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Abstract: Migraineur constitutes a multidimensional model of health disorder involving a complex combination of 
genetic, psychological, demographic, enviromental and economic factors. This model provides a framework to describe 
limitations of an individual functional ability and quality of life, and to aid in the elaboration of more adequate intervention 
programs for each patient. Our primary objective in this paper is a data-driven profiling of patients.  

The approach followed consists of examining affinity/dissimilarity between sufferers on the basis of different family of 
indicators and then aggregating multiple partial matrices, where each matrix expresses a particular notion of the 
dissimilarity of one patient from another. One important particularity of our method is the notion of multi-dimensional 
dissimilarity for static and dynamic indicators, without ignoring any portion of data.  

The partial dissimilarity matrices are assembled in the form of a global matrix, which is used as input of subsequent 
calculations, such as multidimensional scaling and cluster analysis. Our main contribution is to show how multi-scale, 
cross-section and longitudinal data from individuals involved in a migraine treatment program may optimally be 
combined to allow profiling migraine-affected patients.  
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1. INTRODUCTION 

The study presented here is part of an industrial 
research and experimental development project. Its 
general objective is to design, develop and apply an 
innovative technological services platform to support 
the effectiveness and efficacy of the integrated clinical 
management of the cephalalgic patients. The partners 
in of the project have chosen to start a vast data 
collection on headaches in Calabria passing from a 
conventional on-demand healthcare approach centered 
on communication between patients and healthcare 
professionals, and by providing a means to match level 
of medical care with disease severity.  

The portion of the study that we present here is a 
pilot research that aims to provide practical indications 
for designing and improving the questionnaire which 
will be circulated among patients, physician and 
healthcare professionals. To this end, we analyze the 
well-known data set on the severity and frequency of 
migraine headaches data set described by Kostecki-
Dillon et al., 1999 [1]. This data set contains indicators 
measured on different scales and units of 
measurement. The various indicators can be 
partitioned into groups of variables. Our point of 
departure is the computation of a partial dissimilarity 
matrix for each group of indicators taken separately 
(“partial" because each of them is linked to a specific  
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group of indicators and not to the globality of the issues 
reported in the data set). Successively, we use an 
optimization-based procedure to build a global 
dissimilarity matrix in the form of a weighted average of 
the partial dissimilarity matrices. At this point, the global 
dissimilarity matrix becomes the basis for metric and 
semi-metric scaling techniques that can be used for 
visual exploration of data. Additionally, it is possible to 
assess the presence of a group structure on the 
migraine sufferers, who are enrolled in the program. In 
this regard, both the global original dissimilarity matrix 
and the global dissimilarity matrices derived from a 
synthesis of the scaling methods are submitted to a 
partitioning around medoids algorithm in an attempt to 
identify profiles or clusters of patients that share similar 
needs.  

The remainder of the article is organized as follows. 
In the next section, we address the problem of 
specifying differential weights for each group of 
indicators in order to reflect their significance, reliability 
and statistical adequacy. In Section 3, the global 
dissimilarity matrix acts as a starting point for the 
partitioning around medoid algorithm to cluster the 
patients on the basis of their static and dynamic 
characteristics. In Section 4, the global dissimilarity 
matrix between migraineurs is subjected to a 
multidimensional scaling (MDS) method to settle 
possible disagreements and reveal underlying 
relationships among the results. Finally, the last section 
provides a summary and identifies topics for future 
study. 
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2. COMPUTING DISSIMILARITY MEASURES FOR 
MIXED DATA 

Let us suppose that p  different indicators regarding 
n  patients are organized into m  non-overlapping sets 
including mj  indicators with !mj=p . In general, 

dissimilarity-based methods can properly handle 
problems with multiple scales including categorical, 
ordinal, and time-series data. Our idea is that analogies 
and differences between migraine sufferers can be 
condensed into m  partial matrices 

 Dh ,h =1,2,…,m,m > 2  of n! n  order  
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, h =1,2,…,m.       (1) 

In more formal terms, we assume that each matrix 
is real, non negative and symmetrical, with zero 
diagonal and positive row sums regardless of what, 
and how many, indicators have been used in each 
group or how the matrices have been constructed.  

With the usage of (1), we realize a transition from 
an information basis represented by a data matrix 
(consisting of a number of indicators taking values over 
a number of patients) to an information basis in terms 
of a dissimilarity matrix whose generic element di, j,h  
expresses the dissimilarity between patients i  and j  
with regard the h -th set of indicators. The main 
advantage of this approach is that it makes data 
measured with heterogenous methods  and 
instruments comparable for multi-dimensional analysis 
such as clustering and scaling methods.  

It is commonly observed that cluster analysis 
according to different variables can produce different 
classifications even when they are applied to the same 
set of subjects. Similar statement holds for multi-
dimensional scaling, which can substantially differ 
according to the variables used. Consequently, 
combining multiple dissimilarity measures 

 Dh ,h =1,2,!,m  in a global dissimilarity matrix D  can 
be beneficial, provided that the mixing is done in an 
optimal way.  

