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Abstract: Often in epidemiological research, introducing a stratified Cox model can account for the existence of 
interactions of some inherent factors with some major/noticeable factors. This paper aims at modelling correlated 
variables in infant mortality with the existence of some inherent factors affecting the infant survival function. A Stratified 
Cox model is proposed with a view to taking care of multi-factor-level that has interactions with others. This, however, is 
used as a tool to model infant mortality data from Nigeria Demographic and Health Survey (NDHS) with g-level-factor 
(Tetanus, Polio and Breastfeeding) having correlations with main factors (Sex, infant Size and Mode of Delivery). 
Asymptotic properties of partial likelihood estimators of regression parameters are also studied via simulation. The 
proposed models are tested via data and it shows good fit and performs differently depending on the levels of the 
interaction of the strata variable Z*. An evidence that the baseline hazard functions and regression coefficients are not 
the same from stratum to stratum provides a gain in information as against the usage of the Cox model. Simulation result 
shows that the present method produces better estimates in terms of bias, lower standard errors, and or mean square 
errors. 
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1. INTRODUCTION 

The extension of Cox Proportional Hazard Model 
(PHM) [1] addresses the failure of proportionality 
assumption by the introduction of time dependence 
covariate (Internal/External). Often times, the 
prognostic factors at different level produce hazard 
function that differs markedly from proportionality in the 
presence of Time-Dependent (TD) in relative risk, and 
this may not be of interest. Stratification on these 
factors provides a simpler and better approach. 

Consider a continuous survival time variable 

( ), 0T T !  and fixed covariates   X
(1) , X(2) , X(3) , !,X(n)

 
which are row vectors of dimension (1) (2) ( )p ,  p ,  ,  p n…  
respectively. To assess the effect of  X(1)

 on T, holding 

  X
(2) , X(3) , !,X(n) as a confounding variables, we will 

want to apply Cox PHM [1], 

(t : x) h (t) ; , t 0 (1)oh t x!= ( ) >         (1) 

where ; exp(X' )t x! "( ) =  

Model (1) assumes that for any two covariates set 
{ X

(1) , X(2) } the hazard satisfies, 

 h(t:X(1) ) ! h(t:X(2) ) , t>0         (2) 
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Suppose that there exists another covariate X(3) 
which failed the proportional hazards assumption, then 
it is possible to split X(3) into subgroups of 
homogeneous strata represented by g-level-factor. A 
modification of (1) by stratification of such covariate(s) 
is included in the model; whereas the factor being 
stratified is not included, Ata and Zozer [2]. Arasan and 
Lunn [3], extended the bivariate model of Freund [4] to 
incorporate time-varying covariate as a result of the 
failure of Proportional Hazard Assumption (PHA) of 
fixed covariates over time as against the current values 
of covariates which may be more meaningful. The 
concept of information gained to measure both global 
and partial dependence between explanatory variables 
and a censored response within the framework of PHM 
were extended to investigate stratified Cox model by 
Heinzl et:al [5]. Zhang et:al [6], directly adjusted 
survival curves for different treatment groups for a 
stratified Cox model. They however constructed the 
estimators by taking the average of the individual 
predicted survival curves using SAS macro. Zhang et:al 
[7], introduced a SAS macro that computes the 
restricted mean survival times from directly adjusted 
survivals based on stratified Cox model. Pennells et:al 
[8], introduced some measures to assess the 
prognostic ability of the stratified Cox PHM. They chose 
three measures developed for the unstratified Cox 
Proportional Hazards (CPH) model, adapted them for 
use with the stratified CPH model and demonstrated 
how their values could be represented over time. 
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Dupuy and Leconte [9], studied the appropriateness 
of regression calibration method in partially observed 
stratified Cox model with missing values of the 
covariate defining the strata. An efficient and 
alternative method of stratified Cox model was 
investigated by Mehrotra et:al [10]. The major aim of 
this work is to examine the correlation that exists within 
each level (stratum) of the model which in principle 
usually causes bias and affect variances and mean 
square error of the parameter estimates. 

2. STRATIFIED COX MODEL 

Classical Stratified Cox Model 

Suppose there are g strata created on the 
stratification variable X, then, a classical stratified Cox 
PHM accommodates distinct baseline hazard functions 
(
   ho

j(t); j =  1, 2,!,g ) for each stratum but enforces a 
common relative risk factor or ratio across strata. We 
define the hazard function for an individual in the jth 
stratum (level) as 

(t : x) h (t) ( ) ' , 1, , t 0 (3)j
j oh Z t j g! "= ( ) = >! (3) 

where Z(t) is the 
  
 X X(1) , X(2) , !,  X(p)( ) ;  

  
Y Y(1) ,Y(2) ,!, Y(k  1)( )  vector of covariates, Kleinbaum 

[11]. 

