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Abstract: Microarray technology has revolutionized genomic studies by enabling the study of differential expression of 
thousands of genes simultaneously. Parametric, nonparametric and semi-parametric statistical methods have been 
proposed for gene selection within the last sixteen years. In an effort to find the “gold standard", the performance of 
some common parametric and nonparametric methods have been compared in terms of power to select differentially 
expressed genes and other desirable properties. However, no such comparisons have been conducted between 
parametric and semi-parametric models. In this study, we compared a semi-parametric model based on copulas with a 
parametric model (the quantitative trait analysis or QTA model) in terms of power and the ability to control the Type I 
error rate. In addition, we proposed a simple algorithm for choosing an optimal copula. The two approaches were applied 
to a publicly available melanoma cell lines dataset for validation. Both methods performed well in terms of power but the 
copula approach was notably the better. In terms of the Type I error rate control, the two methods were comparable. 
More methods for selecting an optimal copula for gene expression data need to be developed, as the proposed 
procedure is limited to copulas that permit both negative and positive dependence only. 
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1. BACKGROUND 

Microarray technology has revolutionized genomic 
studies by enabling the study of differential expression 
of thousands of genes simultaneously. The main 
objective in microarray experiments is to identify a 
panel of genes that are associated with a disease 
outcome or trait. A number of statistical methods have 
been proposed for gene selection within the last 
sixteen years. These include parametric [1-7], semi-
parametric [8-11] and non-parametric [12-15] methods. 
Most of these methods concentrate on finding 
differentially expressed genes (DEGs) when the gene 
expression data is measured in two conditions. 

When the relationship between two continuous 
variables is of interest, the dependence parameter in 
the predictive model becomes of interest as well. The 
most common dependence parameter used in such 
cases is the correlation coefficient. In differential gene 
expression analysis, the use of the correlation 
coefficient is implemented through a parametric 
method known as the quantitative trait analysis (QTA) 
model. The QTA model assumes that the variables are 
correlated and that the residuals are (approximately) 
normally distributed. An alternative method that uses 
the concept of the dependence parameter is the copula 
 

 

*Address correspondence to this author at the Division of Mathematics & 
Computer Science, University of South Carolina-Upstate, 800 University Way, 
Spartanburg, South Carolina, USA; Tel: +1 864-503-5362; Fax: +1 864-503-
5930; E-mail: bomolo@uscupstate.edu 

model. The copula model is a semi-parametric model, 
in the sense that no assumption is made on the 
distribution of the marginals but the dependence 
parameter is assumed to come from a parametric 
family. 

In this paper, we compared a copula-based semi-
parametric model with a parametric model (the QTA 
model), in terms of power and control of the Type I 
error rate. In addition, we proposed a simple procedure 
for choosing an optimal copula for gene expression 
data. The rest of the paper is organized as follows. In 
Section 2, we review the QTA method for gene 
selection. In Section 3, we discuss the copula model. 
Here, we also propose a simple approach for selecting 
an optimal copula for modeling gene expression data. 
The comparison of the two methods based on 
simulated datasets is presented in Section 4, and an 
application of the two methods to a real dataset is 
provided in Section 5. Section 6 provides a brief 
conclusion of the study. 

2. MATERIALS AND METHODS 

2.1. Quantitative Trait Analysis (QTA) Method 

This approach finds genes that are significantly 
correlated with a quantitative outcome such as age. It 
uses the Pearson’s correlation or the Spearman’s 
(rank) correlation coefficient as a measure of 
dependence to compute p -values. 
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Let Xij  be the expression level for the i -th gene 
from the j -th sample and yj  be the covariate for the 
j -th sample. The (linear) model of analysis can be 

expressed as  

Xij = !i0 + !i1yj +"ij ,  i = 1, 2, ...,G,  j = 1, 2, ..,n.        (1) 

Here, we assume that  

 !ij ! N(0," i
2 ),  i = 1,...,G,  j = 1,...,n         (2) 

and that the yj  values are fixed (not random). !i0  and 
!i1  represent the regression coefficients specific to 
gene i . For testing the significance of correlation for 
the i -th gene ( H 0i :!i1 = 0  vs H1i :!i1 " 0 ), we use the 
statistic Ti , defined as  

