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Abstract: Cancer researchers are often interested in identifying biomarkers that are indicative of poor outcomes 
(prognostic biomarkers) or response to specific therapies (predictive biomarkers). In designing a biomarker study, the 
first statistical issue encountered is the sample size requirement for adequate detection of a biomarker effect. In 
biomarker studies, the desired effect size is typically larger than those targeted in therapeutic trials and the biomarker 
prevalence is rarely near the optimal 50%. In this article, we review sample size formulas that are routinely used in 
designing therapeutic trials. We then conduct simulation studies to evaluate the performances of these methods when 
applied to biomarker studies. In particular, we examine the impact that deviations from certain statistical assumptions 
(i.e., biomarker positive prevalence and effect size) have on statistical power and type I error. Our simulation results 
indicate that when the true biomarker prevalence is close to 50%, all methods perform well in terms of power regardless 
of the magnitude of the targeted biomarker effect. However, when the biomarker positive prevalence rate deviates from 
50%, the empirical power based on some existing methods may be substantially different from the nominal power, and 
this discrepancy becomes more profound for large biomarker effects. The type I error is maintained close to the 5% 
nominal level in all scenarios we investigate, although there is a slight inflation as the targeted effect size increases. 
Based on these results, we delineate the range of parameters within which the use of some sample size methods may 
be sufficiently robust.  
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1. INTRODUCTION 

Recent advances in biotechnology have led to the 
development of cancer therapeutics designed 
specifically to act on molecular targets. Cancer 
researchers are often interested in identifying 
molecular markers indicative of poor outcomes or 
response to specific therapies. These two classes of 
biomarkers are referred to as prognostic and predictive 
biomarkers [1-3]. Prognostic biomarkers are factors 
that identify patients at an elevated risk of relapse or 
death. Predictive biomarkers are molecular features 
that identify a subgroup of patients who are more likely 
to benefit from a specific treatment regimen. 
Statistically, the predictive value of a biomarker is 
exmamined through the test of a biomarker by 
treatment interaction. A biomarker may be both 
prognostic and predictive. For example, the Oncotype 
DX, an RT-PCR assay that measures 21 genes whose 
levels of expression are manipulated by a 
mathematical algorithm to calculate a recurrence score 
(RS), provides a prognosis for patients with estrogen 
receptor (ER)-positive breast cancer with stage I or II 
breast cancer and negative axillary lymph nodes 
treated with tamoxifen alone [4]. In one study, the RS 
also predicts chemotherapy benefit (cyclopho- 
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sphamide, methotrexate, and fluorouracil or 
methotrexate and fluorouracil); patients with tumors 
who had high RS (>30) experienced a large benefit 
from the addition of chemotherapy to tamoxifen, 
whereas those with tumors that had low RS (<18) 
derived minimal benefit from chemotherapy treatment 
[5]. The American Society of Clinical Oncology 
recommended the use of Oncotype DX as a prognostic 
and predictive tool in ER-positive, lymph node-negative 
breast cancer [6]. 

Statistical issues in biomarker studies have been 
addressed by many authors [7-11]. In designing a 
biomarker study, the first statistical issue encountered 
is the sample size requirement for adequate detection 
of a biomarker effect. For prognostic studies with a 
binary biomarker, many sample size methods 
developed for therapeutic trials are frequently used [12-
15]. The method by Hsieh and Lavori can be used for 
continuous biomarkers [16]. For predictive biomarker 
studies, the methods by Peterson and George [17] and 
Schmoor, Sauerbrei and Schumacher [18] provided 
close-form formula to calculate the sample size needed 
to detect a treatment by biomarker interaction. Gönen 
proposed a unifying framework to compute sample size 
necessary for an interaction effect that can 
accommodate normal, binary and time-to-event 
outcomes [19]. Recently, Polley proposed methods for 
estimating statistical power in biomarker studies when 
the clinical events of interest are already observed – a 
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typical scenario when biomarker studies are conducted 
using tissue specimens collected in a previously 
completed treatment trial [20]. 

While many sample size methods exist for 
designing therapeutic trials, their statistical properties 
have not been studied specifically in the context of 
biomarker studies. In biomarker studies, the desired 
effect size is typically larger than those targeted in 
therapeutic trials. While no definitive rule exists for the 
effect size, a biomarker that imparts a risk of two fold or 
greater would be considered clinically relevant. The 
statistical power of a biomarker study is also influenced 
by the prevalence of biomarker positivity. Unlike 
therapeutic trials where the treatment randomization 
ratio is pre-determined by design, the prevalence of 
biomarker positivity is typically unknown at the design 
stage but may be estimated from prior data or inferred 
from the literature. In most cases, the prevalence of 
biomarker positivity will not be near the optimal 50%. 