In the present paper, the global dissimilarity matrix 
is made up of a weighted average of the of the partial 
dissimilarity matrices  

D =
h=1

m

!whDh with wh " 0;
h=1

m

!wh =1         (2) 

The positive sign of the weights and the linearity of 
(2) ensures that every variation in di, j  corresponds to 
an increase or decrease in at least one of the 

 di, j,h ,h =1,2,…, p . On the other hand, gain with respect 
to one or more partial matrix could compensate loss 
with respect to another group of partial matrices by the 
same amount of variation. We must assume that such 
behavior is desired or at least is not detrimental to the 
problem being worked; otherwise averaging over 
component data sources would be inappropriate.  

2.1. Data Description 

In this study we use the subset of data on migraine 
treatments collected by Kostecki-Dillon et al., 1999 [1] 
and freely available in the KosteckiDillon data set from 
the R package carData. The data consists of headache 
logs kept by n=133  patients in a treatment program in 
which bio-feedback was used to reduce migraine 
frequency and severity. Patients entered the program 
at different times over a period of about 3 years. 
Patients were encouraged to begin their logs four 
weeks before the onset of treatment and to continue for 
one month afterwards, but only 55 patients have data 
preceding the onset of treatment. On average, patients 
recorded information on 31.2 days, with the number of 
days ranging from 7 to 121. The variables involved are 
time:  

• time in days relative to the onset of treatment, 
which occurs at time 0.  

• dos: time in days from the start of the study, 
January 1 of the first year of the study. Note that 
there is a perfect correlation between “time" and 
“dos" (except for patient 126 were time 28 is 
missing). Consequently, we decided to ignore 
information derived from the variable “dos".  

• pretreatment: a binary variable representing 
dichotomization of time: as 0 if time is positive 
and 1 if the patient began its logs before the 
onset of treatment.  

• compliance: a binary variable coded 1 if the 
duration of treatment is greater than the average 
and 0 otherwise.  

• hatype: an ordered factor with three levels: “no 
aura", “mixed", “aura" describing the type of 
migraine experienced by a subject.  

• age: at onset of treatment, in years.  

• airq: a measure of air quality.  

• medication: an ordered factor with levels “none" 
(recorded as 1), “reduced" (recorded as 2), 
“continuing" (recorded as 3) representing 
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subjects who discontinued their medication, who 
continued but at a reduced dose, or who 
continued at the previous dose.  

• headache: all patients were assigned a pain 
score recorded as 0 or 1, whereby the former 
indicates low pain and the latter high pain. The 
cutoff point is not indicated.  

• gender: a factor with levels “female" and “male".  

In summary, there are two type of indicators: 
dynamic variables: “time" ( X1 ), “airq" ( X2 ) and 
“headache" ( X3 ); static variables where only one value 
is observed for each subject: “age" ( X4 ), 
“pretreatment" ( X5 ), “compliance" ( X6 ), “gender" 
( X7 ), “hatype" ( X8 ), “medication" ( X9 )  

2.2. Dissimilarity for Mixed Data 

The definition of dissimilarity is crucial for the 
effectiveness of our approach. The dissimilarity 
functions proposed to compute the degree of closeness 
between patients are as follows 

Time series data. We adopted the dynamic time 
warping (dtw) distance as dissimilarity function 
between time series of different lengths such as those 
involved in this study. This distance tries to find a 
natural peak-to-peak, valley-to-valley alignment 
between a pair of sequences by warping them such 
that, for example, the Manhattam or city-block distance 
between the warped time series is minimal [2].  

Let !i, j,h
*  be the dtw distance between patient i  and 

j  with respect to the variables “time" ( h =1 ), “airq" 
( h = 2 ) and “headache" ( h = 3 ). If the sequences are of 
different lengths, the dtw distance is not symmetrical, 
but a symmetrized version can be defined as 
!i, j,h = (!i, j,h

* +! j,i,h
* ) / 2,h =1,2,3 . Furthermore, the dtw 

distance does not satisfy the triangle inequality. Ratio 
variables. The age of the patients yields 
!i, j,4 =| xi,4 " x j,4 | . Binary symmetric. In this case 0/0 
and 1/1 matches are treated as equally indicative of 
similarity. We have treated together the binary 
indicators of the Kostecki-Dillon data set: “pretreat", 
“compliance" and “gender". The dissimilarity due to 
these variables is measured by the Rogers-Tanimoto 
coefficient, which, using the symbolism of the 
tetrachoric contingency table, is given by  

!i, j,5 =
bi, j + ci, j

0.5 ai, j + ei, j( )+bi, j + ci, j
"
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where  

ai, j =
h=5

7

!i(xi,h =1" x j,h =1) ei, j =
h=5

7

!i(xi,h =1" x j,h = 0)

bi, j =
h=5

7

!i(xi,h = 0" x j,h =1) ci, j =
h=5

7

!i(xi,h =1" x j,h = 0)

 

for h = 5,6,7  and with i(x) =1  if x  is true and 0 
otherwise. The Rogers-Tanimoto coefficient takes into 
consideration the existing agreement among the 
subjects when factors coincide and when they are 
absent. Concordances receive half weights. By doing 
so, the coefficient actually gives slightly less emphasis 
to the positive matches.  

