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Abstract: In the recent past, both non-parametric and parametric approaches have consistently been used to model 
cost effectiveness in a variety of health applications. This study applies the semi-Markov model while presenting the 
sojourn time with well-defined probability distributions. We employed the Weibull distribution to model the hazard 
function for each of the defined transition paths. We defined three distinct states of the semi-Markov process using the 
quantity of HIV virus in the blood of an HIV-infected person i.e., viral load (VL) copies in a milliliter (copies/mL). The three 
states were defined; VL < 200 copies/mL, 200 copies/mL < VL < 1,000 copies/mL, VL > 1,000 copies/mL and an 
absorbing state which is naturally death. We also developed a cumulative cost function, purposely to determine the 
average estimated cost per patient in each of the defined states. Incremental Cost Effectiveness Ratio (ICER) was 
utilized in the analysis of cost-effectiveness while comparing two program strategies i.e., Patients under the 
differentiated care model (DCM) and those who are not considered to be in any model of differentiated care during their 
respective ongoing clinical follow up. Results show the mean cost of the patients for each state 1, 2, and 3 was $765, 
$ 829, and $ 1,395 respectively. More so, the computed ICER ratio was $ 484/life-year-saved. In conclusion, the cost of 
keeping patients in state 1 (on DCM) was relatively cheaper and more efficient compared to the other states.  
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1. BACKGROUND 

There has been a significant reduction of HIV/AIDs 
infection in the region within and around Sub-Saharan 
Africa (SSA) in the recent past, with slightly over 30% 
lower incidence rates [1]. The reduction is attributed to 
the global effort which largely targeted the regions that 
account for nearly 70% of persons living with HIV 
(PLHIV) [2, 3]. Kenya in particular has benefited from 
these efforts. The milestones achieved in reducing 
HIV/AIDs infections can be attributed to various 
programmatic strategies that are geared toward 
monitoring and enhancing the standard of life of people 
living with HIV. With these reductions, funding and 
investments in HIV support have dwindled. This has led 
to sustainability initiatives that warranted cost 
implications [4]. 

In this study, we revisit the application of 
semi-Markov processes in an attempt to model 
incremental change in HIV staging with a cost effect. 
This is designed to quantify the cost of keeping a 
patient in any of the HIV/AIDs stages. Utilization of 
semi-Markov chain models to account for competing 
risks (informative censoring), report censored data, 
numerous outcomes, repetitive outcomes, 
non-constant survival probabilities, and frailty [5, 6] 
provides an appropriate choice for this selection. 
Further, the clinical data used for this work was prone 
to right censoring hence semi-Markov models became 
appropriate for the analysis. The stochastic approach 
here describes the transition of individuals with a finite 
number  of the defined state at a given  time [5]. The 
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possible movements between stages are represented 
with a state diagram. For this work, the death state is 
considered the absorbing state. The semi-Markov 
models considered here, intricately enable us to 
compute both probabilities and the rates of movement 
that are associated with each distinct transition 
between states in a single observed iteration as well as 
the estimated number of iterations spent in a given 
state. Naturally, the time spent in all states until 
eventual absorption is added to estimate the overall 
survival time. More so, the model is designed to 
incorporate analysis of multiple defined events 
simultaneously. Within the same framework, we are 
also able to include competing for risks within the 
states of the model, as well as consider individual 
associated frailty within subject-specific random effects 
[5, 7, 8]. 

Intrinsically, transitions can take place at any given 
time, and also considering that multiple unobserved 
transitions can take place between iterative 
assessments. Different authors have proposed 
different approaches i.e., half-iteration correction, 
where transitions are assumed to occur in the middle of 
a given observation iteration [9], have been proposed 
to reduce biases that results from the assumption that 
transitions can only take place at the start or the end an 
iteration. In this setting a semi-Markov model is 
considered a special case of the Markov chain with the 
following characteristics i.e., the time spent in the state 
of interest depends on both the prior and future 
adjoining states. This can also accommodate 
time-to-event interval-censored data [6, 10]. The 
stages of the semi-Markov process were determined 
by the level of VL. Here, we consider four different 
distinct customed states i.e.; VL < 200 copies/mL, 200 
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copies/mL < VL < 1,000 copies/mL, VL > 1,000 
copies/mL and an absorbing state which is naturally 
death. The Figure 1 below shows the four different 
states that were used. To define the model, an arrow 
will be attached to the diagram to show the probability 
of the transition and the waiting time it takes for a 
successful transition to occur.  