In this article, we aim to evaluate the performances 
of common sample size methods in the context of 
biomarker studies. We assume that the biomarker 
assay has demonstrated satisfactory pre-analytical and 
analytical performances and yields a binary value for 
the biomarker. In the sections that follow, we first 
provide a brief overview of sample size methods; this 
review is not meant to be exhaustive of the literature 
but rather, is intended to provide a review of sample 
size methods that are frequently used for designing 
treatment trials or biomarker studies in practice. We 
then conduct simulation studies to assess their 
performances when applied to biomarker studies. In 
particular, we examine the impact that deviations from 
certain statistical assumptions (i.e., true biomarker 
effect size and biomarker positive prevalence) have on 
statistical power and type I error. Based on these 
results, we delineate the range of parameters within 
which the use of some sample size methods may be 
sufficiently robust and provide general 
recommendations for sample size methods suitable for 
prognostic and predictive biomarker studies. 

2. REVIEW OF SAMPLE SIZE METHODS 

2.1. Prognostic Biomarker Studies 

Consider a binary biomarker M  which classifies 
patients into one of two biomarker subgroups: M !  
(biomarker negative) and M +  (biomarker positive), 
with the prevalence of biomarker positivity being 
P(M+) = w.  Suppose the survival times for patients in 
the biomarker negative and positive subgroups follow 

an exponential distribution with hazard rates !0  and 
!1 , respectively. For patient $ in the M !  subgroup, let 
t0k  be the observed time at risk (i.e. time from entry to 
death or censoring, whichever occurs first), and let 
!0k =1  if death is observed and !0k = 0  otherwise. 
Define t1k  and !1k  analogously for patients in the M +  
subgroup. Let N0  and N1  denote the number of 
patients in M !  and M +  subgroups, respectively. The 
likelihood function involves the parameters of interest 
(!0 , !1 )  only through the product 

!0
"0 k

k=1

N0# e$!0t0k !1
"1k

k=1

N1# e$!1t1k .          (1) 

Let ! = "0 / "1  denote the prognostic biomarker 
effect of interest. In a prognostic study, the goal would 
be to determine the sample size needed to test 
H 0 :! =1  against Ha :! "1  at significance level !  with 
power 1! "  against the alternative ! = !a  for some 
pre-specified !a . By applying standard likelihood 
theory to (1) [14, 21], it can be shown that the 
asymptotic distribution of the log hazard ratio is 
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where !̂ = "̂0 / "̂1  denotes the MLE of !  and E(d0 )  
and E(d1 )  denote the expected number of deaths for 
the M !  and M +  subgroups, respectively. 

Since ln! = 0  under H 0 , the asymptotic 2-sided 
! -level test rejects H 0  in favor of H1  if the test 
statistic is greater than or equal to the standard normal 
(1!" / 2)  quartile. It then follows that the following 
condition will need to be satisfied to detect a prognostic 
effect !a  with (1! ")%  power, usinga a 2-sided !  
level test: 
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where Z! /2  and z!  are the standard normal ! / 2  and 
!  quantiles, respectively. For 1-sided ! –level test, 
one can simply replace (! / 2)  in (2) with ! . 

2.1.1. Rubinstein Method 

Rubinstein et al. derived a closed-form formula for 
the required sample size in a two-arm randomized 
treatment trial assuming exponential death times and 
equal treatment randomization [14]. Their method 
allows for censoring due to either loss to follow-up or 
end of study, i.e. administrative censoring. In particular, 



108     International Journal of Statistics in Medical Research, 2018, Vol. 7, No. 4 Cunanan and Polley 

by assuming: (i) that patients enter the study uniformly 
over [0,a] , and (ii) an accrual rate of n  such that the 
total sample size N follows a Poisson distribution with 
mean na , they expressed the expected number of 
deaths as a function the accrual rate n , hazard rates 
!0  and !1 , accrual time a , follow-up period f , and 
loss to follow-up rates !0  and !1 . Using their results 
and assuming no loss to follow-up, the expected 
number of deaths in biomarker subgroup i , for i = 0,1,  
can be expressed as 

E(di ) =
nwi

!i
!ia " e

"!i f 1" e"!ia( ){ },          (3) 

where w1 = w  and w0 =1!w.  Substituting E(d0 )  and 
E(d1 )  in (2) with the expressions in (3) gives 
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One can then solve for the required accrual rate n  
(or the required accrual time a  if n  is fixed) in (4) with 
other factors being fixed. The total sample size 
required for a prognostic biomarker study is thus 
N = n ! a. . 

