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Abstract: In genetic studies, heterotic effects are commonly assessed as dominant, additive, or recessive effects for a 
given genetic marker. However, the distorting effect of heterosis on statistical tests is non-trivial. An inheritance model 

needs to be carefully chosen to achieve highest testing power. We assess this through simulations via allele- and 
genotype-based tests. Chi-square test statistics for different inheritance models are formulated as a function of relative 
risks and allele frequencies. The results indicate that testing power from the commonly used allele-based tests can be 

substantially diminished by heterosis. Assessing the existence of heterosis is thus recommended to avoid false negative 
findings.  
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1. INTRODUCTION 

The genetic phenomenon whereby the phenotypic 

levels for the heterozygous genotypes are either 

greater or less than either of the homozygous 

genotypes is called heterosis. Positive heterosis 

presents when there is an increased phenotypic value 

for the heterozygous genotype, whereas negative 

heterosis presents when there is a reduced value. At 

the molecular level, heterosis appears to be 

counterintuitive to the expectation that one 

homozygous genotype should be associated with 

increased adverse outcomes, the other homozygous 

genotype with decreased adverse outcomes, and the 

heterozygous genotype should be intermediate [1]. The 

underlying mechanism of heterosis and its influence on 

phenotypes coincides with the dynamic systems theory 

in mathematics and physics and its relation with 

development, in the sense that dynamic systems 

provides theoretical principles for the formulation of 

these complex outcomes [2]. Recently, heterosis 

received increased attention. For the period between 

1995 and 1999, a total of 147 publications on heterosis 

are listed in PubMed. The number increased to 751 

between 2000 and 2004, and to 1635 articles between 

2005 and 2009.  

Heterosis has a long and an unsolved history. In 

1917, Jones stated “that a stimulation resulting from 

hybridization in both plants and animals has long been 

recognized. The increased growth as the result of 

crossing is so common an occurrence that it is  
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probably familiar to everyone who has made any 

hybridization experiments. This stimulation, variously 

spoken of as “hybrid vigor”, stimulus due to 

heterozygosis, heterosis, etc., was clearly established 

as an organic phenomenon by the abundant cases 

cited by early investigators such as Kölreuter (1766), 

Gärtner (1849), Darwin (1877) and Focke (1881), as 

well as a large number of other investigators at that 

time and an increasingly large number since then” [3]. 

Jones continued “Concrete explanations as to the 

cause of these results have not accompanied the 

accumulation of facts. Various hypotheses have 

attempted to account for the results, but they have 

been little more than outlines of the problem”. Still, 

more than ninety years later, there is no conclusive 

explanation for this phenomenon [4]. An instructive 

description of these controversies explaining heterosis 

was provided by Crow in 2008 [5]. Explanations 

include, for instance, overdominance, dominance, 

pseudo-overdominance, and gene repression and 

activation (epigenetic regulation) [6].  

Heterosis occurs in plant, animal, and human 

studies [7-9]. Hybrid vigor (superior growth and fertility 

over their parents) is frequently used in agriculture. It is 

also estimated that 65% of the maize production world-

wide is hybrid-based [9, 10]. Beef production has 

increased due to hybrid vigor [11]. Heterozygous 

advantage (heterosis) has also been thought to confer 

resistance to certain strains of malaria in patients 

heterozygous for the sickle-cell gene HbS [12]. Whilst 

the phenomenon is well described in the plant and 

animal kingdom, it has largely been ignored in human 

genetics [1]. Typically in human genetics, heterosis is 

detected in studies that focused on specific genes [1, 
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12-17] but not in genome-wide association studies. The 

numerical explanation for this bias is simple. Figure 1 

shows an example of presence of positive heterosis. 

The standard genotype-based analysis based on a 

single nucleotide polymorphism (SNP) will detect an 

increased disease frequency in the heterozygous “Gg” 

genotype (20/100 vs. 15/100 in the homozygous 

groups), but the allele-based analysis (g vs. G;50/300 

each) does not show increased occurrence of disease 

in the two alleles. These allele-based tests, however, 

are the basis of haplotype analyses and genome-wide 

association studies [18].  