Ti =
!̂i1

SE(!̂i1 )
,            (3) 

where SE(!̂i1 )  is the standard error of !̂i1 . Ti  has the 
t -distribution with n ! 2  degrees of freedom. We reject 
H 0i  if | ti |< t! /2 , 0 < ! < 1 . Equivalently, one can test for 
!i , the correlation coefficient. Let xi = (xi1, xi2 , ..., xin !)  
and y = (y1, y2 , ...yn !) . Given the observations ( xij , yj ), 
the Pearson’s correlation coefficient for the i -th gene, 
ri , is defined as  

ri =
n
j=1

n

!xij yj "
j=1

n

!xij
j=1

n

!yj

n
j=1

n

!xij
2 " (

j=1

n

!xij )
2 n

j=1

n

!yj
2 " (

j=1

n

!yj )
2

.         (4) 

For testing H 0i :!i = 0  vs. H1i :!i " 0 , we use the 
statistic Ti

* ,  

Ti
* = ri (n ! 2)

1! ri
2
,            (5) 

which also has a t -distribution with n ! 2  degrees of 
freedom. Here ri  is the estimator of !i . H 0i  is rejected 
if | ti

* |< t! /2 , 0 < ! < 1 . With a simple algebraic 
manipulation, it can be shown that (3) and (5) are 
equivalent and so the latter was employed in this study. 

There are two ways of controlling the number of 
false positives in the QTA method. The first approach is 
based on the p -values computed from the parametric 
t -tests. Here, a stringent p-value threshold (say 
p < 0.001 ), is used in controlling the number of false 

positives. The second approach uses the multivariate 
permutation tests [16]. The multivariate permutation 
tests are based on permutations of the covariate. For 
each permutation, the parametric test statistics are re-
computed to determine a p -value for each gene. The 
genes are ordered by their p -values computed for 
each permutation, with genes having the smallest p -
values appearing at the top of the list. For a pre-
selected p -value threshold, the distribution of the 
number of genes that would have p -values smaller 
than that threshold is computed. That is the distribution 
of the number of false discoveries, since genes that are 
significant for random permutations are false 
discoveries. The algorithm selects a threshold p -value 
so that the number of false discoveries is not greater 
than that specified by the user C  percent (C% ) of the 
time, where C  denotes the desired confidence level 
[17]. The QTA method is implemented by the BRB-
ArrayTools software [17]. 

The QTA approach estimates the false discovery 
rate (FDR) using the Benjamini and Horchberg’s 
approach [18]. For the i -th gene, the estimated FDR is 
given by  

 
FDRi
!

= G ! pi
i

,            (6) 

where pi  is the univariate p-value for the i -th most 
significant genes and G  is the number of genes tested. 

2.2. Copula Method 

A copula is a bivariate distribution with uniform 
marginals. By Sklar’s theorem [19], for any distribution 
function, F , with marginals F1  and F2 , there exists a 
copula, C , such that  

F(x1, x2 ) = C[F1(x1 ),F2 (x2 );! ],          (7) 

for (x1, x2 !)  in the support of F , with dependence 
parameter ! . This result can be easily extended to 
multivariate distributions, to yield Sklar’s theorem in m-
dimensions, which we now state (without proof): 

Let F  be an m-dimensional distribution function 
with margins F1(x1 ), ...,Fm (xm ) . Then there exists an m-
copula, C , such that for all  x = (x1, x2 , ..., xm !) " !m  and 

 ! = (!1,!2 , ...,!m ") # $ % !m ,  

F(x1, ..., xm ) = C F1(x1 ), ...,Fm (xm );![ ] .         (8) 

If F1,F2 , ...,Fm  are all continuous, then C  is unique 
and can be expressed as  
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C(u1,u2 , ...,um ;! ) = F(F1
"1(u1 ),F2

"1(u2 ), ...,Fm
"1(um )),        (9) 

for any u = (u1,u2 , ...,um !) " [0,1]m .  