2.1.2. Schoenfeld Method 

Schoenfeld derived the required sample size for the 
Cox proportional hazards model, obtaining the same 
formula as that for the two-sample log-rank test under 
the proportional hazards assumption [12, 13]. For a 
two-sided significance level ! , power (1! ")  and 
prognostic effect of interest !a  the total number of 
events required is 

D =
(z! /2 + z" )

2

w(1#w)(ln$a )
2           (5) 

In order to calculate the actual number of patients 
that are required for the prognostic biomarker study, 
one needs to consider the probability of death !  over 
the duration of the study, which can be expressed as 
the weighted probability of death in the two biomarker 
subgroups, i.e. ! = (1"w)!0 +w!1 . Assume that 
patients enter the study at a constant rate during an 
accrual period a , followed by a follow-up period f , 
one can use Simpson’s rule [22] to approximate the 
proportion of patients who will die in biomarker 
subgroup i  as 

! i =1"
1
6
Ŝi ( f )+ 4Ŝi ( f + 0.5a)+ Ŝi ( f + a)( ) ,        (6) 

where Si (!)  is the survival distribution for patients in 
biomarker subgroup i , which can be estimates by 

assuming a parametric survival distribution such as 
exponential. Finally, the total number of patients 
required for the prognostic biomarker study is simply 
N = D / !  using equations (5) and (6). 

2.2. Predictive Biomarker Studies 

The sample size methods for prognostic biomarker 
studies reviewed above can be extended to allow for 
the calculation of sample sizes for predictive biomarker 
studies. Let w  denote the prevalence of a biomarker 
positive status and p  denote the probability of a 
patient being assigned to the experimental arm. 
Assume that death times for the four treatment-by-
biomarker groups arise from exponential distributions 
with hazard rates !ij ,  for i = 0,1,  and j = 0,1,  as 
represented in Table 1. Let !0 = "10 / "00  and 
!1 = "11 / "01  denote the hazard ratios for the treatment 
effects in M !  and M +  subgroups, respectively. 
Statistically, the predictive ability of the biomarker can 
be quantified by the interaction term !* = !1 / !0,  the 
ratio of the treatment hazard ratios in the two biomarker 
subgroups. In a predictive marker study, the goal would 
be to determine the sample size needed to test 
H 0 :!

* =1  against Ha :!
* "1  at significance level !  

with power 1! "  against the alternative !* = !b  for 
some pre-specified !b . 

Based on standard likelihood theory [14, 22], one 
can show that the asymptotic distribution of ln !̂*  is 
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denotes the expected number of death in the (i, j)  cell. 
It then follows that the following condition will need to 
be satisfied to detect an interaction effect !b  with 
(1! ")%  power, using a 2-sided !  level test: 
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Table 1: The 2 x 2 Design Parameter Table in a 
Predictive Biomarker Study 

Biomarker Status  

Negative (1 - ω) Positive (ω) 

Control (1-p) λ00 λ01 

Experimental (p) λ10 λ11 

 Δ0 = λ10 / λ00 Δ1 = λ11 / λ01 

 Δ* = Δ1 / Δ0 
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2.2.1. Peterson and George Method 

Peterson and George modified Equation (A2) from 
the Appendix of Rubinstein et al. and provided a 
closed-form  a closed-form  al. and provided a closed-
form  formula for the expected number of events E(dij )  
[17]. Assuming no loss to follow-up, this number is a 
function of the accrual rate (n) , the accrual time (a) , 
the follow-up period ( f )  and the cell-specific hazard 
rate (!ij ) : 

E(dij ) = (napiwj ) 1!
e!"ij f 1! e!"ija( )

a"ij

#
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%
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%

)%
        (8) 

for i, j = 0,1,  where p1 = p = (1! p0 )  an w1 = w = (1!w0 ) . 
Note that the leading term (napiwj )  in (8) represents 
the expected number of patients in the (i, j)  cell. 
Substitutin E(dij )  in (7) with the expression in (8) gives 
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One can then solve for the required accrual rate n  
(or the required accrual time a  if n  is fixed) in (9) with 
all other factors fixed. The total sample size required is 
then N = n ! a . 

