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Abstract: Purpose: In this study, we compare the estimation methods of interval-censored data using both simulated 
and real data. Many past studies have used fixed sample sizes in their simulation studies. We performed the best 
possible simulation study.  

Method: The methods include Finkelstein’s method with Piecewise and Spline and imputation methods (i.e., Efron’s 
method in the Cox model).  

Results: If the interval-censored data do not overlap, the same estimation results are obtained regardless of the 
assignment point for the estimation of the Cox model. The overlapping data also did not significantly affect the accuracy 
of the estimation. On the other hand, Finkelstein’s method showed differences in estimation depending on the two 
estimation methods of the baseline survival function. Although it was not possible to determine which method had better 
power, the Spline method had a smaller absolute error than the Finkelstein method. A comparison of Cox’s and 
Finkelstein’s methods showed that Finkelstein’s method was superior in terms of power.  

Conclusion: Interval-censored data is a form of data that can be found in a variety of fields. In this study, we compared 
estimation methods for interval-censored data, and the usefulness of Finkelstein’s method can be seen from simulation 
studies. 

Keywords: Breslow’s method, Cox model, Efron’s method, Finkelstein’s method, Imputation method. 

INTRODUCTION 

Survival time analysis evaluates the time that has 
elapsed from a given starting point until the occurrence 
of an event of interest. Survival time data typically 
contain censored information that cannot be observed 
at precise event times. Notably, there are several types 
of censored data. Right-censoring is a censoring type 
in which the event of interest is known to occur after a 
certain point in time. An example is the case in which a 
study subject drops out of a trial partway through. The 
focus of this study is interval-based censored data, 
which describe cases in which the event of interest falls 
within a known interval. Hence, there are at least two 
observed time points: one at which the event has not 
yet occurred and another after its occurrence. 

Interval-censored data are encountered in various 
fields, such as medicine, industry, and economics, and 
they are commonly utilized in tests to determine the 
presence of events. For example, if we consider a 
patient who has undergone surgery to remove a 
cancerous tumor and is regularly monitored for signs of 
recurrence, we note that such a recurrence will not be 
immediately observable. Diagnostic methods are 
employed to detect indicating features. Typically, the 
monitoring interval is directly related to how often the 
diagnostic methods are conducted.  Analysts  usually  
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recommend more frequent testing to obtain a more 
accurate estimate of the event time. However, 
increasing the frequency of testing can impose an 
intolerable burden on the patient alongside higher 
testing costs. Therefore, when determining an optimal 
sampling frequency, factors such as cost, patient 
well-being, and prior findings should be considered. 
With clinical trial protocols, interval-censored data are 
often treated as time-to-event data. For example, if a 
recurrence is observed in the 10th month after nine 
months of no recurrence indicators, the data that fall 
between the 9th and 10th diagnostic points provide 
interval-censored data. If recurrence indicators are 
discovered during the 10th examination, the recurrence 
event is often assumed to have occurred at the 10th 
point. Such data transformations can have a significant 
impact on the interpretation of estimates and results. 