Ordinal scale. The dissimilarity concerning 
“medication" is measured by considering quadratic 
contrasts i.e. the factor enters not only linearly but also 
quadratically. So, not only linear, but also quadratic 
effects can be captured. In particular, !i, j,6 = Pxi,9 ,x j,9  

where  
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Nominal. Since only one indicator fell in this group 
we pose !i, j,7 =1  if xi,8 = x j,8  and !i, j,7 = 0  otherwise. 
From the p = 9  indicators reported in the Kostecki-
Dillon data set, we have derived m = 7  set of variables, 
which serve to generate dissimilarity summary in form 
of symmetric matrices with non-negative off-diagonal 
elements and zero diagonal elements.  

2.3. Weighting Matrices 

In constructing the global dissimilarity matrix, 
decisions must be made about the weight to be given 
to each set of indicators. To this end, we need an 
expression for how much a certain variable affects the 
global dissimilarity. This can be derived from the total 
sum of the squares of the elements in the matrices 

 Dh ,h =1,2,…,m  choosing the weights so as to 
maximize the variance of the elements in D .  

Initially, each matrix Dh  is transformed into a cross-
product matrix Bh  by an operation called double-
centering  

Bh = !0.5CDh
2Ct , with C = In ! n

!1unun
t        (3) 

where un  is an n!1  vector of 1’s and In  be the 

identity matrix of order n . The notation Dh
2  stands for 

the matrix whose i, j( ) -th element is the square of 
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di, j,h . Note that Bhun = 0 . Therefore, double-centering 
reduces the rank of the original matrix by one because 
one of the eigenvalues of Bh  is forced to be zero.  

As a preliminary step we define the global cross-
product matrix B   

B =
h=1

m

!whBh with wh " 0, and
h=1

m

!wh =1.        (4) 

Let  !h=Vec(Bh ),h=1,2,…,m  be the column vector 
obtained by stacking the columns of Bh  on top of one 
another. A standard method to measure how the 

 B1,…,Bm  matrices resemble each other is the vector 
correlation  
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where 
 
!Bh !F

2 =Tr Bh
t Bh( )  is the square of the Frobenius 

norm of Bh . Naturally, ar,s = as,r  and 

 ar,r =1,r =1,2,…,m  and 0 ! ar,s !1 . In general, we have  
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where bi,r ,b j,s  are, respectively, the i -th and the j -th 

column of Br  and Bs  and r2 bi,r ,b j,s( )  is the square of 
the Pearson correlation between them [3]. A value of 
ar,s  equal zero or near zero implies that the two 
matrices are not linearly related, whereas a value close 
to one indicates a strong linear relationship between 
Bs  and Br . If ar,s =1  then Br  can be derived from Bs  
through a homothetic transformation. It must be pointed 
out that ar,s  is invariant to a linear transformations of 
the matrices. We remark that an exact value of zero is 
virtually precluded because the matrices 

 Bh ,h =1,2,!,m  are all symmetrical with zero row and 
column sums, have a rank less than or equal to n!1( )  
and, above all, are derived from distance matrices 
computed on the same set of subjects. Actually, since 
ar,s  is positive, there will be generally an appearance 
of correlation produced in this way, even if no such 
relation really exists.  

 

Let the vector correlations (5) be placed in a matrix 

 A = (!1,!2,!,!m ) . The principal component analysis of 
A  yields a set of m  orthogonal eigenvectors, 

 qh ,h =1,2,!,m  and a vector of eigenvalues 

 !1 > !2 >!> !m  corresponding to each eigenvector. In 
particular, the first principal component is that linear 
combination of the columns of  !1,!2,!,!m  of A  which 
describes the greatest amount of total variance 
between dissimilarities.  

We can assume, without being too restrictive, that 
A  is positive. Under such condition, the Perron-
Frobenius theorem (see, for example, [4]) ensures that 
there is a single eigenvalue, say !1 , that is positive and 
greater than or equal to all other eigenvalues in 
modulus and that there is a strictly positive eigenvector 
q1  corresponding to !1 . A principal component with 
such characteristics represents some overall “profileÓ 
or “incidence" of a type of variables on the patients. 
The global cross-product matrix can now be computed 

by using (4) with weights w = um
t q1( )

!1
q1 .  