2.2.2. Schmoor Method 

Schmoor and colleagues derived an approximate 
sample size formula for detecting an interaction effect 
for the case of exponential failure times [18]. For a two-
sided level !  test with (1! ")  power, the required 
number of events is 
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The total number of patients required for the 
predictive biomarker study is N = D / !,  where !  
denotes the overall probability of death over the 
duration of the study which could be calculated as the 
weighted probability of death in the four cells, i.e. 
! = (1" p)(1"w)!00 + (1" p)w!01 + p(1"w)!10 + pw!11.  
Again, using Simpson’s rule, the cell-specific probability 
of death can be estimated as 

! ij =1"
1
6
(Ŝij ( f )+ 4Ŝij ( f + 0.5a)+ Ŝij ( f + a)),      (10) 

where Sij (!)  is the survival distribution for patients in 
treatment group i  and biomarker subgroup j . 

2.2.3. Factor of 16 (FO16) Method 

Peterson and George also presented a simple 
formula (Equation (3) in their paper) for determining the 
sample size for interaction effects [17]: 

N =
16(z! /2 + z" )

2

#(ln$b )
2 ,         (11) 

where !  is the overall death probability that can be 
calculated as the sum of the weighted probabilities of 
deaths in the four cells as in (10). This equation was 
obtained by equating the expected number of events in 
(7) to the observed number of events (i.e. E(dij ) = dij ) 
and assuming that dij = d  all i, j . Note that the 
Schmoor formula also reduces to the same formula 
when p = w = 0.5  is assumed. 

We refer to (11) as the “Factor of 16" (FO16) 
formula because of the leading constant 16 in the 
formula. This formula is often used by practitioners to 
devise the sample size for the interaction effect 
primarily due to its simplicity. Insofar as when this 
simplified formula may be adequate for practical use, 
Peterson and George provided that “in practice, we 
recommend that sample size calculations be done 
without assuming an equal number of failures per cell 
for designs where the hypothesized ratio of maximum 
to minimum number of cell-specific deaths is greater 
than 2 or where the ratio of maximum to minimum cell-
specific hazard rates is greater than 3." While these 
general rules of thumbs are useful guides in selecting 
between the more complex Peterson and George 
formula and the Factor of 16 formula, the design of a 
predictive biomarker study typically involve direct 
specifications of the biomarker positive prevalence and 
the hypothesized treatment by biomarker interaction 
effect. In this article, we assess directly how the 
statistical power and type I error based on these 
formula may be impacted by these parameters. 

3. SIMULATION STUDIES 

3.1. Prognostic Biomarker Studies 

We conduct a simulation study to compare the 
performances of the two common sample size methods 
presented for prognostic biomarker studies [12-14]. We 
assume an accrual period of a = 24  months and a 
follow-up period of f =12  months. The median survival 
for the biomarker positive cohort is assumed to be 15 
months, corresponding to a monthly hazard rate of 
!1 = 0.046  assuming exponential death times. Suppose 
patients in the biomarker negative cohort confer a 
worse prognosis such that !a = "0 / "1 >1.  We vary the 
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prognostic effect size !a  between 1.2 and 3 by 
increments of 0.01 and the biomarker positive 
prevalence w between 0.1 to 0.9 by increments of 0.1. 
For each (!a ,w)  configuration, we first calculate the 
sample size required to achieve 80% power using a 2-
sided ! = 0.05  level test based on the two methods. 
For each method, we then simulate 5000 datasets with 
the same sample size as determined by the formula. 
Note the Rubinstein formula was derived with the 
assumption of exponential event times and a test 
statistic that is based on the ratio of the maximum 
likelihood estimates of the event hazard rates. They 
showed (via simulations) that their method is 
approximately valid for the non-parametric log-rank 
test, which is nearly efficient for hazard ratios between 
1/2 and 2 [14]. To ensure fair power comparisons, we 
use the log-rank test for comparing the prognosis 
between the two biomarker subgroups in both 
methods. Specifically, in each simulated dataset, the 2-
sided log-rank test with ! = 0.05  is applied to assess 
statistical significance of the prognostic biomarker 
effect. For each method and parameter combination, 
the empirical power is calculated as the percentage of 
simulated studies that reach statistical significance for 
the targeted prognostic effect. Using the same sample 
size, we also simulate 5000 datasets under the null 
hypothesis (i.e. !0 = !1 = 0.046 ). The empirical type I 
error is then calculated as the percentage of simulated 
studies that reject the null based on a 2-sided 0.05 
level log-rank test. 

