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Abstract: The present study is concerned with the estimation of shape and scale parameter of Lomax distribution using
Bayesian approximation techniques (Lindley’s Approximation). Different priors viz gamma, exponential and Levy priors
are used to obtain the Bayes estimates of parameters of Lomax distributions under Lindley approximation technique. For
comparing the efficiency of the obtained results a simulation study is carried out using R-software.
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1. INTRODUCTION

The Lomax distribution also known as Pareto
distribution of second kind has, in recent years,
assumed opposition of importance in the field of life
testing because of its uses to fit business failure data. It
has been used in the analysis of income data, and
business failure data. It may describe the lifetime of a
decreasing failure rate component as a heavy tailed
alternative to the exponential distribution. Lomax
distribution was introduced by Lomax (1954), Abdullah
and Abdullah (2010) [1, 2] estimated the parameters of
Lomax distribution based on generalized probability
weighted moment. Zangan (1999) [3] deals with the
properties of the Lomax distribution with three
parameters. Abd-Elfatth and Mandouh (2004) [4]
discussed inference for R = Pr{Y<X} when X and Y are
two independent Lomax random variables. Afaq et al.
(2015) [5] performs comparisons of maximum
likelihood estimation (MLE) and Bayes estimates of
shape parameter using prior distribution. Afaq et al. [6]
proposed Length biased Weighted Lomax distribution
and discussed its structural properties. The cumulative
distribution function of Lomax distribution is given by

F(x;a,ﬁ)=1—(l+/3x)‘“, x>0, a,>0, (1.1)

and the corresponding probability density function is
given by

f(w0B)=aB+ )", x>0, a,p>0, (1.2)

where a and B are the shape and scale parameters
respectively.
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The Lomax distribution has not been discussed in
detail under the Bayesian approach. The Bayesian
paradigm is conceptually simple and probabilistically
elegant. Sometimes posterior distribution is expressible
in terms of complicated analytical function and requires
intensive  calculation because of its numerical
implementations. It is therefore useful to study
approximate and large sample behavior of posterior
distribution. Uzma (2017) [7] obtains the estimate of
shape parameter of inverse Lomax distribution. Our
present study aims to obtain the estimate the shape
and scale parameters of Lomax distribution using
Lindley approximation technique using Gamma prior,
Exponential prior and Inverse Levy prior. A simulation
study has also been conducted along with concluding
remarks.

2. LINDLEY APPROXIMATION

Sometimes, the integrals appearing in Bayesian
estimation can’t be reduced to closed form and it
becomes tedious to evaluate of the posterior
expectation for obtaining the Baye’s estimators. Thus,
we propose the use of Lindley’s approximation method
(1980) [8] for obtaining Baye’s estimates. Lindley
developed an asymptotic approximation to the ratio

o, Ut Byt Paa. p)
a,
f eL(a.ﬁ)ﬂJ(a,ﬁ)a(a’ﬁ)
(a.p)

I(X)=

where U(a,f3) is function of a and g only and L(«,f)
is the log-likelihood and p(a.,B)=logg(c.pB). Let (&,B)
denotes the MLE of (a,f3). For sufficiently large sample

size n, using the approach developed by Lindley (1980)
[8], the ratio of integral I(X) as defined above can be
written as
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I(X)=u (Ol,ﬁ)"' %(“11‘1’11 +pdy,)
+ 0Py, + Py (2.1)

1
+ E (L30”1¢2H + L03”2¢222 +(Lyuy + Lyyu, )¢11¢22)

2 3 3
Now L20=a_l=_n,Lm=a_l=2_” L21=a_lz=o
Ja” o ’ a ’ apoa

b aaaﬁ E(1+/3’x )

2
o

Hence, ¢, =-L, "' =—
n

and ¢,, =-L, =[——(a+l)z( +[3’x)] )

Also, p=logg, (a.B)=(a, -loga-a,a+(b -1)logf-b,p

Several authors have used this approximation for
obtaining the Bayes estimators for some lifetime
distributions; see among others, Sing et al (2008) [9].
We have used three different loss function for
estimating the parameters, LINEX loss function given
by &LLF=—llogE(e“"’) where E_ is the Posterior

c
expectation.

Generalized Entropy loss function is given by
Opprr = [Ea(a‘”)]_w provided E_(a ) exists and is finite.

