in modeling length of 

stay (LOS) data in healthcare settings [1-11]. Attractive 

properties include the ability to offer superior fit 

compared to alternative distributions such as lognormal 

or gamma distributions [4], and the ability to model 

probabilities of transition from one phase to another as 

well as probabilities of absorption from various phases 

[5, 6, 12].  

While these properties make PH distributions an 

attractive modeling tool in healthcare settings, fitting 

PH distributions to a given dataset is not a trivial 

process, with some well documented difficulties 

including dependence on initial values and potential 

over-fitting or parameter redundancy [3, 13-15]. There 
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have been numerous contributions in the literature to 

identify and address these issues [3, 13, 15-20], and a 

recent paper by Marshall and Zenga summarized what 

have been achieved and presented the best procedure 

to estimate parameters of PH distributions [3]. Despite 

these developments, however, no effective mechanism 

exists to address the heavy dependence of estimation 

results on initial values [3, 13].  

Such dependence on initial values means that 

parameter values obtained from model estimations 

may not reliably reflect the parameters of the 

underlying Markov process that gave rise to the data. If 

this issue is not resolved, it would be difficult, if not 

impossible, to use the estimated parameter values to 

obtain information on the underlying Markov process, 

such as probability of transition between consecutive 

phases or probability of absorption in various phases. It 

would also be difficult, or even impossible, to reliably 

model dependence of parameter values of the PH 

distributions on covariates. Moreover, the validity and 

reliability of predictions using coefficient values 

obtained from fitting PH distribution to the data may 

also be questionable.  
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An effective mechanism to eliminate dependence 

on initial values, therefore, is needed to remove a 

significant barrier to more widespread utilization of PH 

distributions in healthcare settings. In this paper, I aim 

to establish such a mechanism. Given that 

methodological issues have already been explored 

extensively in the literature [3, 13, 15-20], I focus on the 

utilization of our knowledge, or prior information, on 

parameters of the underlying Markov process that gave 

rise to the data. Examples of such information or 

knowledge include the mean time patients spent in 

various phases, and the probabilities of absorption from 

various phases. The impact of sample sizes will also be 

explored, as it has been shown that larger sample 

sizes would result in reduced variability of the 

estimated parameter values and provide a more 

precise estimate [3]. 

2. METHODS 

2.1. Basics of PH Distributions 

A n-phase PH distribution represents a Markov 
chain with n transitory phases and an absorption 
phase, as shown in Figure 1. Such a PH distribution 

has 2n-1 parameters, 
 i , i = 1,…, n 1 , and 

 
μi , i = 1,…, n . A patient’s journey in this Markov chain is 

determined by i  and μi : the time spent on each 

transitory phase i follows an exponential distribution 

with mean 
1

i + μi

, the probability of transitioning to 

next phase is i

i + μi

, and the probability of absorption 

is 
μi

i + μi

. 

The transition probabilities from one state to its next 

state for a n-phase PH distribution as shown in Figure 

1 can be written as: 

P{X(t + t) = i +1 X(t) = i} = i t + o( t), for i = 1, 2,…, n 1  

The probabilities of absorption can be written as: 

P{X(t + t) = n +1 X(t) = i} = μi t + o( t), for i = 1, 2,…, n  

The probability density function (pdf) of the time 

spent before absorption is:  

f (t) = pexp {Qt}q , where 

 
p = (1 0 0 … 0 0) , 

 

 

2.2. Data Source 

Figure 2 outlines the process of data generation and 
parameter estimation. Simulated datasets were 
generated from 8 PH distributions, 4 with 3 phases, 
and the remaining 4 with 4 phases. 3 and 4 phases 
were used because most published studies using PH 
distributions in healthcare settings used PH 
distributions with 3 or 4 phases. For each of these two 
classes of PH distributions, one set of parameter 
values were selected from published papers. For 3-
phase PH distribution, the following parameter values 

were used: 1 = 0.0011, μ1= 0.0394, 2 = 1.56x10
-5
, 

μ2 = 0.0011, μ3 = 0.0002 [1]. For 4-phase PH 

distribution, the following parameter values were used: 

1 = 0.067, μ1= 0.024, 2 = 0.026, μ2 = 0.065, 3= 

0.0011, μ3 = 0.016, μ4 = 0.0023 [7]. In addition to these 

parameter values, three sets of random numbers 
between 0 and 1 are also used for each class to 
assess the generalizabity of the study findings.  