Multifactor-level Stratified Cox Model 

Suppose 
  
X X(1) , X(2) , !,  X(p)( )  satisfy and 

   
Y Y(1)(t),Y(2)(t),!,Y(k  1)(t)( )  

do not satisfy PHA. Let 

m-factor-level variables failed, then, the variables can 
be stratified into g strata according to the variable that 
failed the assumption. From (3), we defined a 
multifactor-level stratified Cox model as: 

   

h j tjx( )  =  h0
j t( )exp[

!1X
1+ ! + ! pXp +  !11 Y1X1( )+ ! 

+ !1p Y1Xp( )  + ! + !(k  1)p Yk  1Xp( )

"

#

$
$
$

%

&

'
'
'

 (4) 

  j =  1,!,g  strata from Y,   i =  1,!,p;t >  0.  

where 
 
!ij  is the coefficient of the interactions between 

jth variable of X and ith variable of Z confounding 
variables. The baseline hazard function for the g strata 
are allowed to be arbitrary and assumed completely 
unrelated. We use approximate partial likelihood of !  
which is the product of terms 

  

L(!) = hj (t j | x j )
" j S j (t j | x j )

j

g

#          (5) 

which is the partial likelihood of !  arising from the jth 
stratum alone. Maximizing (5) using Newton-Raphson 
technique generally leads to quick convergence in the 
estimate of ! . A crucial feature of model (3) is its 
invariance under differentiable, strictly monotonic 
increasing transformations acting on time scale in each 
stratum, Kalbfleisch [12]. 

3. SIMULATION STUDY 

We performed simulation study based on model (3) 
and (4) and observed a situation that accounted for 
cofounder variables by stratification. Let T be the failure 
time and three covariates of which one is time fixed (X) 
and other factors are time varying covariates Z(Z(1); 
Z(2)) each at two levels Z1

(1) and Z2
(1), Z1

(2) and Z2
(2). X 

was generated from N(0,1), while Z(1) ~ U(0; 1) and Z(2) 
~ bin(n, p=0.5) distributions. We chose the initial 
regression coefficients as follows:  !1  = 1;  !11  = 

log(1.25);  !12  = log(0.25) and  !13  = 2.5. Four different 
sample sizes were considered n= (20, 50, 100 and 
500) and replicated 10,000 times to obtain empirical 
distributions of the estimators of parameters using R-
program. 

4. RESULTS FROM SIMULATION STUDY 

Results for classical model (3) and multifactor-level 
model (4) are presented in Tables 1 and 2. In these 
tables the sample size, parameter estimates, bias, 
absolute bias, variance and mean square error (MSE) 
are given. Estimates from the classical stratified cox 
model are presented in Table 1 and these are as 
depicted in Figure 1. Asymptotically, the plots of 
variance and MSE indicated that the higher the sample 
size the lower the values of absolute bias, variance and 
MSE. 

In Table 2, the results of simulation obtained from 
model with interaction are as presented. From the 
results, the estimated mean, absolute bias, variance 
and MSE, for multifactor-level model are given for all 
the parameters (including the interaction parameters 

 !11 ;  !12 ; and  !13 ). The estimates are highly 
statistically consistent. Figures 2 and 3 depict 
estimated variance and estimated MSE respectively. 

Figures 4 and 5 show the plots of the estimates 
from classical stratified Cox model and multifactor-level 
with interactions. In Figure 4, comparison of absolute 
bias values of both stratified Cox (3) and multifactor-
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Table 1: Simulation Study with Various Sample Sizes for Model (3) 

Sample size  !̂  Bias( !̂ ) Absolute Bias( !̂ ) Var( !̂ ) MSE( !̂ ) 

20 -0.264 -1.264 1.264 2.761 4.359 

50 -0.040 -1.040 1.040 0.275 1.357 

100 0.055 -0.945 0.945 0.105 0.998 

500 0.145 -0.855 0.855 0.016 0.747 

 

Table 2: Simulation Study with Various Sample Sizes for Model (4) 