Rubinstein et al. demonstrated that even when the 
underlying distribution of the event times is not 
exponential, their method is valid for the log-rank 
statistic and retains desirable power against 
alternatives with constant hazard ratios for a wide 
range of Weibull distributed event times [14]. Here we 
further determine whether our observed trends 
regarding the approximate power of the methods with 
exponential death times may be extended to situations 
when event times are not exponential. To that end, we 
carried out additional simulation studies assuming that 
event times follow a Weibull distribution. Specifically, 
we generated event times from the cumulative density 
function F+ (t) =1! exp(!"t

b )  for the biomarker positive 
subgroup and F! (t) =1! exp(!"#at

b )  for the biomarker 
negative subgroup, where !  is the scale parameter, b  
is the shape parameter and !a  is the constant hazard 
ratio. The hazard decreases over time for 0 < b <1  and 
increases over time for b >1 . For a given value of b , 
we solve for the scale parameter !  in the biomarker 
positive subgroup so that the median survival in that 
group is 15 months to be consistent with the 
simulations in the exponential settings. All other design 
parameters are fixed to be the same as those in the 
exponential cases. 

3.2. Predictive Biomarker Studies 

We conduct a simulation study to compare the 
performances of the three sample size methods 
presented for predictive biomarker studies [17, 18]. We 
assume an accrual period of a = 9  years and a follow 
up period of f = 9  years. The median survival for the 
patients who are in the control arm and biomarker 
negative is assumed to be 3 years, corresponding to a 
annual hazard rate of !00 = 0.23  with exponential death 
times. To simplify, we further assume that within the 
control arm, patients whose biomarker status is positive 
have the same prognosis as those whose biomarker 
status is negative; that is, the biomarker is not 
prognostic so that !00 = !01 = 0.23.  Suppose that the 
treatment effect among patients with biomarker 
negative status is represented by !0 = "00 / "10 =1.2.  
We vary the treatment effect among patients with 
biomarker positive status !1 = "01 / "11  between 1.4 and 
3.6 by increments of 0.01, so that the interaction effec 
!b = !1 / !0  varies between 1.17 and 3. We consider 
the biomarker positivity prevalence w to be between 
0.1 and 0.9 with increments of 0.1. Then for each 
(!b ,w)  configuration, we first calculate the sample size 
required to achieve a 80% power using a 2-sided 
! = 0.05  level test based on the three methods. For 
each competing method, we then simulate 5000 
datasets each with the same sample size as 
determined by the formula. In each simulated dataset, 
we fit a Cox proportional hazards (PH) model with a 
treatment main effect, a biomarker main effect, and an 
interaction term between treatment and biomarker 
status. The significance of the interaction effect is then 
tested using a likelihood ratio test. In situations where 
the Cox PH model does not converge, the simulated 
dataset is excluded from the power evaluation. For all 
methods and parameter combinations considered, the 
maximum number of excluded datasets is only 10 (or 
0.2% of the 5,000 simulated datasets). The empirical 
power is calculated as the percentage of simulated 
studies that reach statistical significance for the 
targeted interaction effect. Using the same sample 
size, we also simulate 5000 datasets under the null 
hypothesis (i.e. !00 = !01 = 0.23, "0 = "1 =1.2 ). The 
empirical type I error is calculated as the percentage of 
simulated studies for which the test of interaction 
reaches statistical significance using a 2-sided 0.05 
level likelihood ratio test. 

We also conducted additional simulation studies to 
examine whether our observed trends for the empirical 
power based on the three sample size methods for 
predictive biomarker studies may be extended to 
outcome data that are not exponential. Specifically, we 
generated event times for patients who are in the 
control arm and are biomarker negative from the 
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cumulative density function F00 (t) =1! exp(!"t
b ),  where 

!  and b  represent the scale and shape parameters for 
a Weibull distribution, respectively. For a fixed value of 
b , we solve for !  so that the median survival in this 
patient subgroup is 3 years, to be consistent with the 
simulations in the exponential settings. As in the 
exponential cases, we further assume the biomarker is 
not prognostic such that F00 (t) = F01(t)  for a given b . 
Assuming proportional hazards for the treatment effect 
within each biomarker subgroup, we then generated 
event time data for patients in the experimental arm 
from F10 (t) =1! exp(!"#0t

b )  for patients who are 
biomarker negative and from F11(t) =1! exp(!"#1t

b )  for 
patients who are biomarker positive. All other design 
parameters are fixed to be the same as those in the 
exponential cases. 

4. RESULTS 

4.1. Prognostic Biomarker Studies 

Figure 1 presents simulated power curves based on 
the Schoenfeld (left plot) and Rubinstein (right plot) 
methods, respectively. The x-axis represents varying 
prognostic effect sizes. Each curve within a plot 
represents a specified prevalence rate for biomarker 
positivity. Figure 1 suggests that when the biomarker 
positive prevalence is 50%, the empirical power based 
on both methods is maintained at the 80% nominal 
level even for large targeted hazard ratios. However, as 
the biomarker positive prevalence deviates from 50%, 
the empirical power starts to deviate from the 80% 
nominal level. 