Different methods for analyzing interval-censored 
data have been widely studied, and an interesting issue 
is found with survival curves. [1, 2] proposed the 
Turnbull survival curve estimation method for 
interval-censored data. It is an extension of the 
Kaplan–Meier method [3]. Subsequently, [4] compared 
the behavior of the Turnbull method to the Kaplan–
Meier method with imputations for estimating survival 
functions for interval-censored data. Another 
captivating aspect of survival time analysis lies in 
understanding the extent to which the covariates 
observed alongside survival time curves influence 
survival outcomes. [5] proposed a regression 
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coefficient inferencing method to represent the hazard 
function for covariates as a regression model. In this 
method, a partial likelihood method is proposed, which 
can obtain regression coefficients without obtaining a 
baseline survival function. Furthermore, [6] proposed 
an extension to the proportional hazard model to 
handle interval-censored data. [7] compared 
Finkelstein’s method with the Cox model using 
imputation methods (e.g., Breslow’s method [8] and 
Efron’s method [9]). Simulated a medium-sized clinical 
trial in which two groups were formed from 320 patients 
who were assessed at equal and unequal testing 
intervals. The simulation setting of that study, like ours, 
assumes three hazard function shapes and examines 
different estimation methods and interval accruals for 
each distribution. The study found that, when the two 
groups were tested at equal intervals, the estimation 
accuracies were lower as the intervals became longer. 
Notably, the estimation accuracy of Finkelstein’s 
method did not rapidly deteriorate, even when the 
interval width was large. Furthermore, in particular, the 
right-imputation Cox model and Finkelstein’s method 
produced large differences in the estimation of 
regression coefficients when the test intervals were 
unequal. In other words, Finkelstein’s method had 
smaller errors. The study found that Finkelstein's 
method had better accuracy with respect to estimation 
than the substituted method. The applicability of the 
above findings is limited because real-world trials can 
involve insufficiently large sample sizes. Noting that 
there has not been a sufficient comparison of methods 
under smaller sample sizes, it is not certain that 
Finkelstein’s method will always be the most effective 
approach. Our study changed the way the intervals 
were generated to be more realistic and simulated a 
smaller sample size than in the previous study. 

The purpose of this study is to compare the Cox 
model with Finkelstein’s method for interval-censored 
data with two groups. When a point in time is the 
survival time for interval-censored data, multiple 
interval-censored data may be converted to the same 
survival time, called the data. Several methods have 
been proposed for estimating the existence of tie-data 
in the Cox model, and we will discuss the method of 
Breslow and Efron in this article. In [10], Efron’s 
method was confirmed to provide better estimates than 
Breslow’s method for tie-data with no censoring. Based 
on the simulations conducted by Sun and Chen as well 
as our own simulations, it was also found that, for 
tie-event data, Efron’s method provides better 
estimations than Breslow’s method. Therefore, we 
adopt Efron’s method for imputation. 

The remainder of this paper is structured as follows. 
The current section describes survival time, censoring, 
and the analysis methods for various censored data 

types. In Section 2, survival-time data statistical 
methods, including those used for interval-censored 
data, are thoroughly described. In Section 3, the 
different interval-censored data analysis methods are 
compared using simulations. In Section 4, real 
interval-censored data are analyzed. In Section 5, the 
results are presented and interpreted. 

METHODS 

Cox’s Proportional Hazard Model 

Suppose the continuous random variable 
represents failure time, denoted by !. Let ! !  be the 
survival function, 

! ! = P ! > ! ,  ! ≥ 0, 

and let ℎ !  be the hazard function, 

ℎ ! = lim
!"→!

P ! < ! < ! + !"|! < !
!"

,  ! ≥ 0. 

A primary objective of survival analysis is to 
estimate the true survival function. However, in some 
cases, we are interested in the effects of covariates, 
such as age, treatment, and gender. In this study, we 
assume that censoring time and survival time are 
mutually independent, and censored data have no 
information about the survival time. This assumption is 
reasonable because the observed data periodically 
include test points, and events may occur outside of 
these times. A common method for analyzing survival 
time data with covariates is Cox’s proportional model 
[5]. In this model, we are given the following hazard 
function: 

ℎ !|!! = ℎ! ! exp !!!! , 

where ℎ! !  denotes the baseline hazard function, 
and !! = !!,⋯ ,!!  represents the regression 
coefficient vector of the covariates vector, !!! =
!!!,⋯ , !!" . ℎ! !  is a non-negative continuous 