Squared error loss function (SELF) is given as
&SELF= u=ua,p)

3. LINDLEY APPROXIMATION UNDER THE
ASSUMPTION OF GAMMA PRIOR

In this section we consider the Bayes estimation of
the unknown parameter(s). When both are unknown, it
is assumed that aand 8, have the following gamma

prior distributions;

g (a)oca“"'e'“za,a>0,al,a2 >0, (3.1)

g2 (ﬁ)ocﬁbl_le_b“s’ﬁ>07bl?b2 >O' (32)

Here all the hyper parameters a,,a,.b,b, are
assumed to be known and non-negative.

Then the joint prior density is defined by

—a7a —b, /3

g (a.B)xa B e a,B>0,b,,b, >0. (3.3)

According to Bayes theorem, the joint posterior
distribution of the parameters of a and f8 is

(o Blx)x L(xla,B)x g, (a.B)

J'E(Ot,ﬁ I X) - Kama,flﬁrnhl—l 1_[(1 + ﬁxi )7(rz+])€fa2a€—b2/i
i=l1
where K is a normalizing constant defined as
- ffan+a1—lﬁn+b|—l 1_[(] +/:))xi )_(a+l)e_a2a€_b2ﬁdadﬁ. (34)
00 i=1

3.1. Estimate of a and B under Different Loss
Functions

The Bayes estimators are derived under the
assumption of gamma prior using the following three
different loss functions:

Under LINEX Loss Function

E(alx)=e* [1+%(%—a, +a2&—%tlt2)} (3.5)
n 2
where, 1 = ti e !
~\ 1+ Bx, : N (e V
o 1 i
;- (o )Z(Hﬁx,) ]
E(Blx)= P [1 +ct, (E _& l:b 2 t,t, H (3.6)
2 B
where, t, = ! and

n N
o3l

= ——(a+1)2(l+ﬁx)

Under Generalized Entropy Loss Function

nce cf(c+1) . a
Elalx)=a“|1+— —-a, +a,a—-—tt
()= 10 (D - Lo

(3.7)
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L . 7w, (o,Blx)oc Lxla,B)x g, (a,B
wrero, -S| ans 1 (@ B1x) Lxla.p)xgu, ()
= \1+Bx; ? 2
[—(O!+ 1)2(1 + x ) J 7, (Ot,ﬁ | x) - Ka'B" 1_[(1 + Bx, )—(a+l)e—dlae—dzﬁ
i=1
E(B1x)= B [1+ ¢, ((c+1) (b, -1-b,p) wz)} (3.8) where K is a normalizing constant defined as
B\ 2p B o
T= [ [ ][+ Bx) e e dadp. (4.4)
where t, = ! and 00 -

n N ’
[/32’(“”);(“/3&) )
= __(a+1)2(1+[3’x ) ]

Under Squared Error Entropy Loss Function

N 1 a
E(alx)=a[1+n(a]—a2 —Ett )

(3.9)

xi2
1+ Bx,

(3.10)

2
X.
where, ¢, = i and , _ 1
: ;(H/s’xi) h = " B
——(a+1)
s

E(Blx)=p+1, [(—(b‘ _IB_bZﬁ)H}tzﬂ

where t, = and

4., LINDLEY APPROXIMATION UNDER THE
ASSUMPTION OF EXPONENTIAL PRIOR

Assuming that ¢ and B has a Exponential prior

with known hyper-parameter d, and d,
given as

respectively

g (a)oxe™  La>0, 4.1)

g (B)xe™ ,p>0, 4.2)
Then the joint prior density is defined by

8 (a0, B) o e (4.3)

The joint posterior distribution of ¢, ﬂ is given by

Again, g, (a.B)ox e F

p=Ing,, (a,ﬁ) =-dia-d,fp
= p,=-dyand p, =-d,

4.1. Estimate of a and B under Different Loss
Functions

The Bayes estimators are derived under the
assumption of exponential prior using the following
three different loss functions:

Under LINEX Loss Function

E(alx)=e‘“[l+%(%+da 1- %tltz)} (4.5)
where, E(l+/3x ) and
1
1, = -
[‘( >E(1 /3))
E(Blx)= et [1+ct2 (§+d2 —tstz)] (4.6)

where t, = and

Under Generalized Entropy Loss Function

11+ € ((C”) d—l—gt,tZ)
2 2

E(alx)= ;