For the Schoenfeld method (see Figure 1, left plot), 
the empirical power is lower than the expected power 
when w < 50%  but is higher than the nominal level 

when w > 50% . It is interesting to note the fan shape of 
the power curves and their symmetric nature around 
the targeted 80% power. The degree of deviation in 
power increases as the targeted prognostic effect 
increases. For example, when the biomarker positive 
prevalence is 10%, this method yields 76% and 70% 
power to detect hazard ratios of !a =1.5  and !a = 3,  
respectively. When the biomarker positive prevalence 
is 90%, this method yields 86% and 91% power to 
detect hazard ratios of !a =1.5  and !a = 3,  
respectively. Within the context of our simulation 
studies, the power based on the Schoenfeld method 
varies between 70% and 92%. 

Power curves based on the Rubinstein et al. 
method are presented in Figure 1 (right plot). To aid 
visualization, here we present only three power curves 
corresponding to biomarker positive prevalence 
w = 0.1, 0.5, 0.9 , due to the proximity of the curves. 
Power based on the Rubinstein et al. method appears 
to be more robust to changes in w  and !a  than the 
Schoenfeld method. In our simulation exercise, the 
empirical power based on the Rubinstein method 
varies between 78% and 86%. In general, as the 
biomarker positive prevalence deviates from 50%, the 
empirical power based on the Rubinstein et al. method 
appears slightly higher than the expected power 
specified in the formula and this power overage is 
magnified as the targeted hazard ratio increases. 

Table 2 presents the empirical power for prognostic 
biomarker effect assuming Weibull death times. To 
conserve space, here we only present results based on 
four values of b = {1 / 4,1 / 2, 3, 5}  and two values of 
!a = {2, 3} . For each (b,!a )  combination, we consider 
three biomarker positive prevalence rates 
w = {0.2, 0.5, 0.8} . Overall, two methods perform 

 
Figure 1: Empirical power for prognostic biomarker studies based on two sample size methods (5000 simulations), for varying 
biomarker positive (M+) prevalence rates. 
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similarly when the biomarker positive prevalence is 
50% as in the exponential cases. When w ! 50% , the 
Schoenfeld method produces power consistently lower 
than the Rubinstein et al. method. In contrast, the 
Rubinstein method gives lower power than the 
Schoenfeld method when w > 0.5 . 

Figure 2 presents simulated type I error with 
exponential event times based on the two sample size 
methods. In general, the type I error is maintained 
close to the nominal 5% level, although a slight inflation 
is noted as the targeted prognostic effect increases. 
Across all scenarios we investigate, the empirical type I 
error ranges from 0.042 to 0.065 for the Schoenfeld 
method and from 0.042 to 0.068 for the Rubinstein 
method, respectively. With Weibull event times, the 
type I error ranges from 0.047 to 0.065 for the 
Schoenfeld method and from 0.046 to 0.061 for the 
Rubinstein method, respectively. In summary, the type 

I error rate is quite robust against the violations of 
statistical assumptions for both methods. 

4.2. Predictive Biomarker Studies 

The three top plots in Figure 3 present the 
simulated power curves based on the three sample 
size methods with various biomarker positive 
prevalence rates. The x-axis represents varying 
degrees of the interaction effect. The top left plot in 
Figure 3 suggests as the biomarker positive prevalence 
deviates from 50%, the empirical power based on the 
FO16 method could be substantially lower than the 
80% nominal level. The top middle plot in Figure 3 
indicates when the biomarker positive prevalence is 
less than 50%, the empirical power based on the 
Schmoor method appears to be slightly lower than the 
expected power. This power loss increases with an 
increase in the targeted interaction effect size, although 

 
Figure 2: Empirical type I error for prognostic biomarker studies based on two sample size methods for varying biomarker 
positive (M+) prevalence rates. The x-axis is the targeted prognostic effect size used to calculate the sample size. Based on this 
sample size, 5000 datasets are then simulated under the null hypothesis (λ0= λ1). 