We assume the waiting time at each phase matches 
the probability distribution that relies on both the 
current state and the entry state. The main cause of 
premature deaths in the limited resource setting 
remains to be HIV/AIDs despite the many HIV 
management kinds of research done [1]. According to 
UNAIDS report [11], Kenya has significantly improved 
in responding to this deadly disease to a prevalence 
below 5%. This achievement has led to dwindling 
financial aid in support of HIV programs from global 
donors, causing challenges in the sustainability of 
Kenya’s HIV response [4]. Health policymakers are 
now faced with the challenge of efficient resource 
allocation to take care of HIV prevention, care, and 
treatment service interventions. Furthermore, 
operational program development and refinement of 
work plans that effectively reduce the cost of running 
HIV programs remain a problem in the limited resource 
setting [12]. For all the reasons mentioned above and 
more, it is essential to analyze and understand the cost 
and cost-effectiveness of keeping patients within the 
WHO staging in the resource-limited setting.  

The main objective of this study is to use 
semi-Markov models in determining the incremental 
cost-effectiveness of keeping patients on World Health 
Organization (WHO)- state one versus higher staging 
on a DCM in a resource-limited setting. We also 
assessed the average total cost per state and the 
cumulative cost of each health state by combining the 
semi-Markov modeling process and the regression 
approach. 

In the next section (section 2), we focus on the 
methodology and revisit the modeling framework 
including the distribution of sojourn time, modeling both 

the average cost and the cumulative costs in each 
state, and assessing the incremental 
cost-effectiveness using ICER. In section 3 we cover 
the overall results. Finally, in section 4, we discuss the 
overall results and provide the study’s concluding 
remarks. 

2. METHODOLOGY 

2.1. The Modeling Framework 

Suppose S is a discrete stage space and each 
patient is observed for some time t for h successive 
stages. That is X = {X0, X1, · · ·, Xh}, where the initial 
and final stages are denoted by X0 and Xh respectively. 
Assuming X ∈ S and the number of possible stages to 
be finite, the process X = Xh; h ≥ 0 is considered to be a 
semi-Markov chain with h transitions [13]. In this case, 
the entry times sequence Tn for each stage Xh after h 
transitions is described as s sequence T = (T0, T1, · · ·, 
Th), where the initial point T0=0. Consider the transition 
probabilities from a given defined state to another i.e., 
(i → j), to be represented as Pij = P (Xh+1 = j|Xh = i) and 
is homogeneous since Pij doesn’t depend on t. The 
conditional distribution function Gij(t) = P (Th+1 −Th ≤ t| 
Xh+1 = j, Xh =i) defines the sojourn time between two 
stage (i, j). 

2.2. Distribution of Sojourn Times 

The transition probability of a given patient on HIV 
care from one state to another relies on how much time 
he/she spends in that state [14]. Supposing the sojourn 
time for a patient is random and follows a given 
distribution Gij(t), the following waiting time distributions 
will be considered in modeling and accessing the best 
distribution that describes the HIV/AIDs patients’ 
progression.  

Exponential Distribution: The hazard function 
under exponential distribution is constant for a 
Markovian case [15]. The distribution is defined by Gij(t) 
= 1 − exp(λij), t ≥ 0 where, !!" =

!
!!"
  and σij > 0. λij is the 

expected time that a patient stays in a specific stage Xh 
before transiting to stage j from stage i. The hazard 
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function of the exponential distribution is given by 
!!" =

!
!!"

, ∀X ≥ 0 and σij j > 0. 

Weibull Distribution: The Weibull distribution 
sojourn time is given by; Gij(t) = 1 − exp(−λij tVij ), t ≥ 0. 
Weibull distribution generalizes the exponential 
distribution and is highly used in modeling clinical 
progression because of its flexibility in nature [13, 15]. 
A Weibull distribution with two parameters {σij, Vij} to 
take care of various shapes for monotone hazards. The 
Weibull distribution hazard function is defined as 

!!" ! = !!"   
1
!!"

!!"

!!!"!!,! ≥ 0. 