Now, we can construct the related global 
dissimilarity matrix, but before we have to consider the 
role of the Euclidity of a matrix. An (n! n)  matrix is said 
to be Euclidean if its entries reproduce exactly the 
distances between n  points in a Euclidean space, that 
is,  dij =! xi ! x j ! for 1" i, j " n . It has been shown that 
Dh  is Euclidean if and only if the matrix Bh  is positive 
semi-definite (see, for example, [5,6]). Moreover, we 
know that the largest eigenvalue of Bh  is positive (see, 
[7]), but the others may be negative, zero or positive. In 
most real-data applications, the dtw  function will not 
provide a Euclidean dissimilarity matrix, and so a 
correction will be needed. There exist a great number 
of approaches for different approximation criteria and 
some algebraic results (see, [8,9]), which have been 
widely discussed in MDS and we need not consider 
them here.  

Let us suppose, also in reason and on the basis of 
the transformation referred to above, that 

 Bh ,h =1,2,!,m , are all n! n  positive semi-definite 
matrices with rank greater than or equal to m . Owing 
to this fact, a linear combination of positive semi-
definite matrices is also positive semi-definite (see, for 
example, [10]). It follows that the global matrix of cross-
products can be written as  

 

B =
h=1

m

!wh B
!
h            (7) 

According, for example, to [11], the corresponding 
global dissimilarity matrix can be defined as  



44     International Journal of Statistics in Medical Research, 2019, Vol. 8 Tarsitano and Amerise 

 

D
!
=

h=1

m

!whD
!
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2

with D
!
h

2

= ghum
t +umgh

t " 2Gh        (8) 

where  Gh = !Bh !F( )!1Bh  and gh  is composed of the 
elements in the diagonal of Gh . The normalization of 
the cross-product matrices is necessary to make Bh  
invariant under change of scale.  

The matrix  D
!

 depends on the additive 
transformation adopted to make Euclidean some of the 
partial dissimilarity matrices. Three recommended 
correction methods are “cailliez", "lingoes" and “quasi-
Euclidean", whose application yields the results 
reported in Table 1.  

There are no large differences between the various 
systems of weights. Scarce importance is given to 
“age", “hatype" and “medication" and this is presumably 
attributable to the reduced variability of the 
dissimilarities concerning these variables. When no 
correction is applied, we obtain four larger almost equal 
weights and weights related to “age", “hatype" and 
“medication" much smaller than the average of the 
other in the same row. The additive corrections “quasi-
Euclidean" and "Cailliez" confirm the irrelevance of 
‘age", “hatype" and “medication", but “time" and 
“binaries" see their role radically changed with respect 
to those reported in the first row. In view of these 
controversial findings, it is encouraging to see that the 
weight concerning “headache" in one of the largest in 
all the systems and this is of extreme importance 
because this indicator is of major interest in the current 
study.  

The fact is that a transformation of the dissimilarity 
matrices is nevertheless required if we want to use 
relation (8). The Lingoes additive correction gives 
weights that are very similar to the natural weights 
reported in the first row, but with an important 
distinction: the set of indicators called "binaries" loses 
part of its importance in favor of “airq" and “headache", 
which could also be a good thing due to quantity of 
information being conveyed by these indicators. To 
simplify matters, the weights shown th the row headed 
“lingoes" will be those chosen for computing the global 
dissimilarity matrix.  

3. CLUSTER ANALYSIS 

Over the years, many methods have been used to 
find groups in data, but here we will concentrate on the 
partitioning around medoids (PAM) method. The PAM 
algorithm searches between the units of the available 
data  U1,U2,!,Un  (which in our case are patients) for k  
representative units, called medoids, among the 
subjects of the data set. Medoids are computed such 
that the total dissimilarity of all subjects to the nearest 
medoid is minimal. In short, the goal is to select k  
medoids  R1,R2,!,Rk  that minimize the objective 
function  

 

T R1,R2,!,Rk( ) =
i=1

n

!
j=1,2,!,k
min d Ui ,Rj( )         (9) 

The number of possible choices for the medoids 
ranges between (n / k)k  and (ne / k)k  where e  is the 
base of natural logarithms, which is so large that we 
must rely on optimization techniques.  

Initially, k  medoids are chosen at random from the 
set of n  units. Each remaining unit is added to the 
cluster corresponding to the closest medoid: 

 
Ui ! Cj " d Ui ,Rj( ) # d Ui ,Rl( ),l =1,2,!,k . In case of 
ties, the unit is assigned to one of the clusters 
according to their order of presentation. Each medoid is 
re-determined as the units for which the sum of 
dissimilarities to all the other units in the cluster is as 
small as possible.  

 

Rj !
Ut"C j

# d Ut ,Rj( ) =
Ut"C j
min

Ui"C j

# d Ut ,Ui( ), j =1,2,!,k (10) 

This step, known as the “build step", is repeated 
until a satisfactory set of initial medoids has been 
found.  