function and can represent various types of survival 
functions. Regression covariates and the coefficient 
vector contain information about the size of the effect of 
survival time. However, we cannot directly apply 
interval-censored data to Cox’s model. Hence, we 
transform the interval-censored data into event data, 
assuming that their event times can be observed. Let 
!! , !! denote the time for which the subject, !, does not 
observe an event at the latest testing time, but 
observes the event of interest at the newest testing 
time. For interval-censored data, we transform 
!! ∈ !! , !! , !! < ∞  into !! = !!  using the 
right-imputation method. Let a subject receiving the 
right-censoring be denoted as !! = ∞. Then, we can 
apply the interval-censored data to Cox’s model. 
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[8] proposed the ! estimation, which we use in the 
existing tie data case with the Cox model. For subject !, 
let ! ! ,⋯ , ! !  be the assumed event-time sorted in 
the ascending order of the subject’s observed time for 
interval-censored data, !! , !! ,  excluding 
right-censoring. Let !! ! = 1,⋯ ,!  be the number of 
events in ! ! , ! ! !  be the risk set at ! ! , and ! !  
be the sum of covariates, ! ! , for the events at ! ! . 
The partial likelihood proposed by Breslow is 
expressed as 

!! ! =
exp !!! !

exp!∈! ! ! !!!!
!!

!

!!!

. 

To configure the confidence interval for the hazard 
ratio, we use !,  which maximizes !!  and 
asymptotically follows a normal distribution.  

[9] proposed a modification of Breslow’s likelihood 
as follows. Let ! ! !  be the set of subjects who 
observed their event at ! ! . Then, the partial likelihood 
proposed by Efron is expressed as 

!! ! =
exp !!! !

!!!∈! ! ! −! − 1
!!

!!!∈! ! !
!!
!!!

!

!!!

. 

where !! = exp !!!! . Efron’s method more accurately 
represents the likelihood than Breslow’s when there 
are observations at the same event time. We can 
obtain the partial maximum likelihood estimation (MLE) 
using an iterative method, such as the Newton–
Raphson method. When !! = 1, Breslow’s and Efron’s 
likelihoods are matched. 

Finkelstein’s Method 

[6] proposed a method for interval-censored data in 
which the likelihood of interval-censored data !! , !!  is 
expressed as 

P !! < !! < !! = ! !! − ! !! . 

Hence, we can derive the likelihood of 
interval-censored data as 

! = ! !! − ! !!

!

!!!

. 

Let { !! , !! , !! , ! = 1,⋯ , !} be the survival data with 
covariates, and let ! = {0, !!, !!,⋯ , !!, !!,∞}  be the 
set of possible times and !! = 0 < !! < ⋯ < !! = ∞ 
be the times ascending in the order of !. Moreover, 
we rewrite !! as 

!! = !!"

!

!!!

! !! − ! !! ,

!!" = 1, !!!!,!! ⊂ !! , !!
0,otherwise

,

 

where ! = 1,⋯ , !. As with the Cox model, the hazard 
function is assumed in this case. Hence, the survival 
function in this model is expressed as 

! ! = exp −exp !!!! + log{−log!! ! } . 

The likelihood of Finkelstein’s method is expressed 
as 

! = !!"

!

!!!

!

!!!

exp −exp{!!!! + !!!!}

−exp −exp{!!!! + !!}

 

where !! = log −log!! !!  represents the 
transformed baseline survival function that determines 
the function’s shape. 

[11] proposed a method for modeling the baseline 
survival function using cubic spline functions, 
expressed as follows: 

log!! ! = !! + !!! + !!!! ! +⋯+ !!!!!! , 

where ! = log! and !! are the basis functions, which 
are 

!! = ! − !! !
! − !! ! − !!"# !

! − 1 − !! ! − !!"# !
! , 

where 

! − ! ! = max 0, ! − ! ,  !! =
!!"# − !!
!!"# − !!"#

. 

Here, !! is chosen between !!"# and !!"#. 

SIMULATION 

Setting 

The purpose of this study was to compare 
Finkelstein’s method with the Cox model with 
imputations for interval-censored data. In our 
simulation setup, we assumed that periodic inspections 
were conducted. As a concrete example, we supposed 
that blood tests were performed periodically with an 
event time being the time it takes for a certain attribute 
in the blood to reach a specific value. In this case, the 
event time is expected to be shorter in the treatment 
group than in the control group. 