Comings et al. noted that heterosis may occur in up 

to 50% of all genetic associations [1]. Yet most studies 

select inheritance models without taking into account 

the possible existence of heterosis. No study in the 

genetic literature has determined if heterosis (positive 

or negative) will cause substantial power loss and lead 

to erroneous conclusions. The high prevalence of 

heterosis and the uncertain impact of heterosis in 

association studies motivated the work presented in 

this article. Through simulations, we examined the 

influence of heterosis on testing power in allele- or 

genotype-based association tests. Generic test 

statistics were derived for different inheritance models 

(dominant, recessive, and additive), the standard 

genotype-based test (based on the standard 2x3 

contingency table), as well as the allele-based test.  

 

Figure 1: Distortion of the genotype-disease association (left) 
and the allele analysis (right) in the case of positive heterosis. 
Each bar represents the proportion of diseased subjects for 
each genotype or allele. The genotype Gg shows an 
increased proportion of diseased subjects whereas the G and 
g alleles indicate no differences in the proportion of diseased 
subjects. 

2. METHODS 

In the following, we describe test statistics for the 

standard genotype-based test (comparing frequencies 

of gg, Gg, and GG), genotype-based tests under 

various inheritance models (dominant, recessive, 

additive) and allele-based test (comparing frequencies 

of the alleles g vs. G). Pearson chi-square test 

statistics are calculated based on cohort studies using 

a dichotomous outcome variable. Comparable statistics 

can be determined for case-control studies [19] and for 

continuous traits. We use the test statistics to compare 

statistical significance between different tests in the 

absence and presence of negative and positive 

heterosis. Statistical power for each test are evaluated 

based on non-centrality parameters, which are 

calculated in a similar way but with population 

parametersincluded in the calculation [20, 21].  

2.1. Test Statistics 

For all simulations, the Hardy-Weinberg equilibrium 

(q = 1 p; P(GG) = p2; P(Gg) = 2pq; P(gg) = q2 )  was 

maintained for the allele and genotype frequencies. 
The penetrances for gg, Gg and GG are denoted by 

f0 = P(D gg), f1 = P(D Gg) and f2 = P(GG)  respectively, 

where D represents disease status. Further, let N 
denote the overall sample size, N0 the observed counts 

with genotype gg, and N0
D  the observed counts for 

diseased individuals with genotype gg. Let 

N1, N1
D , N2 and N2

D  carry the same notation for Gg and 

GG, respectively. Hence, the penetrance estimates are 

defined as tf 0 = N 0

N 0
D

, tf 1= N 1

N 1
D

, and tf 2= N 2

N 2
D

. 

Denote the estimated frequency of the allele (G) as 
tp ; consequently tq = 1 - tp . The expected 

frequencies for each disease status corresponding to 
each genotype can then be described as a function of 

N, tp, tf 0, tf 1,  and tf 2  as follows. For genotype gg, let 

E0
D  denote the expected counts of diseased under the 

null hypothesis of no association between genotype 

and disease status and E0
D  denote the expected 

counts of non-diseased. Through some algebra, we 

have E 0
D = Ntq2 (tq2tf 0 + 2tptqtf 1 + tp 2tf 2) and 

E 0
D = Ntq2 (1 - tq2tf 0 - 2tptqtf 1 - tp 2tf 2). Let E1

D , E2
D , E1

D , and E2
D  

carry the same notation for genotypes Gg and GG, 
respectively. Calculations of these quantities can be 
done in a similar way. The chi-square test statistic for 
the standard genotype-based test can be derived as 
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where  

 

Now, under the dominant model, genotypes GG and 

Gg have the same effect on the trait; hence f1 = f2 . 

Under the recessive model, genotype Gg and gg have 

the same effect on the trait and so f1 = f0 . Finally, 

under the additive model, genotype Gg has an 
intermediate effect on the trait (between gg and GG) 

and so f1 =
f0 = f2
2

. However, the relationships 

between these penetrances will not be true in the 
presence of heterosis as discussed later in this section. 
Based on these penetrance relations with heterosis 
absent, the chi-square tests statistics for different 

genetic models can be derived. Let d
2 , r

2 , c
2 , and a

2  

denote the chi-square statistics for the dominant, 
recessive, additive genotype-based tests and the 
allele-based test, respectively.  