In a successive step, transfers of a non-medoid 
units are attempted. Let 

 es,i, j =Ts (R̂1, R̂2,!, R̂k )!Ts (R1,R2,!,Rk )  be the amount 
of change that occurs in the objective function (9) if 
Us ! Ci  is placed in Cj  for i ! j ,  j =1,2,!,k ; 

 i =1,2,!,n  and where  R̂1, R̂2,!, R̂k  are the medoids 

Table 1: Weights for the Kostecki-Dillon Datas 

Correction  time  airq  headache  age  binaries  hatype  medication 

None  0.2300  0.2132  0.2103  0.0188  0.2234  0.0598  0.0445  

Quasi  0.1336  0.1830  0.2583  0.0207  0.2495  0.1109  0.0440  

Lingoes  0.2459  0.2496  0.2727  0.0398  0.0959  0.0478  0.0482  

Cailliez  0.1477  0.2216  0.2591  0.0473  0.1895  0.0721  0.0628  
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that would result after the realization of the change. If 
all the es,i, j ! 0  then PAM algorithm stops otherwise it 
carries out the transfers associated with negative 
values of es,i, j  according to their order of magnitude 
while avoiding exchanges between clusters already 
involved in a transfer and leaving at least one unit in 
each cluster.  

The number of clusters is assumed to be known. In 
the absence of such a priori information, a procedure is 
needed to find a suitable number of clusters. Therefore, 
it is common for the algorithm to be applied with 
different k  and then the best solution so far obtained is 
selected by using a validity index. We find the optimal 
number of clusters by choosing the k  for which a 
convergence is achieved between several criteria.  

To help the choice of k , Figure 1 shows the plot of 
four indices commonly used to select the optimal 
number of clusters: average silhouette width, Calinski 
and Harabasz, Dunn and Hartigan index (see [12]). A 
peak in the graph of the estimated index values versus 
the number of clusters, indicates a candidate as the 
best number of clusters. The graphs in Figure 1 
suggest k = 7  clusters, that is, the value toward which 
all criteria converge.  

Table 2 gives the results of the PAM for a partition 
of the Kostechi-Dillon data set in k = 7  clusters.  

Firstly, we note that the patients enrolled in the 
Kostechi-Dillon experiment are divided into two types of 
groups. One consists of clusters C2 , C3 , C6 , and C7  
differentiated from all remaining clusters by the gender 
(female) of the patient, that is, the females’ behavior 
shows more observable instances, while for males the 
effects of headache illness are less straightforward and 
thus less observable. This is to be expected because, 
unlike many other chronic diseases, the morbidity 
attributable to these disorders is largely concentrated in 
otherwise healthy young and middle-aged people, 
particularly women.  

Two clusters of female patients had a treatment 
duration longer than the average: C2  and C3 . Cluster 
C3  is distinct from C2  because all the patients included 
in C3  were subjected to pretreatment. The same 
demarcation line can be set between C6  and C7 . The 
clusters C1 , C4 , C5  are formed with male migraineurs. 
Those classified in C5  had a duration of treatment for a 
period longer than the average including a period of 
pretreatment. The duration of the treatment is short 
than the average in the case of patients classified in 

 
Figure 1: Choice of optimal number of clusters. 
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clusters C4 , even though all have had a phase of 
pretreatment. Patients belonging to C1  are male 
patients showing low compliance.  

The PAM group structure is not confirmed by the 
best hierarchical partition obtained with the Ward link. 
The dendrogram in Figure 2 indicates clusters which 
have little in common with the clustering in Table 2.  

Although the data lend themselves to a tree 
description, the separation of the groups is not as clear 
as that achieved with the PAM clustering. The 
considerable divergence between iterative partitioning 
and hierarchical clustering can be explained by the 
dominance of the dissimilarities across the time series 
that describe the patient pathways in the current study. 
In effect, the weights of the dynamic indicators are 
much more bigger than the others and the proximity 
measure by symmetrized dtw  might have been 
influenced by the very fact that the patient records 
follow affine periods and duration so they are near but 
not similar.  

4. CLASSICAL MULTIDIMENSIONAL SCALING 

The underlying hypothesis of Section 4 is that any 
set of data, even time-sequences, can be utilized for 
building partial dissimilarity matrices that are 
successively aggregated in a global dissimilarity matrix 
by a trade-off strategy. The resulting matrix should be 
less sensitive to distortion and noise in the input data 
than single partial matrices. We have seen, however, 
that hierarchical and non-hierarchical cluster analysis 
can lead to surprisingly different solutions even when 
using exactly the same data. The existing 
incongruences suggest that some improvement of the 
analysis of the global dissimilarity matrix is desirable.  