Upon differentiation, (8) becomes  

f (x1, x2 , ..., xm ) =
!mC(F1(x1 ), ...,Fm (xm );" )

!F1(x1 )...!Fm (xm ) i=1

m

# dFi (xi )
dxi

 

= c(F1(x1 ), ...,Fm (xm );! )
i=1

m

" fi (xi ).        (10) 

Here, f , c  and fi  are the densities for F , C  and 
Fi , respectively. Let ui  = Fi (xi ) . Then (10) becomes  

f (x1, x2 , ..., xm ) = c(u1,u2 , ...,um ;! )
i=1

m

" fi (xi ).       (11) 

Now, consider a random sample 
{(X1 j , ..., Xmj ) : j =1, 2, ...,n}  from the distribution 
F(x1, ..., xm ) . One can fit a copula model by estimating 
the dependence parameters using the maximum 
likelihood approach. In practice, it is more convenient 
to work with the logarithm of a likelihood function 
because it simplifies subsequent mathematical 
analysis. Since the logarithm is a monotonically 
increasing function, maximizing the log of a function is 
the same as maximizing the function itself. The log-
likelihood is given as  

 
!n (! ) =

j=1

n

"logc(F1(x1 j ), ...,Fm (xmj );! )+
j=1

n

"
i=1

m

"log( fi (xij )).  (12) 

Since the marginals are unknown, each Fi (xi )  may 

be replaced with its marginal estimator F̂i (xi )  to obtain 

!̂i . This approach is referred to as the canonical 
maximum likelihood estimation (CMLE) method [20]. 
Here, F̂i (xi )  is given by  

F̂i (xi ) =
n

n +1
1
n j=1

n

!I Xij " xi( ) ,        (13) 

where I  is the indicator function. Rescaling the 

empirical distribution by n
n +1

 avoids the potential 

unboundedness of log(c(F1(x1 j ), ...,Fm (xmj );! ) , as some 
of the Fi (xij ) ’s tend to be one [20]. The corresponding 
pseudo-loglikelihood is given as  

 
!n
* (! ) =

j=1

n

"logc(F̂1(x1 j ), ..., F̂m (xmj );! )+
j=1

n

"
i=1

m

"log( fi (xij )),  (14) 

and the estimate of !  is  

!̂ " argmax
!#$ j=1

n

%logc(F̂1(x1 j ), ..., F̂m (xmj );! ),       (15) 

since the last summand in (14) does not depend on ! . 
Under suitable regularity conditions, !̂  is consistent 
and is asymptotically normal [20]. In general, 
multivariate models do not have closed form estimators 
and so numerical methods are used in the estimation 
process [21]. 

2.3. Copula Model for Differential Gene Expression 

We were interested in the pairwise correlation 
between each gene’s expression profile and a 
quantitative outcome. Therefore, the copula of interest 
was the bivariate copula ( m = 2 ). Suppose a 
microarray experiment consists of n  samples and G  
genes. Let xi = (x1i , ..., xni )

'  be the gene expression 
profile for gene i  and y = (y1, ..., yn )

'  be a vector of the 
covariate of interest (quantitative trait). We wanted to 
find K  genes that are correlated with y , 0 < K < G . 
That is, we were interested in determining whether, for 
each gene i , Xi  and Y  are independent or not. The 
test for independence, thus, becomes testing for the 
null hypothesis  

H 0i :Y ! Xi (Xi and Y are independent),       (16) 

against the alternative hypothesis  

H1i :Y /! Xi (Xi  and Y are independent).       (17) 

For multiple genes, (16) is tested simultaneously 
and so the hypothesis of interest becomes  

 
H 0 :Y ! Xi for all i =

i=1

G

!H 0i        (18) 

vs.  

 
H1 :Y /! Xi for some i =

i=1

G

!H1i .        (19) 

In terms of copulas, assume that for each gene i , 
the joint distribution of Y  and Xi  is generated by a 

parametric copula );,( 21 iuuC !  such that  

Hi (y, xi ) = C[F(y),Fi (xi );!i ],        (20) 

where Hi (y, xi ) , F(y)  and Fi (xi )  are the CDFs of 
(Y , Xi ) , Y  and Xi  respectively. Here u1 = F(y) , 
u2 = Fi (xi )  and !i  is the dependence parameter. 
Equation (18) and (19) now become  
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H 0 :

i=1

G

! C(u1,u2;!i ) = u1u2 for all (u1,u2 )
T " [0,1]2#$ %&,      (21) 

vs.  