(4.7)

2
where, ¢, =E(1 x/;) ) and ‘= 1
+ PpXx

i=l1
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iy I [Cat i 4.8
E(Blx)=p [1+Bt( 7 +d, ttﬂ (4.8)

where t, = ! and

[ “03 i ))

freosles)

Under Squared Error Loss Function

E(a|x)=a[1+l(1-dl+§t,t2) 4.9)
n 2
n xi 2
where, 1 =§(1+/3Xi) and
1
t, = .
el
(Blx)=p+1,[(-d, +11,)] (4.10)
where t, = ! and

n - X ’
[/32’(“”);(“/3&) )
=[——(a+1)2(l+ﬁx )

5. LINDLEY APPROXIMATION UNDER THE
ASSUMPTION OF INVERSE LEVY PRIOR

Assuming that a and B has a Inverse Levy prior
with known hyper-parameter r, and r, given by

’a>0’ (51)

B>0, (5.2)

Then the joint prior density is defined by

-1o-1 g_rzﬁ

gss(a ﬁ)“azﬁze : (5.3)
The joint posterior distribution of a,f is given by

7, (ot,ﬂl)c)ocL(xloc,/a’)xg_.;6 (a,[a’)

P S ) L
nz(a,ﬁlx)=Ka B 2H(1+ﬁxi) e 72
i=1

where K is a normalizing constant defined as

ffa" 2/5 ﬁ(l+ﬁx Y@ e

(Z

2 gdadﬁ. (5.4)

1 1 a B
doep

Again, gy (a.B)xa ’p *e 2

1 1 a
p=Ing,(ap) =7 loga-logp- L5 - L,

= 0 ——l(i+r)andp _1 l+r
1 2 a 1 2 2 ﬁ 2
4.1. Estimate of a and B under Different Loss
Functions
The Bayes estimators are derived under the
assumption of inverse levy prior using the following

three different loss functions:

Under LINEX Loss Function

e ca [ co a
E(alx)=e [1+—(7+2(1+r,a) I—Etltz)} (5.5)

n
n x, 2
Where, 1 =E(m) and
1

t, = >

[—(a )E(1+[3’x ) ]
E(/J’Ix)=e'“’3 [l+ct (2 (1+/;ﬁ) tﬁ” (5.6)
where t, = ! and

Under Generalized Entropy Loss Function

A

ae (c+1) a
E(alx)=a {1 n( Tt (1+1a) 1- ztltz)} (5.7)
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where, ¢, =S(1+x/"3x) and ; _ 1 E(Blx)=p+1, [%ﬁrzﬁ)ngz} (5.10)
o (_(“”)E(l /5))
where t, = ! 5 and
e
(ﬁlx)=ﬁ‘[ o (“;ﬁ” <1+2;ﬁ> rgrz)] (5.8) [/32 D2
where /) = ! and i __(a )2(1 +Bx, )]

n N
[/32_(0‘”)2(“&

| imulati t h | i f
(a_'_])z(l-'-ﬁx ) ] n our simulation study, we chose a sample size o

2
,-) ] 5. SIMULATION STUDY

n=25, 50 and 100 to represent small, medium and
large data set. The scale parameter and shape
. parameter is estimated for Lomax distribution by using
Under Squared Error Loss Function Bayesian method of estimation under Gamma prior,

1 (+ar) & Exponential prior and Inverse Levy prior. A simulation
E(alx)= &[1+—(——1+1+—11t2) (5.9) study was conducted using R-software to examine and

n 2 2 compare the performance of the estimates for different
sample sizes by using various types of loss functions.