The multi-dimensional Euclidean coordinate space 
offers an appropriate environment for a broad variety of 
different standard and special tools for classification, 
but such a geometric representation requires the 
availability of variables measured on a ratio scale. This 
is not possible in the case of the Kostecki-Dillon data 
set, not only because of the involvement of nominal, 
binary and ordinal indicators, but also because of time 
series data, which are difficult to reconcile with the 

Table 2: Results of the PAM Clustering 

C  Typical   Membership  

M49+N*0  M55oN*0  M32oC*0  M58-R*0  M52oC*0  M59+C*0  M46oN*0  1 M63+C*0 

M26+C*0              

2  F33+C*1  F36+C*1  F28+C*1  F63+R*1  F62+C*1  F42+C*1  F48oN*1  F33oR*1  

   F34oR*1  F39+R*1  F28-R*1  F53+N*1  F50oC*1  F29oC*1  F57-R*1  

   F37-R*1  F54oC*1            

3  F49oC1  F30+C1  F49oC1  F49oC1  F35+N1  F62oR1  F50oR1  F28oC1  

   F50+N1  F21+C1  F52+C1  F60oC1  F66oR1  F46+N1  F35+C1  

   F46+C1  F53oC1  F50oR1  F44oN1  F40oC1  F43oC1  F21+C1  

   F49-C1  F56+C1  F52+N1  F18oN1  F52oC1  F33-C1  F35oC1  

4  M41oC0 M24+R0  M18+N0  M44oC0  M48oR0  M56oC0      

5  M33-N1  M45oR1  M53-N*1  M45oC1  M43-C*1        

6  F40oC0  F30+C0  F44oC0  F52oC0  F36+C0  F42oC0  F43+R0  F33+C0  

   F46oN0  F32oC0  F46oC0  F46+R0  F53oC0  F27+R0  F51+C0  

   F32oR0  F35+N0  F23oC0  F43+C0  F32oC0  F29+N0  F60oC0  

   F47oR0              

7  F46+C*0  F43+C*0  F43+C*0  F47+C*0  F24oR*0  F27oN*0  F21+N*0  F38+C*0  

   F50oN*0  F33oC*0  F60oN*0  F46oC*0  F46oC*0  F54oC*0  F30+R*0  

   F36oC*0  F46oC*0  F32+C*0  F45+C*0  F55oN*0  F18-C*0  F45+C*0  

   F47+C*0  F36+R*0  F51oC*0  F34oC*0  F41+C*0  F24oN*0  F51oR*0  

   F48+C*0  F40+C*0  F55+R*0  F51+C*0  F62+C*0  F35+C*0  F36-C*0  

   F54oC*0  F29+C*0  F43oN*0  F42oC*0  F46+R*0  F24oN*0  F20-C*0  

   F41oC*0              

Legend: hatype: “+" aura, “-" no aura, “o" mixed; medication: “C" continuing, “R" reduced, “N" none; pretreatment: “¥" yes, “*" no; compliance: “1" duration of 
treatment greater than the average, “0" duration lesser than the average. 
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concept of a data matrix in which the rows correspond 
to the patients in the experiment and the columns to 
the variables measured on them. We conjecture that 
the findings in Section 4 may not be entirely 
satisfactory due to redundancy of information about not 
significant aspects of patients’ experience. Thus an 
application of a dimension reduction technique is 
proposed to convert a high dimensional data in form of 
dissimilarities between patients to two- or three- 
dimensional scatter plot of points, which are easily 
understandable.  

In this section, we first embed the data into a 
Euclidean space, then applies the clustering algorithms 
to the pseudo-coordinates obtained by a classical 
multi-dimensional scaling (MDS) method [13]. 
Preliminarily, we note that the following ordering exists 
on the observed global dissimilarities  

 d1,2 !!! d1,n !!! d2,n !!! dn"1,n       (11) 

Whenever any set of n(n!1) / 2  non-negative 
numbers satisfy these inequalities, we shall say that 

they are monotonically related to the observed 
dissimilarities. The purpose of MDS is to derive a set of 
distances between points in a space of dimensionality 
! < n  from information about the dissimilarity between 
patients. A possible choice is 

 !r,s = f (dr,s ), r,s =1,2,!,n  where f  satisfies the 
monotonicity constraint  

!r,s " ! #r , #s if and only if dr,s " d #r , #s       (12) 

Relation (12) means that if r  and s  are less 
dissimilar than !r  and !s , then the points representing 
r  and s  must be nearer than the points representing 
!r  and !s . Lingoes, 1971 [14] gives a rigorous and 

greatly simplified proof that at most (n! 2)  dimensions 
are required to reproduce the order information for both 
the distance and dissimilarity matrices. Rivas Moya, 
2000 [15] observes that, even though it is always 
possible to obtain a perfect reproduction of all 
dissimilarities in an Euclidean space of (n! 2)  
dimensions (provided that D  is an Euclidean distance 
matrix), in practice, a representation in a low-

 
Figure 2: Hierarchical group structure of the Kostecki-Dillon data set. 
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dimensional space, ! < n , is ordinarily desired. Thus it 
is not always guaranteed that a perfectly monotonic 
dissimilarity-distance relation can be found. In other 
words, constraint (12) may be sometimes violated.  