Sample size  !̂1   !̂11   !̂12   !̂13  

20 0.083 -0.917 0.273 1.114 

50 0.108 -0.115 0.372 0.385 

100 0.216 2.113 1.063 5.529 

500 0.058 -2.443 0.687 6.652 

/Bias B1 
B11 B12 B13 

20 0.125 0.081 0.096 0.094 

50 -0.875 -0.143 1.993 -2.406 

100 0.156 0.217 0.517 0.363 

500 0.922 0.237 4.490 6.151 

Absolute Bias AB1 AB11 AB12 AB13 

20 0.125 0.080 0.096 0.094 

50 0.875 0.143 1.993 2.406 

100 0.156 0.217 0.517 0.363 

500 0.922 0.237 4.490 6.151 

Variance Var( !̂1 ) Var( !̂11 ) Var( !̂12 ) Var( !̂13 ) 

20 0.156 0.071 0.029 0.076 

50 0.843 0.152 1.926 2.424 

100 0.107 0.153 0.372 0.264 

500 0.819 0.177 4.081 6.138 

MSE Mse( !̂1 ) Mse( !̂11 ) Mse( !̂12 ) Mse( !̂13 ) 

20 0.172 0.078 0.019 0.087 

50 1.609 0.172 1.916 2.414 

100 0.131 0.123 0.289 0.186 

500 1.668 0.143 3.960 6.010 

 

level with interactions (4) models are depicted. 
Estimates from interaction model (4) give the least 
absolute biased values across all sample sizes; 
invariably, the estimates are asymptotically biased. 
Meanwhile, variances of estimates from classical 
stratified model give the least values. The values of 

MSE of estimates are shown in Table 2 give the least 
as sample size increases. Multifactor-level model 
provides the minimum variance and MSE relative to 
sample sizes. This contributes the fact that interaction 
model provides the best estimate with little or no bias 
and minimum MSE (see Figures 4 and 5). 
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Figure 1: The plot of the distribution of estimates with sample sizes. 

 
Figure 2: Plot of the estimated variances from multifactor-level model. 

 
Figure 3: The plot of Mean Square Error from multifactor-level model. 
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Figure 4: Comparison of Absolute Bias Estimates from Classical Stratified Cox and multifactor-level Stratified Cox with 
interaction models. 

 
Figure 5: Comparison of Estimates from Classical Stratified Cox and multifactor-level Stratified Cox with interaction model. 

5. APPLICATION 

To illustrate the suitability of using these models, we 
applied both Cox PH, Stratified Cox (no interaction and 
interaction) models to data on infant mortality extracted 
from Nigeria Demographic Health Survey (NDHS) 
2013. One of the goals of Millennium Development 
Goals is to reduce infant mortality rate from 64 to 30 
deaths per 1000 live births by 2015,FRN [13]. The 
response variable is time to death of an infant (< 1 year 
old). This is measured as the time from birth to death 
before the first birthday. This study therefore looks 
critically into some factors which are thought to be 
associated with infant mortality and the ones collected 
for this study include: Sex, Tetanus treatment, Polio 
treatment, Infant size, Mode of delivery and Exclusive 
breastfeeding. 

Let 1i! =  (i= 1, …, n), if an infant died right before 

the first birthday at time  ti  and 0i! =  if otherwise. Let 
the survival time min(t ,C )i iT =  where Ci = 354 days, 
then 

1,
0,

i i
i

i i

T C
T C

!
"#

= $
>%  

Table 3, shows estimates from Cox regression 
model obtained from the infant mortality data using (1). 
First, we check the Schoenfeld residuals for 
proportionality assumption and discover that there 
exists correlation among the covariates (Tetanus, Polio 
and Breastfeeding) and time, (see Table 4, Schoenfeld 
residual test). This shows strong evidence of 
nonproportionality of the variables and the model (1). 
As a result of this, model (1) is not appropriate for 
analyzing this data because some of the variables are 
time varying and the nature of the time cannot be 
ascertained [14]. Hence, there is high correlation 
between the covariates and time, see Table 4. Fitting a 
stratified Cox model (3), we obtained the results 
displayed in Table 5. From the result, tetanus 
treatment, polio treatment and breastfeeding were 
adjusted by stratification. Figure 6 shows the Kaplan-
Meier survival curves of infant mortality for the year 
2013. From the survival curves, we discover that the 
probability of infants surviving up to and including 8 
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months is 0.95 (95 % chances), and this probability 
drops to 0.90 (90% chances) at 10 months and 
subsequently 0.85 (85% chances) at 11 months. It 
shows that there is high probability of survivors of 
infants in the country for the year even at 11 months 
(85% chances). From Table 5, we obtain the no 
interaction stratified stratum hazard functions given 
below. The major characteristic of this model is that the 
strata coefficients are the same but the baseline hazard 
functions are different. 