2.3. Average and Cumulative Costs at each State 

We used a regression approach according to Liu 
[16], to model the average cost in each state. The 
average time consumed in each state is distributed into 
kh intervals and a regression model was constructed for 
each interval. Assuming Y = (0, τ ] is the time of interest. 
Y is divided into Kh intervals such that yk = (ah, ah]. The 
regression equation takes the form;  

!!,!! =   !! + !!!! + !!!! +   ⋯   +   !!!!      (2.3) 

Where Ch is the cost of patient I that was observed, 
zi are covariates in state h in interval k and αi are the 
corresponding co-efficiencies of the covariates. 
Equation 2.3 can be reduced to;  

!!,!! =αhZi; i = 1, 2, · · · , N ; h = 1, · · · , H  (2.4)  

where;  

αh refers to a vector of unknown regression parameters 
within the interval k in the state,  

Zi is a vector of covariates, and i and h are several 
patients and health stages respectively. If a patient i 
within the interval k has no cost record, then Ch = 0. 
Taking the expectation of observed cost above (2.4); 
! !!,!!    =   ! !!!! , 

!!,!! = !!!! 

where αˆh is the estimator of αh and is defined as; 

αˆh = (ZZJ)−1ZJCh 

where Z is an p × N matrix of covariates z1, · · ·, zN and 
Ch is the N × 1 vector of the given costs Ch , · · · , Ch 
that have been observed. Using Uh to denote the total 
time spent by a patient i in state h, the cumulated cost 
function at time t of patient i is described as; 

!!! ! = !!,!! +
∀!(!!

!!!!
!;  !!

!!!!!!!!
! )

!!!!,!! !!! − !!!

!!!!! − !!!
 

The cumulative cost functions obtained are 
equivalent to the number of the heath stage (H) 
present.  

To validate the best Markov model that describes 
the real data set we used the Akaike information 
criterion (AIC) for comparison between the 
above-discussed sojourn time distributions. According 
to Porte [17], the lower the AIC value the better the 
model. 

2.4. Evaluating the Incremental Cost-Effectiveness 
using ICER 

In this context, we employ cost-effectiveness 
analysis to evaluate the costs and related health 
outcomes [18, 19]. Results are expected to provide 
important critical information ranging from programs, 
policies, and clinical, epidemiologic, and economic 
benchmarks to strengthen health-related interventions. 
In assessing the incremental cost of patients on DCM 
and those who were not on DCM, we used the 
incremental cost-effectiveness ratio [20]. 
Mathematically it is defined as; 

!"#$ =
!!"#$%&$"#!'"   − !!"#$%"&
!!"#$%&$"#!'"   − !!"#$%"&

 

where !  and !  represent the average costs and 
average time levels, respectively. 

3. RESULTS 

3.1. Data Definition and Description 

Routine follow-up of PLHIV remains a pillar for 
nibble HIV service delivery programs. To 
retrospectively evaluate modalities, results, and costs 
of HIV/AIDS patient follow-up, we studied clinical data 
from the record of 738 patients obtained from 9 
facilities namely Kiambu District Hospital, Ruiru 
Sub-District Hospital, Karuri Sub-District Hospital, 
Thika Level V Hospital, Kiandutu Health center, 
Wangige Sub District Hospital, Gatundu District 
Hospital, Igegania Sub-District Hospital, and Limuru 
Health Center. The available characteristics for each 
patient were Patient Id, and State.i, State.j time, Viral 
load, DCM (1=Patients on DCM, 2=Patients not on 
DCM), Age, Gender (1-male, 2- female), and facility 
location. Table 1 describes the percentage of patients 
in the study together with their respective 
characteristics. The mean costs for state I, State II and 
State III were about $765, $829 and $1395 
respectively. 

3.2. Semi-Markov Setting 

We consider a discrete stochastic process {Xt:t ϵT} 
that can move to states {1, 2, 3, 4}. The process 
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typically begins in say state 1 and remains there for a 
random duration with mean µ1, then it goes to another 
state i.e., 2 where it remains for a random duration with 
mean µ2, then back to any of the states, and so on. The 
process can eventually end in state 4 (Absorption 
state). We consider a complete cycle whenever the 
process returns to say state 1. This is typically an 
extension of Markov processes where we remove the 
restriction of Markovian property and introduce the 
sojourn times of states.  

