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A Note on the Area under the Gains Chart 
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Abstract: The Receiver Operating Characteristic (ROC) chart is well known in medicine and machine learning. In 
particular the area under the ROC chart measures the probability of correct selection in a two alternative forced choice 
(2AFC) scenario. The gains chart is closely related to the ROC curve but carries extra information about the rate at 
which the classifier identifies response, information that is not carried by the ROC chart. In this note, we point out that 
the appropriate area under the gains chart is identical to the analogous area under the ROC chart and that the gains 
chart is therefor to be preferred as a summary of classifier success. 
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1. INTRODUCTION 

Binary classification is a standard problem in 
medical science as well as the general machine 
learning sphere. One of the standard measures of the 
success of the classifier is a plot of the true positive 
fraction (TPF) against the false positive fraction (FPF). 
In statistical parlance, this is a plot of the power of the 
test versus the size as the cut-off is varied from one 
extreme to the other. In business applications, an 
alternative but closely related curve is used, known as 
the gains chart. This plots the true positive fraction 
against the unconditional positive fraction. The purpose 
of this chart is to track how fast responders are 
accumulated as we work our way down the list from 
highest ranked to lowest ranked based on our model. 

The two charts look quite similar except the slope of 
the ROC chart is vertical at the beginning whereas the 
slope of the gains chart gives direct information about 
the rate of response accumulation. The area under the 
ROC chart has a specific interpretation, first identified 
by Bamber (1975) [1], namely that it estimates the 
probability of success in a 2AFC experiment. Indeed, 
estimation of this easily interpreted area under the 
ROC curve is a key reason for its popularity. In this 
note, we point out that the area under the gains chart 
can be similarly interpreted (with a minor modification). 

2. MATHEMATICAL DEFINITIONS 

Suppose we have a binary classifier that produces a 
continuous diagnostic x, larger values of which indicate 
response. Without loss of generality, we assume that x 
is scaled to the unit interval and may think of it as a  
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fitted probability of response, for instance based on a 
logistic regression or a neural network. There are two 
charts that measure the rate at which large values of 
the diagnostic accumulate responders. The ROC chart 
plots this against the rate at which we accumulate 
errors and the gain chart against the rate at which we 
make assessments. 

Let FJ(x) denote the distribution function of x for 
responders (J=1) and non-responders (J=0). The 
unconditional distribution F of x is 

F(x) = π1F1(x) + (1 − π1)F0(x) 

where π1=Pr(response). 

We will assume x is continuous though there is no 
essential difference in results if x is discrete once one 
accounts for the occurrence of ties in the definition of 
the curves. Basically, once the “steps” in the curves 
can be joined by lines the continuous theory applies. 

2.1. ROC Chart 

The ROC curve measures how the probability of a 
true and false positive covary when we classify 
individuals as responders if x > γ. Specifically it is a plot 
of 

y = 1 − F1(γ) versus x = 1 − F0(γ) 

as we vary γ from 0 to 1. It is a simple matter to 
express γ in terms of x to obtain the explicit form 

R(x) = 1 − F1(F0
-1((1 − x)). 

A perfect classifier, where the distribution of x for 
the responders and non-responders are completely 
separated, will increase from 0 to 1 as the cut-off 
moves past the largest value of x for the non-
responders. The ROC curve increases from 0 to 1 at 
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the origin. A classifier that has no predictive power will 
follow the diagonal, R(x) = x. A typical example is in the 
left panel of Figure 1 based on a classifier of fake bank-
notes based on 610 fake bank-notes and 762 genuine 
bank-notes. The green point represents the 
performance of the classifier when bank-notes are 
classified as fake when the estimated probability is 
greater than 0.5. Apparently, we identify around 18% of 
genuine notes as fake and 78% of fake bank notes as 
fake. 

There is a well-developed theory on estimating this 
curve from the different kinds of data that may be 
available. Estimation under a normal model from 
ordinal data was solved by Dorfman & Alf (1968) [2] but 
F0 and F1 must both be transformable to normal by the 
same transformation. There are many examples where 
the bi-normal model is not justified. Non-parametric 
and semi-parametric theory was established by Hsieh 
& Turnbull (1996) [3]. Smoothing methods were first 
considered by Lloyd (1998) [4] and shown to be 
superior to fully empirical in Lloyd and Zhou (1999) [5]. 
Nevertheless, fully empirical estimators based on the 
empirical estimators of F1 and F0 are most commonly 
used, as displayed in the example in the Figure. 