 

Table 2: Empirical Power for Prognostic Biomarker Effect Assuming Weibull Death Times Based on 5000 Simulations. 
Δa Represents the Prognostic Effect. b Defines the Shape Parameter for the Weibull Distribution. ω 
Represents the Biomarker Positive Prevalence Rate 

Δa = 2 Δa = 3 b Method 

ω = 0.2 ω = 0.5 ω = 0.8 ω = 0.2 ω = 0.5 ω = 0.8 

Schoenfeld 0.68 0.75 0.82 0.71 0.77 0.86 1/4 

Rubinstein 0.76 0.75 0.75 0.78 0.78 0.79 

Schoenfeld 0.71 0.77 0.84 0.73 0.78 0.87 1/2 

Rubinstein 0.78 0.77 0.78 0.81 0.79 0.81 

Schoenfeld 0.79 0.84 0.90 0.77 0.81 0.90 3 

Rubinstein 0.86 0.84 0.85 0.85 0.83 0.84 

Schoenfeld 0.79 0.84 0.90 0.77 0.81 0.91 5 

Rubinstein 0.86 0.85 0.86 0.85 0.83 0.84 
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the magnitude of power loss is less severe than that of 
the FO16 method. As the biomarker positive 
prevalence increases, there appears to be a symmetric 
pattern of power overage around the 80% nominal 
level. The Peterson and George method appears to be 
most robust to changes in w  and !b  in that the power 
curves track the nominal 80% level most closely, see 
the top right plot in Figure 3. 

The three bottom plots in Figure 3 display 
comparisons of power curves based on the three 
competing methods for 20% (low), 50% (medium) and 
80% (high) biomarker positive prevalence rates. When 
the biomarker positive prevalence is near the 50% 
optimal level, all three methods perform well in terms of 
power for an interaction effect size less than 3. When 
the biomarker positive prevalence is low, both the 
FO16 and Schmoor formulas produce empirical power 
lower than expected. The power loss is more drastic for 
the FO16 method. The Peterson and George method 
has empirical power slightly higher than the nominal 
level. Finally, when biomarker positive prevalence is 
high, the FO16 method produces power that is lower 
than the nominal level while the Schmoor formula 
yields power that is higher than expected. The 
Peterson and George method again tracks the nominal 
level closely. 

Table 3 presents results for four values of 
b = {1 / 2, 2 / 3, 5 / 4, 3 / 2} and two values of !b = {2, 3} . 
For each (b,!b )  combination, we consider three 
biomarker positive prevalence rates w = {0.2, 0.5, 0.8} . 
Again, we note that the three methods perform similarly 
when the biomarker positive prevalence is 50%. The 
FO16 method produces empirical power lower than the 

80% nominal level when the biomarker positive 
prevalence deviates from 50% as previously observed 
for the exponential cases. For w < 50% , the Schmoor 
method has lower power than the Peterson and 
George method but this trend is reversed when 
w > 50% . 

Figure 4 presents simulated type I error with 
exponential event times based on the three competing 
methods. In general, the type I error is maintained 
close to the nominal 5% level, although there is a small 
inflation as the targeted interaction effect increases and 
this inflation appears to be slightly more profound for 
the FO16 method. The ranges for the empirical type I 
error across all scenarios we examine are (0.042, 
0.068), (0.042, 0.06), and (0.04, 0.062) for the FO16 
method, Schmoor method, and the Peterson and 
George method, respectively. With Weibull event times, 
the ranges are (0.047, 0.063), (0.047, 0.061), and 
(0.048, 0.062) for the three corresponding methods. 
Overall, the type I error rate is quite robust against the 
violations of statistical assumptions for all three 
methods. 

5. DISCUSSION 

The calculation of sample size in therapeutic trials 
usually assumes an equal treatment randomization and 
a modest treatment effect size. These assumptions are 
often unrealistic in correlative science studies involving 
the investigation of the prognostic or predictive value of 
a biomarker. Specifically, the prevalence of a positive 
biomarker is rarely near 50% and the desired 
biomarker effect is often larger than the conventionally 
targeted treatment effect size to be considered 
clinically meaningful. In this work, we investigate via 

 
Figure 3: Empirical power for predictive biomarker studies based on three sample size methods (5000 simulations). The top 
three plots display, for each method, the power curves for varying biomarker positive (M+) prevalence rates. The bottom three 
plots compare power curves of different sample size methods for three different biomarker positive (M+) prevalence rates. 
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Figure 4: Empirical type I error for predictive biomarker studies based on three sample size methods for varying biomarker 
positive (M+) prevalence rates. The x-axis is the targeted interaction effect used to calculate the sample size. Based on this 
sample size, 5000 datasets are then simulated under the null hypothesis (Δ0= Δ1). 

 

Table 3: Empirical power for predictive biomarker effect assuming Weibull death times based on 5000 simulations. Δb 
represents the interaction effect. b defines the shape parameter for the Weibull distribution. ω represents the 
biomarker positive prevalence rate. 