 
H1 :

i=1

G

! C(u1,u2;!i ) " u1u2 for some (u1,u2 )
T # [0,1]2$% &'.  (22) 

A normal copula, for instance, attains independence 
when !i  = 0. In this case, the global hypothesis to test 
for the dependence in terms of !i  is expressed as  

 
H 0 :

i=1

G

!(!i = 0) vs. H1 :
i=1

G

"(!i " 0).        (23) 

2.4. Hypothesis Testing 

To test (23), we needed the distribution of !̂i  under 
the null hypothesis. Rather than assume a parametric 
distribution for the null hypothesis, we used a 
permutation resampling-based approach [22]. For a 
given nominal level ! , a gene is differentially 
expressed if its p-value is less than  ! . To adjust for 
multiple comparisons, the FDR approach [23] was 
used. The global null hypothesis (23) is rejected if at 
least one of its components ( H 0i ) is rejected, based on 
the estimated FDR values. 

2.5. Copula Algorithm for Identifying DEGs 

Our copula-based algorithm for finding DEGs can 
be summarised as follows:  

1. Estimate !i  using the CMLE method. In the 
CMLE approach, no assumption is made on the 
marginal distribution. The marginal distribution 
for each gene, Fi (xi ) , and a quantitative 
outcome, F(y) , are replaced with their 

estimators F̂i (xi )  and F̂(y) , respectively, to 

obtain !̂i .  

!̂i " argmax
!i#$ j=1

n

%logc(F̂i (xij ), F̂(yj );!i ).       (24) 

A detailed explanation of the CMLE method is 
provided in the Supplementary Materials (B).  

2. Find gene-specific p-values (unadjusted p-
values) using the permutation based resampling 
method. See Supplementary Materials (C) for 
details.  

3. Apply the FDR approach to control for Type I 
error. See Supplementary Materials (D) for 
details.  

4. A gene is differentially expressed if its estimated 
FDR (estimated q-value) is less than some 
specified value ! "  [0,1].  

An R code for implementing the algorithm is 
available from the authors upon request. 

2.5.1. Which Copula to Use? 

Having an appropriate copula in copula modelling is 
very crucial. To date, no study has been conducted on 
choosing the best copula model for gene expression 
data analysis. Whenever a copula model has been 
applied to gene expression data, the choice has been 
arbitrary. Some authors have chosen copulas based on 
how convenient they were for their analyses [11, 24]. 
Others have chosen copulas based on the magnitude 
of the likelihood of the copulas (e.g. [25]). 

Several tests have been proposed for the copula 
specification. The most commonly used are the 
goodness-of-fit tests [26-30]. Goodness-of-fit tests are 
based on a direct comparison of the dependence 
implied by the copula with the dependence observed in 
the data. 

In most empirical applications, the unique copula C  
is assumed to come from a parametric family 
C0 = {C! ,! " #}  with ! " R . In goodness-of-fit testing 
for copula models, the hypothesis of interest is given by 
H 0 :C ! C0  , i.e. that the copula C belongs to a pre-
determined parametric family C0 . For testing H 0 , the 
marginal distributions are treated as nuisance 
parameters and are replaced by their empirical 
distribution functions, F̂i (xi ) , as defined in (13) [31]. 

Copulas can also be selected according to their 
ranks based on some criteria. The most commonly 
used criteria are the Akaike Information Criteria (AIC) 
[32] and the Bayesian Information Criteria (BIC) [33]. 
These are defined as follows: 

AIC = !2
j=1

n

"ln[c(u1 j ,u2 j );# ]+ 2K .        (25) 

BIC = !2
j=1

n

"ln[c(u1 j ,u2 j );# ]+ Kln(n).       (26) 

Here, uij = Fi (xij ), i = 1, 2 , and K =1  for the one-
parameter copulas. Similarly, K = 2  for the two-
parameter copulas. The copula with the least AIC or 
least BIC is chosen to be the best. Kim et al. [34] used 
the AIC approach to assess the goodness-of-fit of their 
proposed copula-based method, the survival truncated 
Farlie-Gumbel-Morgenstern (FGM) type modification 
copulas. 
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With several copulas to choose from in empirical 
applications, one needs an appropriate one for the data 
at hand. The statistical features of the data should 
guide the selection of the copulas. For example, gene 
expression profiles can be positively or negatively 
associated with a quantitative outcome. Therefore, 
naturally, copulas that can capture both the negative 
and the positive dependence such as the Normal 
copula, the Student-t copula and the Frank copula 
should be superior to the Gumbel and Clayton copulas, 
which do not permit negative dependence. To this end, 
we recommend the following procedure:  

1. Perform copula model selection from a list of 
candidate parametric copulas on all the pairs (a 
quantitative outcome and each gene expression 
profile). This helps in determining the closest 
parametric copula family from the list of 
candidate copulas.  