The model of survival data is ! ! = !! ! !"# !" , 
where ! represents the control group, ! = 0, versus 
the treatment group, ! = 1, and the effect, ! = 0.4055, 



236  International Journal of Statistics in Medical Research, 2023, Vol. 12 Keita et al. 

exp 1 ⋅ 0.4055 = 1.5. The baseline survival function, 
!! , is assumed to be a Weibull hazard distribution, 
which either rises, falls, or remains constant. Many 
types of survival functions are available to 
accommodate a variety of situations. In this study, we 
did not assume right-tailed censoring, and all data were 
interval censored in order to examine the effects of 
changes to sample size on different survival functions. 
The method of generating interval-censored data, 
!! , !! , for subject ! is shown below. 

1. Generate !! from survival function ! 

2. For randomized test-points !!" , ! = 1,2,⋯ , if 
!!" < !! < !!"!!, then the interval-censored data 
of subject ! are !! , !! = !!" , !!"!! , 

where !!"  represents the ! th inspection date for 
subject !. With imputation methods, we consider the 
Cox model and event-time of subject !  as !!  and 
convert the interval-censored data !! , !!  into 
!! = !! ,

!!!!!
!
, !! , because the method is generally 

adopted when the survival data comprise exact values 
or are right-censored. Simulations were performed in 
two settings for test points !!". The settings for each 
simulation are given below. 

1. !!" = 0,1,2,⋯ , and all subjects tested at the 
same point 

2. !!" = 0,12 + !!, 24 + !!,⋯, and all subjects had a 
variation !! ∼  Discrete Uniform(-3,3) at each 
test-point 

We present the motivation for each simulation next. 
In Sim1, the data differences between methods were 
small; thus, the estimation of each method was suitable 
for examination. Sim2 was capable of comparing the 
imputation and likelihood methods because the data 

differed significantly. The baseline survival functions 
assumed for the simulations were (a) !"# 1,100 , (b) 
!"# 3,112 , and (c) !"# 0.7,79 , where !"# !;!,! =
!
!

!
!

!!!
exp − !

!

!
. Consequently, we can confirm 

the behavior of the estimator by applying these 
comparisons when the hazard functions differ. The 
expectation of each unit time distribution was 
approximately 100. 

We also set the simulation times to 10,000 and 
considered minimum-to-maximum sample sizes ! for 
each group. We assessed the property of each method 
based on the absolute error between estimated and 
true regression coefficients, and the power for survival 
function equivalence testing had a significance level of 
! = 0.05 

RESULTS 

We list the results in Tables 1-2. The inspected 
intervals were different between Sim1 and Sim2 with 
shorter intervals in Sim1 and longer intervals in Sim2. 
Additionally, Sim2 was set up to be more realistic by 
allowing for variations at each inspection point. The 
Palm reflects the baseline survival function. In each 
table, the results of the five methods are listed by 
sample size. The mean absolute error and power are 
given for each result. 

The results of the Cox model in Table 1 are 
discussed below. The results were nearly the same 
regardless of setting. This indicates that when the 
intervals are small or do not overlap, the imputation 
time point does not affect the estimation when using 
the Cox model. In addition, the Cox model uses the 
order of survival times to estimate the intervals; thus, 
even if the intervals are large and do not overlap, the 
estimation is not affected. In summary, for 

Table 1: Sim1. Result [1] 

Palm ! 
Left Mid Right Finkelstein PW Finkelstein Spline 

Er. P. Er. P. Er. P. Er. P. Er. P. 