Let  y1,y2,!,yn  be vectors of hypothetical 
observations on !  pseudo-indicators and let the 
distance function between points r  and s  be the 
Euclidean metric  

!i, j =
i=1

"

# | yr,i $ ys,i |
2

%

&
'
'

(

)
*
*

0.5

        (13) 

The coordinates of the points Y  are the unknowns 
of the problem. Without loss of generality we set the 
center of the coordinate system at  (0,0,!,0) . If the 
coordinates are determined such that the 
corresponding distances !r,s  satisfy (12), then the 
multi-dimensional scaling problem is solved. If not, we 
need an index that quantifies the degree in which the 
relation between !r,s  and dr,s  is not monotone.  

A very commonly used index is the standardized 
and unit-free Stress (STandardized REsidual Sum of 
Squares) function  

S Y( ) = r<s

n

! "r,s Y( )# dr,s( )2

r<s

n

!dr,s
2

       (14) 

where  Y = y1,y2,!,yn . The values of (14) are always 
between zero and one. Lower values of S Y( )  denote 
better fit in the lower-dimensional space. Any value 
less than 0.10 is typically taken to mean that there is a 
good representation of the dissimilarities by the points 
in the given configuration. The  !r,s ,r,s =1,2,!,n  must 
be calculated, in such a way that they verify (12) and 
minimize the Stress (14). Given the global 

dissimilarities  d
!
i, j ,i, j =12,",n  in (8), the denominator 

of S(Y)  is fixed and, therefore, the Stress is minimized 
by solving the following optimization problem  

 
Y
min

r<s

n

! "r,s Y( )# d
!
r,s

$

%
&
&

'

(
)
)

2

subject to d
!
r,s * d
!

+r , +s ,"r,s Y( ) * " +r , +s Y( )

           (15) 

A reasonable way to solve (15) is to exploit the 
euclidity of D  in (8) and apply formula (3)  

 B̂ = !0.5CD
!
2

Ct , with C = In ! n
!1unun

t      (16) 

Now B̂  is symmetric, positive semi-definite and of 
rank (n!1)  and hence can be written in terms of its 
singular value decomposition B̂ =VL0.5Vt  where 

 L = diag(l1 ! l2 !!! ln"1)  is the diagonal matrix of the 

eigenvalues of B̂  and  V = [v1,v2,!,vn!1]  is the matrix 
of corresponding eigenvectors, normalized such that 
vi
tvi =1 . The eigenvectors Ŷ = L0.5Vt  arranged in 

decreasing order of their corresponding eigenvalues 
and standardized so that the sum of squares of their 
elements equals the relevant eigenvalue, provide the 
solution of (15). The rows of Ŷ  are called the principal 
coordinates of the pseudo-variables in !  dimensions.  

We have performed MDS by using the built-in 
function “cmdscaleÓ for classical metric scaling. in the 
“R" environment. The usual controls on the 
eigenvalues suggest ! = 5  principal coordinates. 
Having converted the global dissimilarity matrix D  to 
an n! 5  matrix of pseudo coordinates Ŷ , it is possible 
to treat Ŷ  as a “data matrix" for input to cluster 
analysis. Table 3 reports the cluster membership 
derived from PAM clustering with k = 9  groups as 
indicated by the same criteria used in Figure 1. We 
note that the main changes are the splits of two of the 
old clusters described in Table 3. Specifically, the old 
cluster C3  is subdivided into two new clusters C3

'  and 

C4
' , the first focusing on female patients, who undergo 

a treatment duration longer than the average, had a 
pretreatment history and a migraine of the mixed aura 
subtype; and, the second including patients reporting 
migraine with aura.  

Another major change is the split of the old cluster 
C7  into two new clusters: C8

'  containing female 
patients, who undergo a treatment duration shorter 
than the average, had not had a pretreatment history 
and reported a migraine of the aura subtype; the other 
C9
' , grouping together patients who are distinct from 

those in C8
'  as the migraine type, which is, prevalently, 

of the mixed aura subtype. Other minor changes are 
observed in the membership of the old clusters C1 , C2 , 
C4 ,C5 , C7 . Figure 3 shows the projections of the 
principal coordinates in a bi-dimensional space so that 
the configuration can be plotted easily. The passage 
from a 7-cluster solution to a 9-cluster solution resulted 
in a configuration slightly more confused in its inability 
fully to separate between the patients according to 
gender, pretreatment and duration of the treatment. For 
example, patient M52oC*0 from the old cluster C1  to 

the new cluster C5
'  and patient F23oC¥0 from C6  to 

C2
' . These individuals are not consistent with the 

cluster to which they belong. On the 
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Table 3: Results of the PAM Clustering of Principal Coordinates 