Then 

 

where 

 

 

and 

 

Lastly,  

a
2
=
2N[A2 B2 ]

2

C2D2

 

where 

 

In the presence of heterosis, the relationship 

between f0 , f1, and f2  are different from those 

described above. Positive heterosis is characterized by 

f1  being the highest and negative heterosis as f1  

being the smallest. Minelli et al. defined heterosis 
based on relative risks [22]. The genotypic relative risk 

of Gg compared to gg was denoted as 1 =
f1
f0

 and the 

relative risk for GG compared to gg was denoted as 

2 =
f2
f0

. Further, the ratio of log relative risks was 

denoted as =
log( 1)

log( 2 )
, so that >  indicates positive 

heterosis and < 0  denotes negative heterosis [22]. 

Different values of  indicate different strengths of 

heterosis. Table 1 below summarizes these definitions 
for the dominant, recessive, additive, and heterotic 
modes of inheritance in ideal situations.  

2.2. Simulations 

In the following simulations we compare the 
statistical power of the allele-based, standard 
genotype-based, and model-based tests of association 
considering the status of heterosis. Here model-based 
tests refer to genotype-based tests under dominant, 
recessive, and additive inheritance modes. We 
considered three scenarios for the simulations: (1) no 
heterosis, (3) possible negative heterosis, and (4) 
possible positive heterosis. For fixed values of the 

Table 1: Ratios of Log Genotype Relative Risks (GRR) for Various Genetic Models. * Implies that 2 > 1 

Genotype  GRR  Recessive  Dominant  Additive  Negative heterosis  Positive heterosis  

Gg  1  1  1  1  
  

GG  2  2  1  2 1  1  2 ( 1< 2)  2 ( 1> 2)  

   0  1  0.5  <0  >1  
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sample size (N) and , the penetrance estimates 

(tf 0, tf 1,  and tf 2) and the chi-square test statistics were 

obtained for each association test. A sample size of N 

= 600 was used. Four values of tm were considered in 

the simulations, -0.1, -2.0, 1.1, and 2.0, corresponding 
to possible negative and positive heterosis, 

respectively. The values of (tf 0, tf 1,  and tf 2) were 

determined from the given tm values with tf 0  fixed at 

0.1. To account for Monte Carlo error, for each 
condition of heterosis, 1000 data sets were generated. 
Each test statistic was calculated for 200 allele 
frequencies (p)  ranging from 0 to 1 and the values 

were plotted against p . The significance level, , was 

fixed at 0.05. The corresponding critical chi-square 
values were drawn for each scenario (critical value = 
3.841, df = 1 for the test statistic in allele- and model-
based tests; and critical value = 5.991, df = 2 for the 
test statistic in standard genotype-based tests).  

Testing power for each test was calculated based 

on chi-square non-centrality parameters under the 

alternative hypothesis. The power at each allele 

frequency is an average of testing powers over 1000 

data sets. All the computations and graphs were 

produced using SAS 9.2 (SAS Institute, Inc., Cary, 

North Carolina).  

2.3. Examples 

To further illustrate the impact of heterosis in allele-

based tests and the need to be cautious when using 

allele-based tests, we describe the results of two 

asthma studies: the first result showing possible (mild) 

heterosis and the second showing no pattern of 

heterosis. The first result was obtained from a 

prospective study of the natural history of allergic 

disorders from birth to the age of 18 years, on a cohort 

from the Isle of Wight (IOW) in the United Kingdom 

[23]. The genotype and allele frequencies are included 

in the first part of Table 2. The percentage of asthma 

cases for the AA, AG and GG genotypes were used to 

estimate the penetrances. A (slightly) higher 

penetrance estimate for the heterozygous genotype 

(AG) than the homozygous genotypes (AA and GG) 

suggests the possibility of mild heterosis.  

The second result was obtained from the study by 

Howard et al., which examined the association 

between asthma and atopy phenotypes and IL-13 

polymorphisms in a Dutch asthma population [24]. The 

data is included in the second part of Table 2. 

Bronchial hyperesponsiveness (BHR) was used as a 

biomarker for the asthma phenotype. The percentages 

of BHR cases for the CC, CT and TT genotypes were 

used to estimate the penetrances. There was no 

pattern of heterosis suggested. When there is no 

pattern of heterosis [24], the allele-based test is more 

powerful than the genotype-based test, as suggested 

by the smaller p-value (0.003). However, when mild 

heterosis appears possible, the allele-based test 

completely loses its power in identifying the 

significance of association (p-value = 0.42). 