! = 1   
! = 100 

10 0.416 0.132 0.416 0.132 0.416 0.132 0.462 0.179 0.424 0.165 

100 0.118 0.807 0.118 0.807 0.118 0.807 0.118 0.816 0.118 0.815 

1000 0.036 1 0.036 1 0.036 1 0.036 1 0.036 1 

10000 0.012 1 0.012 1 0.012 1 0.012 1 0.012 1 

! = 3   
! = 112 

10 0.417 0.130 0.417 0.130 0.417 0.130 0.444 0.164 0.424 0.162 

100 0.116 0.810 0.116 0.810 0.116 0.810 0.113 0.795 0.116 0.816 

1000 0.036 1 0.036 1 0.036 1 0.038 1 0.036 1 

10000 0.012 1 0.012 1 0.012 1 0.022 1 0.012 1 

! = 0.7 
! = 79   

10 0.417 0.129 0.417 0.129 0.417 0.129 0.460 0.176 0.433 0.168 

100 0.116 0.810 0.116 0.810 0.116 0.810 0.122 0.837 0.116 0.816 

1000 0.036 1 0.036 1 0.036 1 0.050 1 0.036 1 

10000 0.012 1 0.012 1 0.012 1 0.045 1 0.012 1 
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non-overlapping interval data, no matter which point in 
the interval is assumed to represent the survival time, 
the results are unaffected. In all results, the power was 
one when the sample size exceeded 1,000 because 
the odds ratio was set to 1.5. What this means is that if 
the sample size is more than 1000 patients in each 
group, the odds ratios indicate that the survival times 
differ almost exactly. We did not expect the power to 
increase to this level if the differences in effects 
between groups were smaller. 

For Finkelstein, there were some differences in 
settings compared with the baseline survival function 
and its estimation method in Sim1. First, comparing 
PW and Spline, PW had a larger absolute error. This is 
thought to be caused by the Spline being more flexible 
in estimating the baseline function than PW. In 
summary, PW assumes the baseline function to be a 
piecewise constant hazard function; thus, it cannot 
estimate the baseline function well. On the other hand, 
PW had a relatively larger power value. However, the 
results showed that the baseline survival function was 
unstable and varied greatly depending on the setting of 
the baseline survival function. The Spline model was 
more robust, as the power model was more consistent. 

Because Sim2 had longer intervals and more 
variation than Sim1, we expected to have a greater 
impact on the estimation. However, the results for the 
Cox model were not much worse than for Sim1, and 
the results were stable. The values are the same in two 
decimal places. The slightly lower detection power in 
Sim2 than in Sim1 may have been caused by 
overlapping variabilities of intervals. There is a 
discrepancy between the actual survival time data and 
the that represented by interval data. With the current 
interval generation, if the true survival time is between 

15 and 21, the endpoints are set to between 9 and 15 
and between 21 and 27. Therefore, even if the true 
survival time is 17, the converted interval varies from 
(15, 21) to (9, 27). Therefore, when comparing the 
magnitudes of the survival times at the ends of the 
intervals, they do not necessarily represent the true 
survival time in terms of magnitude. 

We next discuss Finkelstein’s method in relation to 
Sim2. One would expect that the larger the interval, the 
larger the absolute error of the estimated regression 
coefficient and the lower the power. This was indeed 
the case. However, the difference was small and 
acceptable. There were few areas in which there were 
large differences between PW and Spline, but the 
absolute error of PW in setting (c) dropped more slowly 
than for the other methods. This suggests that the PW 
method does not do a good job of fitting the baseline 
function, even when the sample size is large. In 
contrast, the absolute error for the Spline method was 
smaller. 

Real Data Analysis 

[12, 13] reported a comparison of treatments for 
patients with early-stage breast cancers. Each subject 
was divided into two groups: one comprised of patients 
subjected only to radiation therapy and the other 
having undergone both radiation and chemotherapy. 
Chemotherapy is used to prevent cancer recurrence; 
however, it can adversely affect normal cells. The 
researchers studied the deterioration of the skin or 
breast contraction capability of patients from the two 
groups, as listed in Table 3. The presence or absence 
of an event was determined by the commencement of 
breast contraction in patients who underwent periodical 
assessments every few months. Therefore, the 

Table 2: Sim2. Result 

Palm ! 
Left Mid Right Finkelstein PW Finkelstein Spline 

Er. P. Er. P. Er. P. Er. P. Er. P. 