For each PH distribution, 15 datasets (3 different 

sample sizes, with 5 datasets per sample size per PH 

 

Figure 1: Schematic presentation of a Coxian phase-type distribution and its corresponding Markov chain model. 
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distribution) were generated, resulting in a total of 120 

datasets. The sample sizes used were 500; 2,000 and 

10,000. Most published studies used sample sizes 

around 2,000 [1, 4, 7]; the 500 and 10,000 were 

included to assess the impact of different sample sizes.  

2.3. Fitting PH Distributions to the Datasets 

The maximum likelihood method, widely used in the 

literature [1, 2, 4-11] and reported as the most effective 

approach for fitting PH distributions [3, 13], was used in 

this study. The Quasi-Newton algorithm is used in the 

optimization, as it is shown to be more effective to 

compute the maximum likelihood estimates than 

alternatives [3]. The number of phases is determined 

by a sequential procedure suggested by Faddy [17]. 

Parameter values of the n-phase PH distributions are 

then estimated using maximum likelihood methods. 

2.4. Selection of Initial Values 

10 sets of initial values were used for each of the 

120 datasets, 5 of which were within ±5% of the known 

parameter values, another 5 random numbers between 

0 and 1.  

2.5. Using Prior Information 

Having prior information on a parameter was 

defined as knowing that the parameter was bounded by 

a lower and upper bounds. In the optimization, the 

lower and upper bounds were assumed to be 95% and 

105% of the parameter, respectively. Prior information 

on this parameter was operationized by constraining 

the parameter values to be within these two boundaries 

in optimization. The number of parameters with prior 

information started with 1 ( 1 ), and was increased by 

one a time ( μ1 , then 2 , then μ2  etc.) until all but two 

parameters are constrained, given that many 

alternative distributions, such as lognormal and gamma 

distributions, have two free parameters. When fitting 

with prior information on certain parameters, the initial 

values of these parameters were random numbers 

within their boundaries, whereas initial values of other 

parameters without prior information were the same for 

estimations without prior information. 

Starting with parameters of the first phase is due to 

the fact that estimates for parameters in earlier phases 

tend to be closer to their true values than for 

parameters in later phases [3], and that availability of 

prior information on later phases usually imply 

availability of prior information on the earlier phases. 

For example, to know information on time spent on the 

second phase would imply that information on time 

spent on the first phase is also available, as the 

beginning of the second phase is also the end of first 

phase. 

 

Figure 2: Illustration of data generation, parameters estimation and results evaluation. 
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2.6. Evaluation of Outcomes 

For each parameter of the PH distributions, the 

outcome of interest is distribution of estimated values 

using the different combination of sample sizes, initial 

values, and prior information. If the all estimated values 

were within ±5% of the known parameter value 

regardless of initial values, then the combination of 

sample sizes and prior information was considered 

able to produce reliably accurate estimates of the 

known parameter values with no dependence on initial 

values.  

Data generation, parameter estimation, and statistic 

analysis were carried out using R 2.14.0. [21]. 

3. RESULTS 

3.1. Fitting without Prior Information 

Tables 1 and 2 present the distributions of 

estimated parameter values for one PH distribution 

from each class (3-phase and 4-phase) without prior 

information for a particular dataset. Results of these 

two PH distributions with other datasets and the 

distributions of other PH distributions with different 

parameter values showed similar pattern and were not 

shown in the tables.  

It is apparent from the tables that without prior 

information, the maximum likelihood methods were not 

able to produce estimates that are reliably close to the 

known values, regardless of sample sizes for most 

parameters. Even for sample size as large as 10,000, 

the estimates still depend heavily on initial values, 

suggesting that larger sample size is not the answer to 

the problem of dependence on initial values.  

One exception appeared to be μ1 , as the estimates 

of this parameter centered around the known values 
regardless of initial values for both classes of PH 

distributions. In the case of μ1 , larger sample sizes led 

to more precise estimates, although the results are 
remarkably accurate even for smaller sample sizes. 
This is also consistent with results reported in Marshall 

and Zenga [3]. It is unclear why estimates for μ1  did 

not appear to depend on initial values; it is worthwhile 
to explore this in further studies.  

3.2. Fitting with Prior Information 

Tables 3 and 4 present the distributions of 

estimated parameter values for one PH distribution 

from each class (3-phase and 4-phase) with one or 

more parameters constrained to lower and upper 

boundaries for a particular dataset. Results of these 

two PH distributions with other datasets andother PH 

distributions with different parameters showed similar 

pattern and were not shown in the tables. 