2. Record the proportion of pairs that are fitted by 
the parametric copulas.  

3. The copula that fits most of the pairs is assumed 
for the whole analysis.  

We considered two copulas: the Normal copula and 
the Frank copula, since they permit both positive and 
negative dependence. We performed model selection 
based on the AIC and the BIC, using the melanoma 
cell lines dataset. The Student-t copula is close to 
Normal copula, hence was not considered. The copula 
that fitted the highest proportion of the pairs was 
adopted for the comparison of the two gene selection 
methods. The goodness-of-fit-test for the two copulas 
was also performed, using the Cramer-Von Mises 
(CVM) function [31]. 

2.6. Data 

2.6.1. Simulated Gene Expression Data 

Let n  and G  denote the number of samples and 
genes, respectively. Further, let D  denote the number 
of genes assumed to be truly differentially expressed. 
Then (G ! D)  genes are assumed to be non-
differentially expressed. The gene expression data 
matrix, X , is a G ! n  matrix of log2-ratios. We can 
write X  as X = (X1,X2 ) , where X1  and X2  are D ! n  
and (G ! D)" n  matrices, respectively. We set 
D ! (50,100, 200, 300, 400) , n = 35  and G  to be 1000. 
We generated the (1000 ! D)  genes from the standard 
normal distribution. To generate the D  genes, we used 
the standard normal distribution in conjunction with the 
Cholesky decomposition [35] of their correlation matrix 
as follows: 

1. Generate an unstructured correlation matrix ! . 
!  is a (D +1)! (D +1)  matrix that has (i, j)th  
element given by !i, j = corr(xi , x j )   

2. Find the Cholesky factor, A , of !  such that 
! = AA' .  

3. Let  z i ! N(0, In ), i =1, 2, ..., (D +1) .  

4. Z = (z1, z2 , ..., zD+1 !)   

5. XD+1 = AZ   

XD+1  is the gene expression matrix for D  genes 
assumed to be differentially expressed and a covariate 
y . y  can take any of the D +1  row vectors from the 
matrix XD+1 . X1  is therefore a submatrix of XD+1  with 
dimensions D ! n . 

2.6.2. Real Datasets 

For validation, a publicly available melanoma cell 
lines dataset was used. This dataset contained gene 
expression data (raw intensities) on 54 cell-lines (35 
melanoma cell lines and 19 normal human 
melanocytes (NHMs), each with 45,015 probes. Only 
the melanoma cell lines were analyzed. The raw data 
was median-normalized and log2-transformed. Multiple 
probes were reduced to one per gene by using the 
most variable probe(set)–measured by interquartile 
range (IQR)–across arrays. Filtration and normalization 
of the gene expression data was implemented using 
BRB Array Tools software [17]. A gene was filtered out 
if less than 20% of its expression data values had at 
least 1.5-fold change in either direction from the genes 
median value. Genes with more than 50% missing data 
across all its samples were also filtered out. There 
were 3,860 genes available for subsequent analysis. 

For the continuous outcome, we used three 
uncorrelated quantitative traits studied by Kaufmann  
et al. [36] and Kaufmann et al. [37], to quantify the 
biological process in melanoma progression. These 
quantitative traits are the G1  checkpoint function, the 
G2  checkpoint function and the chromosomal instability 
(CIN) index. The G1  checkpoint regulates entry into 
synthesis phase (S-phase) based on internal and 
external conditions. If the conditions are not conducive, 
the G1  checkpoint will not allow cells to enter the S-
phase. On the other hand, the G2  checkpoint is a 
position of control in the cell cycle that delays or arrests 
mitosis when damaged DNA cells are detected, 
thereby providing the opportunity for repair and 
stopping the proliferation of damaged cells. Kaufmann 
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et al. [36] quantified the G1  checkpoint function by 
treating cells with 1.5 Gy IR (or sham treatment for 
control) and then labeling cells with BrdU for 2 hours 
beginning 6 hours post-treatment. They then calculated 
the fraction of the BrdU-labeled nuclei within the first 
half of the S-phase in irradiated cells expressed as a 
percentage of the equivalent fraction in the sham-
treated controls. The G2  checkpoint function was 
scored as a ratio of mitotic cells in 1.5 Gy ironizing 
radiation (IR)-treated cultures in comparison to their 
sham-treated control (i.e. IR to sham ratio). 
Chromosomal instability (CIN) is a type of genomic 
instability in which chromosomes are unstable. We 
used the CIN data described in [37]. Kaufmann et al. 
[37] quantified the CIN by using array comparative 
genomic hybridization to identify somatic copy number 
alterations (deletions and duplications). The CIN index 
was determined by summing all segments with non-
diploid DNA content. These outcome data were 
obtained from Kaufmann’s lab (UNC - Pathology and 
Lab Medicine). 