Formally, we let the process {Xt:t ϵT} be a 
homogeneous Markov chain {Xn}n≥0} on states {1, 2…, 
n} where p ij is the probability of ith (i ≥ 1) jump from 
state i to state j for i ≠ j . That is, 

!!" = !(!! = !|!!!! = !). 

A state can either be absorbing or transient i.e. 

!!"
!!!

= 1  !"#$%"&'(  !"#"$
0  !"#$%&'($!  !"#"$

 

The process {Xt:t ϵT} is called a semi-Markov 
process on the condition that, if the process enters 
state i, the next state is j with probability pij and given 
that the next state that will be entered is j, the duration 
until the transition from i to j is a random variable with 
cumulative distribution function Ωij (t): 

Ω!"(!) = !(!! ≤ !|!!!! = !,!! = !), ! ≥ 0, ! ≥ 0 , 

where τ n = T n − Tn−1,  

The process {Xt:t ϵT} therefore does not posses the 
Markovian property. 

The objective of this study is to study the transition 
of patients in four different states as defined by their VL. 
Three states are defined (Figure 2): ‘stage 1, ‘stage 2’, 
and ‘stage 3. Note that the stage ‘dead’ is absorbing 
because the probability to move out of this stage is null. 
Table 2 describes the frequency of the transitions. To 
get the most promising model, the data set was 
subjected to two distributions (Weibull and Exponential) 
and their AIC examined. 

3.3. Cost 

In this section, we assessed the mean costs. All 
treatment costs available for each patient were 
included. The mean cost per patient is assessed 
according to the method previously presented. A 
regression model is thus performed in this study. This 
helped in dropping all non-informative covariates and 
selecting those covariates that seemed to affect the 
mean cost. This was done by forwarding model 
selection. For convenience, the selected covariates 
were the same in each interval. To choose these 
covariates we plotted the cumulated costs according to 
the characteristics of patients observed in the database 
(Figure 2) Costs seem to be different for each level of 
covariate ‘TB-co-infection’, ‘Follow-up (DCM)’, and 
‘stage’ and very close for sex and location facility.  

Table 1: Distribution of Patients according to their Characteristics 

 DCM follow up (Percent)-1 No follow-up (percent)-2 

Sex 

1 240 (0.52) 253 (0.52) 

2 226 (0.48) 232 (0.48) 

Tb-coinfection 

1 66 (0.13) 33 (0.07) 

2 452 (0.87) 472 (0.93) 

Facility location 

1 20 (0.03) 26 (0.04) 

2 20 (0.03) 27 (0.04) 

3 36 (0.05) 25 (0.04) 

4 137 (0.2) 11 (0.02) 

5 189 (0.27) 73 (0.11) 

6 146 (0.21) 140 (0.21) 

7 73 (0.11) 213 (0.32) 

8 42 (0.06) 108 (0.16) 

9 32 (0.05) 37 (0.06) 

N (percent) 465 (0.49) 485(0.51) 
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Table 2: Frequency of Transitions and Summaries of the Sojourn Times 

Transition n per cent 
Sojourn times 

Min Max Mean Median Std. dev 

Transition 1 → censoring* 303 16.38 0.10 7.64 4.37 5.10 2.60 

Transition 1 → 2 190 10.27 0.10 5.98 0.83 0.39 5.98 

Transition 1 → 3 87 4.70 0.10 3.03 0.72 0.34 0.80 

Transition 2 → 1 223 12.05 0.10 4.90 0.54 0.30 0.71 

Transition 2 → 3 142 7.68 0.12 4.39 0.82 0.46 0.89 

Transition 2 → censoring* 232 12.54 0.00 7.64 3.92 3.41 2.63 

Transition 3 → 1 230 12.43 0.07 1.93 0.34 0.25 0.28 

Transition 3 → 2 240 12.97 0.10 5.28 0.67 0.32 0.91 

Transition 3 → censoring* 203 10.97 0.07 7.64 3.72 3.09 2.10 

Total 1850 100      

 

Table 3: Estimates of Semi-Markov Parameters for Exponential and Weibull Distributions and the Significant Effects 
from the Set of Three Covariates 