It is apparent that constraining one or more 

parameters led to more concentrated estimates for 

other unconstrained parameters, and the more 

parameters that were constrained, the more 

concentrated the estimates of the remaining 

unconstrained parameters were. For PH distributions 

with 3 phases, constraining 3 parameters ( 1 , μ1  and 

Table 1: Range of Estimated Values of a Three-Phase PH Distribution without Prior Information Using a Single 
Dataset 

Sample size 1(TV*= 0.414) μ1 (TV=0.442) 2 (TV=0.159) μ2 (TV=0.706) μ3 (TV=0.498) 

500 0.140-0.826 0.385-0.412 0.00001-0.426 0.767-2.290 0.045-0.460 

2,000 0.159-1.020 0.416-0.423 0.077-1.073 0.553-1.026 0.590-1.492 

10,000 0.124-0.418 0.444-0.448 0.087-0.926 0.709-1.162 0.400-2.062 

*TV means true value. 

 

Table 2: Range of Estimated Values of a Four-Phase PH Distribution without Prior Information Using a Single Dataset 

Sample 
size 

1 (TV*= 0.469) μ1 (TV=0.909) 2 (TV=0.518) μ2 (TV=0.955) 3 (TV=0.460) μ3 (TV=00.817) μ4 (TV=0.894) 

500 0.00001-3.89 0.885-1.161 0.00001-3.010 0.0006-1.691 0.00001-
2.803 

0.0001-1.488 0.045-2.761 

2,000 0.00001-2.41 0.809-0.940 0.030-3.021 0.135-1.402 0.00002-
2.052 

0.132-2.328 0.093-0.947 

10,000 0.009-0.535 0.895-0.917 0.00003-0.731 0.182-1.320 0.0008-0.658 0.520-0.909 0.222-0.877 

*TV means true value. 
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1 ) was sufficient to eliminate dependence on initial 

values for all parameters, even for sample size as 

small as 500, as shown in Table 3. This is true for 

larger sample sizes, with larger sample size leading to 

even more concentrated estimates (not shown in the 

table). For PH distributions with 4 phases, it is 

necessary to constrain 5 parameters ( 1 , μ1 , 2 , μ2 , 

and 3 ), and to have sufficiently large sample size 

(2,000), to eliminate such dependence. With smaller 

size (i.e., 500), even constraining 5 parameters would 

be insufficient to eliminate dependence on initial values 

for the remaining two parameters, and with larger 

sample size (i.e., 10,000) constraining 5 produced 

more concentrated estimates, although constraining 4 

parameters was insufficient to eliminate dependence 

on initial values (not shown in the tables). 

Another striking result is that for both classes of PH 

distributions, even when estimates did not depend on 

initial values as a result of using prior information, the 

known parameter values may not fall within ±5% of the 

estimated values. In other words, the estimated 

parameter values may cluster closely around some 

values regardless of initial values used, suggesting that 

dependence on initial values were eliminated. 

However, these “some values” around which the 

estimates clustered may be different than the known 

parameter values.  

Upon closer look, it became clear that when the 

estimated values cluster around values other than the 

know parameter values, the likelihood of the dataset 

given the PH distributions with the estimated 

parameters were higher than that of the dataset given 

the PH distribution with known parameter values, as 

shown in Table 5. In other words, the PH distributions 

with the estimated parameter values fitted the dataset 

better than the theoretical PH distribution (the PH 

distribution with known parameter values), suggesting 

that the maximum likelihood methods worked as it is 

supposed to. This can happen even for large sample 

sizes, suggesting that larger sample size is unlikely to 

be the answer to avoid this problem.  

4. EXAMPLE 

Here I present an example on how the findings of 

this study can be used in practice. Data for this 

example came from administrative emergency 

department (ED) records from an adult emergency 

department (ED) in Canada between April 1, 2009 and 

July 31, 2009. The ED records include the timing of 

patient triage, initial consultation with nurse, initial 

consultation with doctor, and discharge. Details of the 

data source can be found elsewhere [22].  