2.4. Results 

For the purposes of illustration, we focus on three 

situations in terms of heterotic status: no heterosis, 

mild and moderate negative heterosis, and mild and 

moderate positive heterosis. The results are 

summarized and discussed as follows.  

In the absence of heterosis (tf 0 = 0.10, tf 1 = 0.18,  
and 

tf 2 = 0.20), the allele-based test has greater 

statistical power than the recessive model-based and 
the standard genotype-based tests (data not shown). In 

a scenario with mild negative heterosis (tm =-0.1) and 

genotype risks that are still close to the pattern of a 

recessive model (tf0 = 0.10, tf1 = 0.0943,  and 

tf2 = 0.18), the recessive inheritance model has the 

highest power while the dominant model has almost no 
statistical power. It is worth noting that the allele-based 
test is less powerful than the standard genotype-based 
test for p < 0.7  (Figure 2A). In this case, even for 

negative values of tm  close to zero, the allele-based 

test is inappropriate. In a setting with moderate 

negative heterosis (tm =-2.0, tf2 = 0.10, tf1 = 0.0444,  

Table 2: Examples of Mild Heterosis (Asthma Phenotype) and No Heterosis (BHR Phenotype) from the IOW Cohort 
and a Dutch Population, Respectively 

SNP Phenotype Genotype Allele P-value (
2 
) 

Asthma AA (35) AG (212) GG (475) A (282) G (1162) Genotype Allele Exon 4 (3’UTR or C8932052) 

 % cases 14.3 35.4 32.0 30.1 32.6 0.046 0.42 

BHR CC (213) CT (107) TT (15) C (533) T (137) 0.014 0.003 Promoter 

 % cases 59.2 72.0 86.7 61.7 75.2  
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and tf2 = 0.15) the allele-based test has a lower 

statistical power than the dominant model-based test 
for p < 0.5  (Figure 2B) and is overall lower than the 

standard-genotype-base model. However, at extreme 
allele frequencies, allele-based test tends to have 
higher statistical power than the standard genotype-
based test. The reason is that extreme allele 
frequencies are related to lower numbers in either one 
of the homozygous groups. For instance, following the 
Hardy-Weinberg law, if p = 0.1 , then the probability of 

GG is 0.01 and if p = 0.9  then the probability of gg is 

0.01 ((1  0.9)
2
). Thus, in both cases, one homozygous 

group no longer contributes substantially to the test 
statistic based on genotypes and the allele-based test 
accumulates most information in the two alleles. We 
observed similar patterns for smaller p  (data not 

shown).  

Under mild positive heterosis with 
tm = 1.1(tf0 = 0.10, tf1 = 0.214,  and tf2 = 0.20) the allele-

based test is less powerful than the dominant model-

based test since in this example the genotype risks 

reflect a dominant mode of inheritance (Figure 3A). In 

addition, the allele-based test has lower statistical 

power than the standard genotype-based test for most 

values of the allele frequency. Similar situations are 

obtained for moderate positive heterosis 
tm = 2.0 (tf0 = 0.10, tf1 = 0.20,  and tf2 = 0.1414). For 

tm = 2.0  the allele-based test is less powerful than the 

dominant model-based and the standard genotype-

based tests. In particular, when the allele frequency is 

in the mid-range, the allele-based has lowest power 

(Figure 3B). For larger tm  we achieved similar results 

(data not shown). 

3. DISCUSSION 

In the absence of heterosis, allele-based 

association tests are, as expected, more powerful than 

the standard genotype-based and other model-based 

tests. Under possible negative or positive heterosis, 

allele-based tests possess lower statistical power than 

the standard genotype-based and the model-based 

tests, particularly in the mid-range of the allele 

frequency distribution, depending on the mode of 

inheritance. These simulations emphasize the fact that 

blindly applying allele-based tests without assessing 

the existence of heterosis can result in misleading 

inferences due to substantial power loss. To some 

degree this is avoided by relying on the standard 

genotype (2 d.f.) test.  