2.7. Analysis 

The copula and the QTA methods were applied to 
the simulated datasets. They were compared in terms 
of the power to detect DEGs and the ability to control 
Type I error rate. The DEGs were identified at different 
nominal levels: 0.01, 0.05, 0.1 and 0.2. Power was 
calculated as the ratio of the number of correctly 
identified differentially expressed genes, true positives 
(TP), to the total number of actual DEGs, D. Thus,  

Power = TP
D
.          (27) 

Type I error rate (Error) was calculated as the ratio 
of the number of genes that were falsely declared 
differentially expressed, false positives (FP), to the 
number of genes that were identified as differentially 
expressed. Thus  

Error = FP
FP +TP

.         (28) 

For validation, the two methods were applied to the 
real melanoma cell lines dataset to identify DEGs using 
the G1  checkpoint function, the G2  checkpoint function 
and the CIN index separately as the quantitative traits. 

3. RESULTS AND DISCUSSIONS 

3.1. Copula Selection 

Given the results in Table 1, all the three methods 
applied for copula selection and goodness-of-fit testing 
suggest that the Normal copula fitted most of the pairs, 

and was therefore adopted for subsequent analysis. 

Table 1: Copula Model Selection Based on the Three 
Methods 

Model selection method Normal copula  Frank copula  

CVM  35.18%  23.18%  

AIC  58.40%  41.60%  

BIC  58.40%  41.60%  

 
3.2. Simulation Results 

Table 2 shows the number of genes declared to be 
differentially expressed for the copula and the QTA 
methods at different levels of FDR threshold. The 
results indicated that, in general, the copula method 
identified more DEGs than the QTA method. We note 
that the identified DEGs are likely to include both the 
truly DEGs and the false positives. 

Power comparison results are shown in Table 3. 
Both the copula and the QTA methods had sufficient 
power to detect DEGs with a power of 1 in most cases. 
A power of 1 means that the method is able to detect 
all the known DEGs. In cases where the power was 
different for the two methods, the copula method stood 
out as the better method. This is noted for D =  50, 200 
and 300. 

Controlling Type I error here means having an 
empirical Type I error rate close to the nominal level of 
the test. The closer the empirical Type I error rate is to 
the set nominal level, the better the method in 
controlling it. Table 4 shows that both methods 
reasonably controlled Type I error at different nominal 
levels. There was evidence of both over and under 
estimation of the nominal levels by both methods, 
though the deviations were minimal. We note that the 
copula method consistently estimated the 0.01 nominal 
level for all the values of D  except for D = 50 , 
compared to the QTA method. We also see that the 
accuracy of controlling the Type I error rate for the 
copula method increases with the increase in the 
number of known DEGs. This means that, even with a 
large number of DEGs identified by the copula method, 
we could still trust the copula approach to properly 
control the Type I error rate. The closeness of the 
results for the two methods on the simulated datasets 
may be due to the fact the data was generated from a 
normal distribution. Note that a bivariate Gaussian 
copula with two normal marginals corresponds to a 
bivariate Gaussian distribution. As such, the copula 
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Table 2: Number of DEGs by the Copula and the QTA Methods at Different Estimated FDR Levels 