 
Δb = 2 Δb = 3 b Method 

ω = 0.2 ω = 0.5 ω = 0.8 ω = 0.2 ω = 0.5 ω = 0.8 

Factor of 16 0.48 0.69 0.52 0.46 0.69 0.53 

Schmoor 0.68 0.69 0.70 0.61 0.67 0.72 

1/2 

Peterson & George 0.69 0.70 0.70 0.69 0.69 0.67 

Factor of 16 0.52 0.73 0.56 0.50 0.73 0.58 

Schmoor 0.70 0.73 0.75 0.68 0.72 0.76 

 2/3 

Peterson & George 0.74 0.74 0.74 0.75 0.73 0.74 

Factor of 16 0.63 0.83 0.65 0.63 0.84 0.67 

Schmoor 0.80 0.82 0.84 0.80 0.83 0.85 

5/4 

Peterson & George 0.83 0.82 0.81 0.87 0.83 0.82 

Factor of 16 0.63 0.84 0.67 0.65 0.84 0.70 

Schmoor 0.82 0.84 0.84 0.82 0.83 0.86 

3/2 

Peterson & George 0.83 0.83 0.83 0.87 0.85 0.83 

 

simulation studies the robustness of some popular 
sample size methods in the context of biomarker 
studies. While the empirical power of the methods is 
jointly influenced by the targeted biomarker effect size 
and the prevalence of the biomarker, we found the 
impact of the latter is much greater. In particular, when 
the biomarker prevalence is close to 50%, we observed 
all methods perform well in terms of power regardless 
of the magnitude of the biomarker effect, implying the 
study power would be maintained at the desired level 
using any sample size method. However, when there is 
a large imbalance in biomarker prevalence, the 
empirical power may be profoundly different from the 
stated asymptotic power especially for large targeted 

biomarker effects. Specifically, when the biomarker 
prevalence is very high or very low, the FO16 method 
(for predictive studies) produce power substantially 
lower than the nominal level regardless of the effect 
size and hence should not be used. The Schoenfeld 
method (for prognostic studies) and the Schmoor 
method (for predictive studies) perform reasonably well 
so long as the desired prognostic or predictive effect 
size is modest, e.g. !a  or !b < 2 . The Rubinstein 
method (for prognostic studies) and the Peterson and 
George method (for predictive studies) outperform 
other methods in their respective class. This is not 
necessarily surprising given the fact that these 
methods imposes the fewest statistical assumptions in 
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their derivations. The type I error is maintained close to 
the 5% nominal level in all scenarios we investigate, 
although there is a slight inflation as the targeted 
biomarker effect size increases. 

The simulation results presented in this article are 
limited. The performance of the methods under 
investigation may vary with different design 
parameters. To evaluate this further, we conduct 
additional simulation studies. For prognostic cases, we 
consider an additional scenario with longer accrual and 
follow-up time as well as longer median survival for the 
biomarker positive cohort. For predictive cases, we 
consider an additional scenario with shorter accrual 
and follow-up time and a longer median survival for 
patients who are in the control arm with biomarker 
negative status. In both cases, we note that the 
performances of the competing methods in each class 
are similar to those presented in this article (data not 
shown). Similarly, we have only considered exponential 
distribution and Weibull distribution as the true data 
generating distributions in our simulation studies. It is 
worth noting that the Schoenfeld method was derived 
for the Cox proportional hazards model. Hence our 
simulations based on the Weibull distribution 
represents a scenario in which exponential assumption 
is violated whereas the proportional hazards condition 
holds true. In reality, the true data generating 
distribution is not known, and future work may focus on 
comparison of methods under other data generating 
distributions. Our observations in this article may only 
be generalized to clinical scenarios where exponential 
or Weibull distributions could be reasonably assumed. 

In summary, we provide a systematic simulation-
based evaluation to elucidate the adequacy of using 
some existing sample size methods for biomarker 
studies. The results of this paper demonstrate that 
some existing methods that may be suitable for 
estimating the sample size in treatment trials may yield 
power substantially different from what is expected in 
biomarker studies. An immediate implication of these 
results is that basing sample size estimation on some 
existing methods may result in a futile attempt to 
discover a potentially important biomarker due to the 
lack of statistical power even if a true prognostic or 
predictive effect exists. On the other hand, some 
methods may overestimate the sample size needed to 
achieve the desired power, resulting in an unnecessary 
waste of precious tissue specimens. It is our hope that 
these simulation results can serve as a useful guide to 
biomarker researchers when devising the sample size 
in their studies. The R functions to implement the 

sample size methods in this article are available at 
https://github.com/kristenmay206/BiomarkerStudySS 
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