Model Transition Distribution DCM sd Age sd.1 Gender sd.2 pij 

Weibull 1–>2 Weibull 24.80 0.01 -1.06 0.02 0.14 0.16 0.59 

Weibull 1–>3 Weibull 9.59 0.02 -0.84 0.01 0.14 0.04 0.41 

Weibull 2–>1 Weibull -0.92 0.01 -1.23 0.06 0.09 0.13 0.66 

Weibull 2–>3 Weibull 10.20 0.02 -0.88 0.01 -0.07 0.02 0.34 

Weibull 3–>1 Weibull 78.10 0.03 -4.84 0.00 0.09 0.13 0.37 

Weibull 3–>2 Weibull 13.00 0.01 -1.15 0.01 -0.09 0.13 0.63 

Exponential 1–>2 Exp 6.21 0.02 -0.35 0.01 0.05 0.13 0.62 

Exponential 1–>3 Exp 4.53 0.02 -0.45 0.02 -0.15 0.21 0.38 

Exponential 2–>1 Exp -1.80 0.01 -0.17 0.01 0.48 0.11 0.65 

Exponential 2–>3 Exp 3.60 0.04 -0.34 0.02 0.00 0.15 0.35 

Exponential 3–>1 Exp 13.40 0.00 -0.82 0.01 0.06 0.13 0.37 

Exponential 3–>2 Exp 4.77 0.02 -0.48 0.01 -0.00 0.11 0.63 

 

Table 4: Measure of the Best Model 

Model AIC Complexity 

Weibull 717.44 33 

Exponential 2395.17 27 

 

Results show, there is no significant difference 
regarding the location cost and sex. Further, apart from 
the graphical analysis, we performed a regression 
model to estimate the total cost of the three stages for 
all patients. We used the least-square technique to 
estimate the regression parameters (αˆC). Results are 
shown in the Table 5 below. 

A plot of the cumulative functions obtained with the 
αˆk is shown in Figure 3 below. The DCM follow-up only 

applied for patients in stage 1 as stages 2 and 3 were 
considered critical hence close medical care. Notably, 
from the graph, the incremental cumulative cost for 
patients in stage 1 (in DCM) was significantly lower 
compared to the other stages (not in DCM). Though the 
differences in cumulative cost for patients was 
significant, the cumulative cost for the three stages had 
an increasing trend over time. Using the ICER equation 
presented in the methodology the incremental cost was 
about $483.83. 

4. DISCUSSIONS 

The main objective of the study was to use 
semi-Markov models in determining the incremental 
cost-effectiveness of keeping patients on WHO- state 
one  versus  higher  staging  while  incorporating  
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Figure 2: Cumulative costs of patients staying alive at time t according to their co-variates. 

 

Table 5: Results of the Regression Model on Total Costs for all Patients within the Three Stages 

 Cumulative total cost 

�(Pr(> |t|)) Covariates 

stage 1 stage 2 stage 3 

Intercept -633.895 (0.00) -662.779 (0.00) -918.843 (0.00) 

DCM -147.369 (0.00) -92.315 (0.00) -93.2921 (0.00) 

Age 66.0635 (0.00) 64.4413 (0.00) 81.3969 (0.00) 

Gender 4.20326 (0.00) 6.4529 (0.24) 10.6762 (0.15) 

 

 
Figure 3: Cumulative costs function or DCM according to patient profiles. 

Differentiated Care Model within resource-limited 
setting. We also analyzed the mean total cost per state 
and the cumulative cost of each health state by 
combining the semi-Markov modeling process and the 
regression model. This is an important attempt 
designed to enable policymakers to efficiently allocate 
resources among a spectrum of HIV services. In theory, 
the study demonstrates the use of the semi-Markov 

approach to assessing HIV/AIDS state 
cost-effectiveness while taking to account inter-state 
comparison.  

Understanding the cost-effectiveness of the 
HIV/AIDS program remains critical due to the decrease 
in global HIV prevalence level which has eventually 
resulted in diminished donor funding. The semi-Markov 
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process considered here provides for flexible modeling 
of hazard functions [21-23]. We used both exponential 
and Weibull distributions to fit the data and compared it 
with Akaike Information Criteria (AIC) [28]. Weibull 
distributions performed better compared to the 
Exponential distribution. We consequently used 
Weibull to model the sojourn times. More so, we were 
able to successfully link the costs and states in this 
setting. We used a combination of semi-Markov and 
regression models to analyze the average cost 
depending on the state. On average the mean cost of 
managing individuals in state I, State II, and State III 
are $765, $829 and $1395 respectively. From the 
cumulative cost plots, the incremental cost of stage one 
is relatively lower compared to state II and State III. 
This difference is attributed to the differentiated care 
model (DCM) strategy during follow-up. In this study, 
we have shown that it is relatively cheap to keep a 
patient in the state I compared to II and III. 