Estimated FDR threshold ( ! ) 
D Method 

0.01 0.05 0.1 0.2 

50 Copula 48 52 53 59 

 QTA 50 53 57 63 

100 Copula 100 106 110 126 

 QTA 99 103 109 116 

200 Copula 192 221 240 276 

 QTA 146 204 221 241 

300 Copula 302 314 326 378 

 QTA 284 306 315 348 

400 Copula 403 423 449 506 

 QTA 405 415 429 466 

 
Table 3: Power Comparison for the Copula Method and the QTA Method at Different Nominal Levels and Number of 

known DEGs 

Estimated FDR threshold ( ! ) 
D Method 

0.01 0.05 0.1 0.2 

50 Copula 0.96 1.00 1.00 1.00 

 QTA 1.00 1.00 1.00 1.00 

100 Copula 0.99 1.00 1.00 1.00 

 QTA 0.99 1.00 1.00 1.00 

200 Copula 0.95 1.00 1.00 1.00 

 QTA 0.72 0.97 1.00 1.00 

300 Copula 1.00 1.00 1.00 1.00 

 QTA 0.94 0.99 1.00 1.00 

400 Copula 1.00 1.00 1.00 1.00 

 QTA 1.00 1.00 1.00 1.00 

 
Table 4: Type I Error Rates of the Copula Method Compared to the QTA Method at Different Nominal Levels and 

Number of known DEGs 

Estimated FDR threshold ( ! ) 
D Method 

0.01 0.05 0.1 0.2 

50 Copula 0.00 0.04 0.06 0.15 

 QTA 0.00 0.06 0.12 0.21 

100 Copula 0.01 0.06 0.09 0.21 

 QTA 0.00 0.03 0.08 0.14 

200 Copula 0.01 0.10 0.17 0.28 

 QTA 0.02 0.05 0.10 0.17 

300 Copula 0.01 0.04 0.08 0.21 

 QTA 0.00 0.03 0.05 0.14 

400 Copula 0.01 0.05 0.11 0.21 

 QTA 0.01 0.04 0.07 0.14 
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Figure 1: Expression levels of a few genes as a function of the quantitative outcome (G2 ). Gene expressions are associated 
with the G2  in a nonlinear manner.  

parameter reduces to the linear correlation coefficient 
(Pearson’s correlation coefficient). The QTA method 
calculates its p-values based on the correlation 
coefficients. 

3.3. Application to Melanoma Datasets 

The assumptions of the QTA method do not always 
hold, especially for gene expression data. In Figure 1, 
none of the randomly selected genes showed a linear 
relationship with the G2  checkpoint function. 

For the QTA method, we applied the Spearman’s 
correlation coefficient method. The DEGs were 
selected based on the FDR values calculated from the 
parametric p-values. Table 5 shows the number of 
DEGs identified by the copula and the QTA methods, 
based on the melanoma cell lines data. Three 
uncorrelated continuous outcomes were used. Table 5 
indicates that in general, the copula method is more 
powerful in terms of the identification of DEGs. This 
validates the simulation results. 

The inference procedure for the linear regression in 
the QTA method is based on the normality assumption 
of the residuals. The covariate in the regression model 

is also assumed to be fixed. With these assumptions, 
the regression model is only valid if the assumption of 
linearity holds. In case of a random covariate, the 
estimates of the regression coefficients will be biased. 
This is not a problem with the copula approach, since 
no distributional assumptions are required as long as 
the marginal are continuous. The correlation coefficient 
applied in the QTA approach measures the overall 
strength of the association between variables but does 
not give information about how the association varies 
across the distribution. It assumes a constant 
correlation throughout the distribution. In contrast, the 
copula method looks at where the association is 
strongest in the distribution. Both the QTA and the 
copula approach use the permutation approach to 
calculate p -values. The calculated p -values are then 
used to generate the FDRs. For the QTA method, it is 
also possible to calculate p -values based on the well-
known correlation coefficients, e.g. the Pearson’s 
correlation coefficient. 

4. CONCLUSIONS 

This study presents a comparison of a semi-
parametric method based on the copula model with a 
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parametric method (the QTA method) for finding 
differentially expressed genes when the outcome is 
continuous in nature. Both methods performed well in 
power comparison but the copula approach was 
notably the better. In terms of the Type I error rate 
control, the two methods were comparable. We also 
proposed a simple way of choosing a copula for gene 
expression studies. This approach was however limited 
to the copulas that permitted both negative and positive 
dependence only, and therefore better methods need 
to be developed. 

It is reasonable to conclude that, based on the 
current study, semi-parametric models outperform their 
parametric counterparts in noisy high-dimensional data 
settings like in microarray studies. Here, however, we 
were limited to the QTA model, but other parametric 
models do exist (e.g. Bayesian models, etc.). It would 
therefore be interesting to see how semi-parametric 
models perform when compared to Bayesian models, 
in particular, in a future study. 
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