h j(t : X; Z ) = h0
j(t)exp[(b1sex + b2Size + b3Cs); j = 1; : : :; 6; t > 0 (6) 

h1(t : X) = h1
0(t)exp(0:047sex 0:004Size + 0:052Cs) 

h2(t : X) = h2
0(t)exp(0:047sex 0:004Size + 0:052Cs) 

h3(t : X) = h3
0(t)exp(0:047sex 0:004Size + 0:052Cs) 

h4(t : X) = h4
0(t)exp(0:047sex 0:004Size + 0:052Cs) 

h5(t : X) = h5
0(t)exp(0:047sex 0:004Size + 0:052Cs) 

h6(t : X) = h6
0(t)exp(0:047sex 0:004Size + 0:052Cs) 

From (4), an interaction model (7) is obtained, with 
three stratification variables (Tetanus, Polio treatments 
and Breastfeeding). The main effects are the first three 
variables (sex, infant size and mode of delivery 
(Cesarean session CS or Normal)). The next variables 
are product terms of interaction of 18 categories of 
strata variables   Z*  (Sex with six categories of   Z* , 
Infant Size with six categories of   Z*  and mode of 
delivery with six categories of   Z* ).   Z*  consists of three 
binary (dummy) variables   (Z1

*, Z2
*, Z3

*)  for tetanus 
treatment, polio treatment and breastfeeding, where 

  Z1
* =Tetanus,   Z2

*  =Polio and   Z3
*  = Breastfeeding. 

*
1

*
2

*
3

1, eceived tetanus treatment
Tetanus (T)

0, Not received

1,  received polio treatment
Polio(P)

0, not received

1,  exclusively breastfeed
Breastfeeding(B)

0, not exclusively breastfeed

r
Z

Z

Z

!
= = "

#

!
= = "

#

!
= = "

#  

The matrix below represents the jth stratum by 
variables interactions (5). 

0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $# $
% &  

*
1 2 3 11 12 13

14 15 16 21 22

23 24 25 26 31

32 33 3

(t : X, ) h (t) exp[ (sexT) (sexP) (sexB)

(sexTP) (sexTB) (sexPB) (sizeT) (sizeP)
(sizeB) (sizeTP) (sizeTB) (sizePB) (csT)
(csP) (csB)

j
j oh Z sex Size Cs! ! ! ! ! !

! ! ! ! !

! ! ! ! !

! ! !

= + + + + +

+ + + + +

+ + + + +

+ + + 4 35 36(csTP) (csTB) (csPB)].! !+ +  (7) 

The results of multilevel interaction model is as 
given below in Table 6, and subsequently  

  

j = 1 h1(t : X,Z*) = h0
1 (t)exp[!0.005sex ! 0.0026Size+ 0.254Cs]

j = 2 h2 (t : X,Z*) = h0
2 (t)exp[0.0338sex ! 0.4726Size! 0.427Cs]

j = 3 h3(t : X,Z*) = h0
3 (t)exp[!0.04sex + 0.0314Size+ 0.079Cs]

j = 4 h4 (t : X,Z*) = h0
4 (t)exp[0.006sex + 0.052Size! 0.41Cs]

j = 5 h5(t : X,Z*) = h0
5 (t)exp[!0.025sex + 0.813Size! 0.132Cs]

j = 6 h6 (t : X,Z*) = h0
6 (t)exp[0.248sex ! 0.0048Size! 0.372Cs]

j = 7 h7 (t : X,Z*) = h0
7 (t)exp[!0.408sex ! 0.1086Size! 0.062Cs]

j = 8 h8(t : X,Z*) = h0
8 (t)exp[!0.49sex ! 0.0488Size! 0.0598Cs]

(8) 

the systems of equation. 

From the multifactor-level interaction models above, 
there exists relationship/interaction between tetanus 
treatment, polio treatment, breastfeeding and the effect 
of infant sex, size and mode of delivery. This implies 
that the baseline hazard functions and regression 
coefficients are not the same from stratum to stratum. 
Also, some of the variables are highly associated with 
one another and this influences the hazards of infant 
mortality. In comparing the models, a log-likelihood 
ratio test is employed to compare the goodness of fit 
for the nested models. In all, the result of log-likelihood 
ratio statistics for multifactor-level interaction model (4) 
give the least of all relative to the classical stratified 
Cox model (3); (5755.013 < 5781.465). 