The area under this curve 

AUR = R
0

1
! (x)dx = (

0

1
! 1" F1(F0

"1(1" x)))dx  

is a common summary of overall accuracy. It was 
proven by Bamber (1975) [1] that this area measures 
the probability that two randomly selected individuals 
from the response and non-response population will be 
correctly classified by the classifier, known as 2AFC. 
This is closely related to the Mann-Whitney U-statistic 
for testing the difference between two populations, here 

the responders and non-responders with respect to the 
diagnostic x. Since a completely random classifier will 
have AUR of 0.5 and a perfect classifier 1.0, it is 
natural to rescale this as 2 × AUR − 1. This is the area 
below the ROC but above the random diagonal as a 
proportion of the area above the diagonal.  

In the left panel of Figure 1, the area under the 
curve is 0.875 which means that if we are presented 
with two bank-notes known to be randomly chosen, 
one from the fake and one from the genuine 
population, then we will correctly identify which is which 
87.5% of the time. The rescaled version of this 
statistics is 37.5%/50%=75%. So, this classifier is three 
quarters of the way between a random classifier and a 
perfect classifier. 

2.2. Gains Chart 

The cumulative gains chart (often just called the 
gains chart) is a plot of the true positive probability 
against the unconditional positive probability i.e. 

y = 1 − F1(γ) versus x = 1 − F(γ). 

In a medical testing context, it shows how quickly 
we identify target patients as we work our way through 
a population of patients who have been rated by our 
classifier from most likely to least likely. Again, for a 
random classifier this plot will just be the diagonal. For 
a perfect classifier, it will increased from 0 to 1 as the 
proportion of overall positives increases from 0 to π1, 
because all of these are true positives.  

The right panel of Figure 1 displays the gains chart 
for the same bank-notes classifier as for the ROC chart 
to the left. The proportion of fake notes was 44.4%. 

 
Figure 1: Summary graphs for a classifier. Left. ROC curve. Right. Gains chart. 
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The green point represents the classifier based on a 
50-50 cut-off. This targets 43% of the bank-notes while 
correctly identifying 78% of the fake bank-notes. The 
gains charts can be calibrated against the perfect 
classifier, whose gains chart is displayed in green, 
where we identify the notes as fake without error.  

The similarity of the shapes of the two curves is 
obvious and a consequence of plotting the same 
quantity against a different coordinate. 

Following the practice for ROC curves, it would be 
natural to measure the overall accuracy of the gains 
chart by the area beneath. But this can never exceed a 
maximum possible area of 1−0.5π1 for the perfect 
classifier. Since the area between the perfect chart and 
the diagonal is 0.5(1 – π1), an analogous measure to 2 
× AUR − 1 would be 

AUG ! 0.5
0.5(1! "1 )

=
2AUG !1
1! "1

 

3. MAIN RESULT 

It is convenient in what follows to express the 
inverse of the ROC curve as 

R-1(x) = 1 − F0(F1
-1(1 − x)) 

obtained by reversing the response and non-response 
subscripts. Note that the area beneath this curve is 1 − 
AUR. 

The inverse G-1 of the gains function would be a plot 
of x=1−F(γ) against y=1−F1(γ) as γ varies. Substituting 
γ = F1

-1(1 − y) we find that  

G-1(y) = x = π1((1 − F1(F1
-1(1 − y))) + (1 − π1) 

(1 − F0(F1
-1(1 − y)) 

Hence 

G-1(y) = π1y + (1 − π1)R-1(y). 

The inverse of the gains function is a probability 
weighted average of the gains function y of the random 
classifier and the inverse of the ROC function. 
Integrating both sides 

1 − AUG = 0.5π1 + (1 − π1)(1 − AUR) 

from which it easily follows that 

 

AUG ! 0.5
0.5(1! "1 )

=2 AUR−1. 

This is the main result which equates the rescaled 
area under the ROC curve with the rescaled area 
under the gains chart. 

Referring to the right panel of Figure 1, the area 
beneath the gains chart is 0.708. The area between the 
perfect and random classifier is 0.5×(1−0.444) = 0.278. 
So the area between the gains chart and the diagonal 
(0.208) as a proportion of the difference between a 
perfect and random classifier (0.278) is 0.208/ 
0.278=0.75, which is the value we obtained from the 
ROC chart. 

4. CONCLUSION 

We have shown what was perhaps already well-
known in the folklore, namely that the gains chart is a 
simple re-expression of the ROC chart. Indeed, the 
inverse gains chart is a linear combination of the 
inverse ROC curve and the random diagonal. The 
standard measure of how much better a classifier is 
than random, namely 2AUR−1 from the ROC curve, 
has a numerically identical analogue for the gains 
chart. We conclude that the gains chart has all the 
advantages of the ROC curve but also provides 
information on the overall proportion of responses (π1) 
and the rate at which we identify these responses as 
the classifier searches a population ranked by the 
classifier score x. 

Other summary measures of ROC besides area 
beneath have been considered, see for instance 
Wieand et al. (1989) [6]. These will all no doubt have 
obvious analogues for the gains chart. 
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