The ED process is a well defined process in which 

patients flow through a series of transitory phases, 

Table 3: Range of Estimated Values of a Three-Phase PH Distribution with Prior Information Using a Single Dataset, 
Sample Size 500 

Parameters 
constrained 

1(TV*= 0.414) μ1 (TV=0.442) 2 (TV=0.159) μ2 (TV=0.706) μ3 (TV=0.498) 

1 0.434-0.435 0.391-0.3923 0.489-0.5019 1.073-1.081 0.434-0.437 

1, μ1 0.401-0.434 0.420-0.421 0.435-0.461 0.926-0.978 0.435-0.441 

1, μ1, 2 0.405-0.434 0.420-0.421 0.156-0.166 0.659-0.815 0.480-0.522 

*TV means true value. 

 

Table 4: Range of Estimated Values of a Four-Phase PH Distribution with Prior Information Using a Single Dataset, 
Sample Size 2,000 

Parameters 
constrained 

1  

(TV*= 0.469) 

μ1  

(TV=0.909) 
2  

(TV=0.518) 

μ2  

(TV=0.955) 
3 

(TV=0.460) 

μ3  

(TV=0.817) 

μ4 

(TV=0.894) 

1 0.449- 0.492 0.864-0.868 0.00007-3.341 0.0004-1.044 0.00001-
2.803 

0.120-2.158 0.185-0.909 

1, μ1 0.446-0.492 0.863-0.864 0.493-0.544 0.663-0.999 0.0007-0.543 1.076-3.759 0.129-0.721 

1, μ1, 2 0.446-0.491 0.863-0.864 0.496-0.541 0.907-0.988 0.0002-0.909 1.064-1.807 0.731-1.880 

1, μ1, 2, μ2 0.445-0.492 0.863-0.864 0.494-0.542 0.907-1.000 0.438-0.471 0.880-0.916 0.772-0.789 

1, μ1, 2, μ2, 3 0.484-0.492 0.863-0.864 0.492-0.497 1.002-1.003 0.437-0.480 0.856-0.857 1.421-1.455 

*TV means true value. 
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ending with an absorption phase (i.e., discharge) [23]. 

As such, PH distributions could be used to fit length of 

stay (LOS) data at the ED. Here I present results of 

fitting the ED LOS data with PH distributions using 

findings from this paper.  

Using the procedure described in section 2.3 above, 

it is determined that a 4-phase PH distribution is 

sufficient to fit the LOS data. While the data do not 

provide information regarding the meaning of these 

phases, it is reasonable to assume, based on a widely 

used conceptual framework of the ED process [23], 

that these four phases correspond to waiting to be 

assessed, initial examination by ED staff, further 

diagnostic testing, and waiting for discharge (e.g., 

boarding, or waiting for testing results). 

Prior information that was used to estimate the 
parameters was obtained from the length of stay in 
each of the transitory phases and the transition 
probabilities across these phases and probabilities of 
absorption from some of these transitory phases. 
These probabilities were estimated using the 
proportions of patients transiting from one phase to the 
next and the proportions of patients discharged from 
each of these phases. For example, mean LOS at 
phase 1 was estimated by averaging the time patients 
spent on the waiting room (time between triage and 
initial consult with ED staff); transition probability from 
initial consult with ED staff to further testing was 
estimated by the proportion of patients who received 
further testing. Using such information, the initial values 

were: 1  =0.023, μ1=0, 2 =0.035, μ2 =0.023, 

3=0.016, μ3 =0.17. 

Table 6 below presents the results of the example, 

including parameter estimates and log-likelihood value 

using initial values based on prior information, and the 

range of estimated values of the parameters the log-

likelihood values using random initial values (without 

prior information). It is clear that the estimates of the 

parameters of the PH model were close to the prior 

information, and that the log-likelihood value from the 

estimates using prior information was close to the 

maximum value achieved using a random initial values, 

providing evidence to suggest that the estimated model 

is a good representation of the underlying ED process.  

5. DISCUSSION 

The results suggest that dependence on initial 
values can be effectively avoided by the combination of 
using prior information on some parameters (3 for 3-
phase PH distributions and 5 for 4-phase distributions) 
and sufficiently large sample sizes (500 was sufficient 
for 3-phase distributions, whereas 2,000 was needed 
for 4-phase distributions). While direct information on 

i  and μi  may not be readily available in many 

healthcare settings, information on mean time spent on 
and the portion of patients who were absorbed from 
phase i can be collected in many situations and can be 

used to infer information on i  and μi , as mean time 

spent on and the probability of absorption from phase i 

are 
1

i + μi

 and 
μi

i + μi

, respectively.  