NN We have chosen the initial values of parameters were
where, 1 = m and a=05,10&15 and f=10,15&20. The values of
| - l hyper  parameters  are a, =b =03,06,&09;

r,=r,=0105&09. The value of loss parameter

c=+0.5. The results are presented in tables for
different selections of the parameters.

f = )2] a,=b,=02,05&08; d=d,=02,06&10 and

n N
[ﬁz-(a+1);(l+ﬁXi

Table 1: Bayes Estimates and MSE (in Parenthesis) for a and B using Gamma Prior (¢, =b=03,0.6,&09),
(a, =b,=02,05,&0.8)

n &SEL"' ﬁSELF &L’-’" ’ B LLF &GE’-F [;’GELF

25 0.5004 0.9606 0.7795 1.2859 0.6182 16158 1.4347 0.7039 1.0188 0.9805
(0.0233) (0.0047) (0.1014) (0.6410) (0.1488) | (0.3824) (0.8970) (0.0649) (0.0035) | (0.0035)

0.9935 1.4575 0.6115 1.6516 0.4821 2.0710 1.0182 0.9917 0.8275 1.2076
(0.2362) (0.0405) (0.3871) (0.6608) (1.0747) | (0.3649) (0.2365) (0.2362) (0.4909) | (0.1242)

1.4632 1.9514 0.4863 2.1019 0.3765 2.6500 0.8387 1.2036 0.7152 1.3973
(0.2459) (0.2965) (1.2720) (0.6068) (2.9299) | (0.7168) (0.6818) (0.3324) (1.9447) | (0.6574)

50 0.5002 0.9763 0.7791 1.2849 0.6136 1.6290 1.4244 0.7055 1.0115 0.9882
(0.0074) (0.9416) (0.0853) (0.6236) (1.0903) | (1.3368) (0.8620) (0.0496) (0.9411) | (0.9411)

0.9968 1.4754 0.6089 1.6502 0.4781 2.0906 1.0090 0.9959 0.8230 1.2147
(0.0779) (0.1461) (0.2308) (0.5008) (1.1897) | (0.4943) (0.0780) (0.0779) (0.6037) | (0.2268)

1.4818 0.9606 0.4793 2.1096 0.3725 26828 0.8275 1.2142 0.7115 1.4052
(0.0935) (0.0047) (1.1350) (0.4649) (2.8355) | (0.6531) (0.5453) (0.1748) (1.8470) | (0.5406)

100 0.5001 0.9896 0.7789 1.2845 0.6096 1.6401 1.4193 0.7063 1.0051 0.9948
(0.0031) (0.4392) (0.0810) (0.6186) (0.5914) | (0.8488) (0.8482) (0.0457) (0.4391) | (0.4391)

0.9984 1.4878 0.6077 1.6495 0.4752 2.1040 1.0045 0.9979 0.8197 1.2198
(0.0387) (0.0622) (0.1926) (0.4606) (1.1122) | (0.4270) (0.0388) (0.0387) (0.5248) | (0.1405)

1.4909 1.9877 0.4758 21133 0.3701 27014 0.8220 1.2195 0.7092 1.4098
(0.2942) (0.0229) (1.3431) (0.6704) (2.6792) | (0.5148) (0.7538) (0.3728) (1.6888) | (0.3710)
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Table 2: Bayes Estimates and MSE (in Parenthesis) for a and 8 using Exponential Prior (d, =d, =0.2,0.6,&1.0)

n Gsiur ﬁSELF Auir Bur Aour [;’GELF
25 0.5124 0.9591 0.7741 1.2949 0.6187 1.6145 1.4177 0.7123 1.0196 0.9798
(0.0234) (0.2144) (0.0984) (0.6552) (0.3581) (0.5904) (0.8656) (0.0684) (0.2131) (0.2132)
1.0055 1.4569 0.6078 1.6615 0.4823 2.0704 1.0122 0.9977 0.8277 1.2074
(0.2362) (0.0605) (0.3899) (0.6738) (1.0943) (0.3840) (0.2363) (0.2362) (0.5106) (0.1442)
1.4812 1.9524 0.4891 2.0892 0.3763 2.6514 0.8338 1.2109 0.7150 1.3976
(0.2449) (0.1959) (1.2663) (0.5917) (2.8299) (0.6179) (0.6883) (0.3281) (1.8446) (0.5564)
50 0.5062 0.9758 0.7764 1.2894 0.6138 1.6286 1.4159 0.7097 1.0117 0.9880
(0.0074) (0.9416) (0.0838) (0.6307) (1.0902) (1.3362) (0.8464) (0.0514) (0.9411) (0.9411)
1.0028 1.4752 0.6071 1.6552 0.4781 2.0904 1.0060 0.9989 0.8230 1.2147
(0.0779) (0.1461) (0.2322) (0.5072) (1.1896) (0.4941) (0.0779) (0.0779) (0.6037) (0.2269)
1.4908 1.9746 0.4807 2.1032 0.3724 2.6831 0.8251 1.2179 0.7114 1.4053
(0.0933) (0.1875) (1.1321) (0.4571) (2.8357) (0.6536) (0.5486) (0.1727) (1.8471) (0.5405)
100 0.5031 0.9895 0.7776 1.2867 0.6097 1.6400 0.8207 1.2213 1.0051 0.9947
(0.0031) (0.4392) (0.0802) (0.6221) (0.5914) (0.8487) (0.1060) (0.5235) (0.4391) (0.4391)
1.0014 1.4878 0.6068 1.6519 0.4752 2.1040 1.0030 0.9994 0.8197 1.2197
(0.0387) (0.0622) (0.1933) (0.4638) (1.1122) (0.4269) (0.0387) (0.0387) (0.5247) (0.1406)
1.4954 1.9877 0.4765 2.1102 0.3701 2.7015 0.8207 1.2213 0.7092 1.4099
(0.2942) (0.0229) (1.3416) (0.6665) (2.6793) (0.5149) (0.7555) (0.3718) (1.6888) (0.3709)