6. CONCLUDING REMARKS 

This study has brought out the beauty of correlation 
between the main factor and other stratification factors. 
It thus implies that there exists some factors affecting 
the process apart from the main noticeable factor(s) 
which are time fixed or time varying. Once the nature 
time varying cannot be actually understood or 
theoretically proved. This leads us to stratification. 
Although, Cox [1] model has become the most popular 
regression model for analyzing censored survival data 
both in medical and engineering research, as shown by 
many authors, stratified Cox model has helped in 
measuring the invariance to the quantity under 
independent censoring. It also helped to see how multi-
factor-level are being used in stratified model and also 
affect the variability. Thoughtfully, situations in which 
the stratified Cox model could be used are quite 
common in practice, meanwhile, the actual use of the 
stratified Cox with interactions is much less frequent. 
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Table 3: Estimates from Infant Mortality Data (Cox Regression Model 1) 

 b Se(b) Z Pr (> jzj) Conf. Int(b) 

Tetanus 0.176 0.027 6.512 7.41e-11 1.131 - 1.257 

Polio -0.486 0.027 -17.825 <0.001 0.583 - 0.650 

Breastfeeding -0.051 0.004 -11.584 <0.001 0.942 - 0.958 

Sex -0.016 0.025 -0.675 0.500 0.937 - 1.032 

Size 0.015 0.013 1.147 0.251 0.989 - 1.042 

Cs 0.094 0.048 1.958 0.050 0.999 - 1.207 

 

 
Figure 6: Plots of Kaplan Meier survivorship function for infant mortality data. 

 

Table 4: Schoenfeld Residual Test 

 r Chi-sq Pr (> jzj) 

Tetanus treatment -0.037 9.445 0.002 

Polio treatment 0.137 148.301 < 0:001 

Breastfeeding 0.117 2445.854 < 0:001 

Sex 0.010 0.691 0.406 

Size -0.022 2.862 0.091 

Cs 0.012 0.813 0.367 

Global NA 2745 < 0:0001 
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Table 5: Estimates from Infant Mortality Data (Stratified Cox Model 3) 

 b Se(b) Z Pr(> jzj) Conf. Int(b) 

Sex -0.047 0.024 -1.940 0.052 0.909 - 1.000 

Size -0.004 0.0132 -0.328 0.743 0.970 - 1.022 

Cs 0.052 0.051 1.019 0.308 0.954 -1.163 

 

Table 6: Estimates from Multilevel Interaction Stratified Cox Model (4) 

Variables Coef( !̂ ) Se(Coef) Z Pr 

Sex -0.05 1666.28 -3.00E-05 0.99 

Size -0.0026 2970.91 -8.75E-07 1 

Cs 0.254 1.01 2.51E-01 0.042 

Sex*Tet 0.06 2233.78 2.69E-05 1 

Sex*P -0.056 1666.28 -3.36E-05 0.99 

Sex*Tet*P 0.082 2519.14 3.26E-05 1 

Sex*B -0.31 1666.28 -1.86E-04 0.037 

Sex*Tet*B -0.172 3.87 -4.44E-02 0.24 

Sex*P*B 0.008 43.765 1.83E-04 0.019 

Cs*Tet -0.681 3542.05 -1.92E-04 1 

Cs*P -0.175 2970.91 -5.89E-05 1 

Cs*Tet*P 0.152 2970.91 5.12E-05 0.12 

Cs*B -0.014 31841.2 -4.40E-07 0.059 

Cs*Tet*B -0.131 67.085 -1.95E-03 0.055 

Cs*P*B -0.003 56.88 -5.27E-05 0.45 

Size*Tet -0.0388 1.44 -2.69E-02 0.013 

Size*P 0.034 1.02 3.33E-02 0.055 

Size*Tet*P -0.112 1.29 -8.68E-02 0.077 

Size*B -0.174 1.67 -1.04E-01 0.00344 

Size*Tet*B 0.133 1.01 1.32E-01 0.0632 

Size*P*B 0.034 1.54 2.21E-02 0.0556 

 

These may be due to failure to thoroughly check the 
PH assumption or wrong application of the Cox model. 
So many other reasons might as well contribute to the 
usage of PH model. 
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