C’  Typical   Membership  

1 M63+C*0 M49+N*0  M55oN*0  M32oC*0  M58-R*0  M26+C*0  M59+C*0  M46oN*0  

2  F33+C*1  F36+C*1  F28+C*1  F63+R*1  F62+C*1  F42+C*1  F48oN*1  F33oR*1  

   F34oR*1  F39+R*1  F28-R*1  F53+N*1  F50oC*1  F29oC*1  F57-R*1  

   F23oC0  F37-R*1  F54oC*1          

3  F21+C1  F49oC1  F49oC1  F62oR1  F50oR1  F28oC1  F60oC1  F66oR1  

   F53oC1  F50oR1  F44oN1  F40oC1  F43oC1  F49oC1    

   F18oN1  F52oC1  F35oC1          

4  F49oC1 F30+C1  F35+N1  F50+N1  F21+C1  F52+C1  F46+N1  F21+C1  

   F49-C1  F56+C1  F52+N1  F35+C1  F33+C0  F33-C1  F46+C1  

5  M41oC0 M24+R0  M18+N0  M44oC0  M48oR0  M56oC0  M52oC*0    

6  M33-N1  M45oR1  M53-N*1  M45oC1  M43-C*1        

7  F40oC0 F30+C0  F44oC0  F52oC0  F36+C0  F42oC0  F43+R0  F51+C0  

   F46oN0  F32oC0  F46oC0  F46+R0  F53oC0  F27+R0  F60oC0  

   F32oC0  F35+N0  F29+N0  F46+R*0  F32oR0  F47oR0    

8  F48+C*0  F43+C*0  F43+C*0  F47+C*0  F21+N*0  F38+C*0  F46+C*0  F30+R*0  

   F32+C*0  F45+C*0  F45+C*0  F47+C*0  F36+R*0  F41+C*0  F48+C*0  

   F40+C*0  F55+R*0  F51+C*0  F62+C*0  F35+C*0  F29+C*0  F43+C0  

9  F24oN*0  F24oR*0  F27oN*0  F50oN*0  F33oC*0  F60oN*0  F46oC*0  F46oC*0  

   F54oC*0  F36oC*0  F46oC*0  F55oN*0  F18-C*0  F51oC*0  F34oC*0  

   F24oN*0  F51oR*0  F36-C*0  F54oC*0  F43oN*0  F42oC*0  F24oN*0  

   F20-C*0  F41oC*0            

Legend: hatype: “+" aura, “-" no aura, “o" mixed; medication: “C" continuing, “R" reduced, “N" none; pretreatment: “¥" yes, “*" no; compliance: “1" duration of 
treatment greater than the average, “0" duration lesser than the average. 
 

 
Figure 3: Scatter plot of patients plotted against the first principal coordinate by the second principal coordinate. 
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other hand, the splits of the two old clusters C3  into 

(C3
' ,C4

' )  and C7  into (C8
' ,C9

' ) follow along the migraine 
type thus involving a more specific indicator.  

5. CONCLUDING REMARKS 

Many research problems require statistical methods 
that must consider multiple dissimilarity matrices each 
of which offers a distinct point of view of the pairwise 
dissimilarities between the same set of subjects. This 
paper presents an approach aimed at the design of a 
procedure for aggregating the various sources of 
information for overcoming the discrepancies between 
different sources, particularly when the data set 
indicators have mixed types. This becomes a particular 
challenge in the case of longitudinal data concerning 
migraine-affected patients. We were given a foretaste 
of this by analyzing the well-known [1] data set in which 
time-series data co-exist with a mixture of numeric, 
ordinal, binary and nominal indicators.  

In this work, we have devised a new global distance 
function based on the partial distance matrices 
between individuals obtained from various types of 
indicators observed on each patient. The partial 
distance matrices are combined as a weighted average 
and the resulting global distance matrix is then used for 
profiling patients by subgroups to enable personalized 
treatment. Classification of patients belonging to the 
Kostechi-Dillon data set has been obtained by 
combining PAM clustering and classical multidi-
mensional scaling. The two methods have identified 
three clusters that deserve to be taken seriously into 
consideration. 1) Female patients, who undergo a 
treatment duration longer than the average, had a 
pretreatment history and a migraine of the mixed aura 
subtype. 2) Female patients, who undergo a treatment 
duration shorter than the average, had not had a 
pretreatment history and reported a migraine of the 
aura subtype. 3) Patients reporting migraine with aura.  

The achievements of the research project will 
highlight the degree to which and in what ways the 
preliminary multivariate statistical analysis carried out 
in this paper can be of help for effectiveness and 
efficacy of data collection and the integrated clinical 
management of the cefalalgic patients. 
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