It has been noted that, in the human genome, more 

than 50% of the allele frequencies fall in the middle 

range. For instance, Kruglyak and Nickerson estimated 

that a minimal allele frequency of 30% is found in 23–

27% of single nucleotide polymorphisms and 40% in 

24–28% [25]. Hence, the reduction of statistical power 

 

Figure 2: Power plots under negative heterosis.  = -0.1[A];  = -2.0[B]. 
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due to heterosis may affect as many as 50% of allele-

based tests. Individual alleles from multiple SNPs are 

used to compute haplotypes [26-28]. Haplotype 

construction has generated tremendous interest among 

computational biologists and statistical geneticists. A 

large number of statistical programs have been 

developed to estimate haplotypes [27]. Given the fact 

that allele-based analyses are favored in a large 

number of studies and also are the backbone of 

haplotype-based association tests, the results of this 

study suggests that negative findings of allele-based 

analyses should be interpreted with caution when 

heterosis was not assessed. For example, if a 

haplotype that incorporates three single nucleotide 

polymorphisms (SNPs) and one of these is heterotic, 

then the chance of this haplotype to be associated with 

phenotypic outcomes may be reduced. The extent to 

which heterotic associations may reduce the statistical 

power of haplotype association studies is not yet 

known. In addition, it is not known whether the use of 

haplotype pairs (diplotypes) will compensate for the 

reduced power of haplotype association studies. Since 

genome-wide association studies (GWAS) also utilize 

allele-based tests (for instance [18, 29]), it is unclear to 

what degree GWAS are underachieving because 

heterosis is ignored. In light of the study of Comings et 

al. [1], we speculate that the burden due to this limiting 

assumption may not be ignorable.  

More than ninety years after Jones’ description of 

heterosis there is no conclusive molecular explanation 

for this phenomenon [4]. There are numerous attempts 

in the plant kingdom to understand the molecular basis 

of heterosis [4, 30]. Recent investigations have 

suggested non-additive gene expression, small RNAs, 

and epigenetic regulation as an explanation for 

heterosis [6]. However, in human genetics, heterosis is 

often not accepted and authors have had to defend 

findings of heterosis [13, 17, 31, 32] in particular when 

allele-based associations do not agree with the findings 

from genotype-based tests [1]. Other authors 

circumvent the problem and contrast alleles from the 

heterozygous with only one homozygous group [33]. 

Hence, there is a need to explore the molecular basis 

of heterosis and to improve scientific acceptance of 

heterotic findings in human epidemiology. To better 

understand heterosis and its impact in different 

populations, future studies can include additional 

 

Figure 3: Power plots under positive heterosis.  = 1.1 [A];  = 2.0 [B]. 



Allele-Based Tests Under Heterosis International Journal of Statistics in Medical Research, 2013 Vol. 2, No. 1      53 

factors such as gender, age, and race [1, 16, 34, 35]. In 

addition, heterosis may also vary with phenotype [1]. 

The same SNP, for example, may show heterosis for 

allergic asthma but not for allergic sensitization.  

It is true that researchers should attempt to use 

unbiased methods, but this is not always the case, as 

we tend be largely unaware of our misconceptions. 

Therefore, incorporating background knowledge to 

some extent has the potential to diminish the 

occurrence of misconception and further increase 

statistical power. On the other hand, when the model of 

inheritance is not known, we propose applying a two-

step analytic approach in the spirit of the method 

proposed earlier [36]. The first step is to select the 

appropriate inheritance mode by statistically comparing 

dominant, recessive, additive and heterotic models. In 

the second step, association studies are conducted 

based on the model selected. In the first step, since all 

four models have the same degrees of freedom, a 

likelihood ratio test cannot be applied. Instead, in order 

to select the most likely inheritance mode, we propose 

conducting a comparison of the likelihoods of each 

model; this is a special case of the Akaike Information 

Criterion (AIC) that is commonly used in model 

selection. The model with the highest maximum 

likelihood is selected and utilized in the subsequent 

association studies. 

The concepts discussed in this work can be applied 

to scientific research in general. The presence of 

heterosis can possibly generate different results. This 

is coherent with the dynamic systems framework, that 

is, different intercommunications may produce very 

distinct systems and research should take this into 

account. Furthermore, novel research could benefit 

from applying multiple methods in combination, thereby 

providing more powerful and more easily interpretable 

results. The possible contradictions emerging from 

such studies may also afford the necessary insights to 

further understand the phenomena under study.  
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