Prior information for a parameter was modeled as 

constraining the parameter to a lower and upper bound 

in the optimization process. In particular, 95% and 

105% of the known value were used as the two 

boundaries. In practice, the known values are 

unknown, so 95% and 105% of the parameter values 

calculated from mean time spent on and the portion of 

patients who were absorbed from phase i can be used 

as the boundaries.  

Table 5: Loglikelihood Values 

Distribution Using known values Using estimated values 

3-phase, with prior information on 3 parameters, sample size 
500 (as shown in Table 3) 

-825.80 -825.12 to -825.11 

4-phase, with prior information on 5 parameters, sample size 
2000 (as shown in Table 4) 

-2205.8 -2,201.86 to -2,202.17 

Table 6: Results of the Example (Sample Size:15411) 

 1 μ1 2 μ2 3 μ3 μ4 Log-likelihood 

w/ prioir info 0.023 0.0004 0.036 0.023 0.015 0.17 0.020 -156889.6 

w/o prior 
info* 

0.0001-
1.65 

0.0001-0.68 0.005-
0.54 

0.0002-
1.02 

0.0001-0.68 0.0003-0.48 0.01-0.62 -156860.1- 
-158619.8 

*1000 runs using random numbers between 0 and 1 as initial values. 
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The results also suggest that even after the 

combination of prior information and sufficient sample 

size eliminated dependence on initial values, the 

known parameter values may not fall within ±5% of the 

estimated values. This is due to the fact that some PH 

distributions with different sets of parameter values 

have higher likelihood of giving rise to the dataset than 

the PH distribution corresponding to the underlying 

Markov process.  

The fact that the some distributions with parameter 

values that differ with the known values fit the given 

dataset better than the theoretical distribution that gave 

rise to the dataset is not unique to PH distributions. It is 

a consequence of the randomness of the data and can 

happen in fitting any distributions to a given dataset. 

For simpler distributions with fewer parameters (e.g., 

normal or gamma distributions), however, the 

estimated values will be close to the known values, and 

with sufficient sample size, the known values will be 

within ±5% of estimated values. This is however not 

necessarily so for PH distributions due to the non-linear 

nature of the likelihood function for PH distributions. 

This cannot be resolved by using a larger sample size. 

Even more parameters would need to be constrained 

to avoid this problem.  

Results of this study also suggest that larger sample 

sizes do not always help in fitting PH distributions to a 

given dataset. While larger sample sizes appear to 

provide more concentrated estimates, as suggested in 

the literature [3], without prior information, even sample 

size as large as 10,000 was unable to avoid 

dependence on initial values. With prior information, a 

sample size of 2,000 was sufficient to produce 

impressively clustered estimates regardless of initial 

values; the utility of larger sample sizes is very limited. 

Furthermore, large sample size is not helpful in 

addressing the issue of residual non-linearity for PH 

distributions. Given the cost of collecting larger sample 

sizes, results of this study suggest that it may make 

more sense to collect prior information on the 

underlying Markov process than to collect larger 

sample sizes.  

Based on these findings, it appears reasonable to 

suggest that when using PH distributions to model LOS 

data in healthcare settings, it is important to have a 

clear plan to address the dependence on initial values. 

When such plan involves collecting prior information on 

parameters, the costs of obtaining such prior 

information to ensure reliable estimates should be 

weighed against the potential gain of using PH 

distributions instead of simpler distributions such as 

gamma or lognormal distributions. Only when the 

potential gain outweigh the costs should modeling with 

PH distributions be used.  

There are a number of limitations that need to be 

acknowledged. For one thing, this paper did not 

provide clear theoretical explanations to some of the 

findings, in particular the fact that estimates of μ1 . were 

always clustered around the known value. Another 

limitation is that this paper did not provide a 

mechanism to estimate the sample size required to 

produce a pre-defined level of accuracy. Another 

limitation is that this study did not address the issue of 

modeling dependence of parameter values on 

covariates. In what situations can such dependence be 

reliably modeled and coefficients be reliably and 

accurately estimated? Expanding the research to 

addressing these limitations are fruitful areas of further 

research. 

6. Conclusion 

The combination of prior information on parameters 

and sufficient sample size can successfully eliminate of 

the dependence on initial values in fitting PH 

distributions to LOS data. In practice, the costs of 

obtaining such prior information and sample size 

should be weighed against the gain of using PH 

distributions compared with simpler distributions.  
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