Table 3: Bayes Estimates and MSE (in Parenthesis) for a and 8 using Inverse Levy Prior (1, =r, =0.1,0.5&0.9)

n &SEL"' ﬁSELF &L’-" ' B LLF &GE’-F [;’GELF

25 0.5059 0.9598 0.7774 1.2894 0.6181 1.6161 1.4269 0.7078 1.0192 0.9802
(0.0233) (0.2144) (0.1003) (0.6465) (0.3586) (0.5924) (0.8825) (0.0665) (0.2131) (0.2131)
0.9995 1.4568 0.6096 1.6566 0.4818 2.0726 1.0152 0.9947 0.8274 1.2078
(0.2362) (0.0605) (0.3885) (0.6673) (1.0953) (0.3865) (0.2364) (0.2362) (0.5110) (0.1440)
1.4707 1.9504 0.4845 2.1098 0.3758 2.6549 0.8367 1.2066 0.7146 1.3986
(0.2454) (0.1961) (1.2756) (0.6165) (2.8315) (0.6226) (0.6845) (0.3306) (1.8458) (0.5553)

50 0.5030 0.9761 0.7781 1.2867 0.6135 1.6292 1.4205 0.7074 1.0116 0.9881
(0.0074) (0.9416) (0.0847) (0.6264) (1.0903) (1.3369) (0.8548) (0.0504) (0.9411) (0.9411)
0.9998 1.4751 0.6080 1.6527 0.4779 2.0911 1.0075 0.9974 0.8229 1.2148
(0.0779) (0.1461) (0.2315) (0.5040) (1.1900) (0.4949) (0.0780) (0.0779) (0.6038) (0.2268)
1.4855 1.9740 0.4784 2.1136 0.3723 2.6841 0.8265 1.2157 0.7113 1.4055
(0.0934) (0.1875) (1.1368) (0.4697) (2.8361) (0.6549) (0.5467) (0.1740) (1.8474) (0.5402)

100 0.5015 0.9895 0.7784 1.2854 0.6096 1.6401 1.4173 0.7073 1.0051 0.9947
(0.0031) (0.4392) (0.0807) (0.6200) (0.5914) (0.8489) (0.8447) (0.0461) (0.4391) (0.4391)
0.9999 1.4878 0.6072 1.6507 0.4751 2.1042 1.0037 0.9987 0.8197 1.2198
(0.0387) (0.0622) (0.1930) (0.4622) (1.1123) (0.4271) (0.0387) (0.0387) (0.5248) (0.1405)
1.4928 1.9876 0.4753 2.1153 0.3700 2.7017 0.8215 1.2202 0.7092 1.4099
(0.2942) (0.0229) (1.3440) (0.6728) (2.6794) (0.5152) (0.7545) (0.3724) (1.6888) (0.3709)

From the findings of above tables, it can be
observed that the large sample distribution could be

improved when prior is taken

into account.

is

observed that within each prior SELF performs better
results as compared to other loss functions. Further it is
observed that the mean square error based on different
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priors tends to decrease with the increase in sample

size.

It implies that the estimators obtained are

consistent.
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