The cost-effectiveness analysis of DCM shows that 
putting patients on DCM is not only cheap but also 
more effective compared to treating patients, not on 
DCM. Results from this study indicate that the average 
cost for the interventions group (individuals not in 
DCM) was $213.3806 with an increase in time of 
0.4410. Based on this, the ICER was $483.8268 for 
any additional time. Notably from Table 5, the patients’ 
cumulative cost within any stage is influenced by, age 
and a follow-up strategy. Gender was found not to be 
statistically significant in influencing the total cost within 
a stage. Literature shows, health care spending is an 
increasingly important economic and political issue [24]. 
The purpose of conducting incremental multi-stage 
cost research is to allow clinicians and policymakers to 
make more rational decisions regarding clinical care 
and resource allocation, especially in resource-limited 
areas. Incremental multi-stage cost analysis would 
significantly contribute to assessing the value of new 
medical strategies, by simultaneously examining 
incremental health benefits in light of incremental 
costs. 

Lin et al. [25] pioneered a non-parametric method 
for estimating medical costs from incomplete follow-up 
data. The main principle of this methodology was to 
divide the entire period of interest into several intervals 
and then estimate the average total cost by the sum of 
the Kaplan-Meier estimator for the probability of dying 
in each time interval multiplied by the sample mean of 
the total costs from those who are observed to die in 
that interval. This method is limited due to its 
assumption of independent censoring. 

Comparison of the performance of several broad 
approaches of modeling cost analysis i.e. typical linear 
models, a linear model with log-transformed cost, 

generalized linear models (GLMs), median regression, 
and proportional hazards models [26] reveal the 
demand to get an appropriate model has increased. 
Both survival and cost data are commonly censored; 
therefore, methods presented by Austin et al [26] were 
limited in that they could not account for censored data. 
This is, however, mitigated in our study. 

Willan et al. [20] presented two different models i.e., 
for cost and survival data which utilizes the inverse 
probability of censoring weighted (IPCW) method to 
account for censored data and also address the 
covariance structure between survival and cost. The 
weak point of the piece of work presented by Willan et 
al. [20], however, is that regression assumption are not 
well suited for time-to-event data. 

Recently, Liu et al. [16] proposed a shared random 
effects model for monthly medical costs and survival 
time. This model would account for the correlation 
between survival time and monthly medical costs. 

The above-reviewed methods do not account for 
the whole clinical evolution of the disease in survival 
analysis. The literature presents several methods 
which would work well in studying the whole clinical 
evolution of the disease in survival analysis. Markov 
models are particularly useful when a decision 
probably involves a risk that is ongoing over time [9]. 
The decision trees are best used in performing 
cost-effective analysis [9]. They presented discrete 
time Markov Models for medical decision-making. The 
model eases the ability to describe all the patient’s 
trajectories, which are applied with fixed transition rates 
computed from previous information. 

Gardiner et al. [23, 27] presented a stochastic 
model for statistical inference in cost-effectiveness 
analysis. Multi-state models in this case fitted to data 
together with cost-effective analyses. A multi-state 
model (Markov model) and a regression method for 
estimating changes in health status and costs also fit 
well and are similar to our findings. 

In most countries, policymakers and a variety of 
stakeholders use cost-effectiveness analyses in an 
attempt to understand effective interventions that 
provide the best value for money [19]. More so, also 
provide important critical information that can be of 
great value. Cost data are mostly skewed, with 
long-tailed distribution and so the assumption of 
normality for the cost distributions in the cost model 
presented, might not always apply. Additionally, it is not 
verifiable that the different intervals were independent. 
This approach can also be extended to scenarios 
where interventions that could affect cost were part of 
the study. Lastly, additional distributions like gamma 
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and log-normal could be considered in choosing the 
best sojourn time distribution. 
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