! = 1   
! = 100 

10 0.416 0.134 0.416 0.133 0.416 0.133 0.452 0.168 0.436 0.172 

100 0.118 0.804 0.118 0.804 0.118 0.805 0.119 0.813 0.118 0.811 

1000 0.036 1 0.036 1 0.036 1 0.036 1 0.036 1 

10000 0.012 1 0.012 1 0.012 1 0.012 1 0.012 1 

! = 3   
! = 112 

10 0.419 0.136 0.420 0.134 0.421 0.134 0.447 0.162 0.425 0.162 

100 0.118 0.807 0.118 0.806 0.118 0.805 0.117 0.802 0.118 0.813 

1000 0.037 1 0.037 1 0.037 1 0.037 1 0.037 1 

10000 0.012 1 0.012 1 0.012 1 0.014 1 0.011 1 

! = 0.7 
! = 79   

10 0.417 0.130 0.419 0.129 0.418 0.129 0.452 0.166 0.438 0.167 

100 0.117 0.802 0.117 0.801 0.117 0.801 0.122 0.826 0.118 0.810 

1000 0.036 1 0.036 1 0.036 1 0.047 1 0.036 1 

10000 0.011 1 0.011 1 0.011 1 0.041 1 0.011 1 
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obtained data were interval-censored. The size of the 
“only radiation group” and “radiation and chemotherapy 
group” (right-censoring) was 46(25) and 48(13), 
respectively. 

Table 3: Data from 94 Patients 

only radiation 

(0,5),(0,7),(0,8),(4,11),(5,11),(5,12),(6,10) 

(7,14),(7,16),(11,15),(11,18),(17,25),(17,25) 

(19,26),(19,35) (25,37),(26,40),(27,34),(36,44) 

(36,48),(37,44),15+,17+,18+,22+,24+,24+ 

32+,33+,34+,36+,36+,37+,37+,37+,38+ 

40+,45+,46+,46+,46+,46+,46+,46+46+46+ 

radiation and chemotherapy 

(0,5),(0,22),(4,8),(4,9),(5,8),(8,12),(8,21) 

(10,17),(10,35),(11,13),(11,17),(11,20),(12,20) 

(13,39),(14,17),(14,19),(15,22),(16,20),(16,24) 

(16,24),(16,60),(17,23),(17,26),(17,27),(18,24) 

(18,25),(19,32),(22,32),(24,30),(24,31),(30,34) 

(30,36),(33,40),(35,39),(44,48),11+,11,+13+ 

13+,13+,21+,23+,31+,32+,34+,34+,35+,48+ 

 
Table 4 presents the analysis results obtained using 

each method. The hazard ratio was approximately 
2.2 − 2.5,  found by converting !  to exp ! . 
Consequently, the treatment combining radiation and 
chemotherapy adversely impacted the contraction of 
human skin. Furthermore, a change in imputation point 
results in a variation in the estimates, which again can 
be attributed to overlapping intervals. However, if the 
estimates differ widely due to changes in imputation 
points, we must optimize the sample size or compare 
the estimates with those of other analyses. 

DISCUSSION 

In this study, we compared different methods for 
analyzing interval-censored data. The motivation for 
this study was to evaluate the impact of analyzing 
interval-censored data as event data that occur at a 
certain point in an interval in a variety of situations. This 
evaluation is important because practical analyses 
typically ignore the effects of interval-censored data, 
which are treated as event data. We compared the 
performances of Finkelstein’s method with that of the 
Cox model with imputation methods for 

interval-censored data. For the Cox model, the 
interval-censored data had to be transformed into 
event data, which are assumed to represent the 
observed event time, because interval-censored data 
cannot be directly applied to the Cox model. In addition, 
we applied Efron’s method to the imputed data of 
interval-censored data in the simulations to counter the 
effects of tie data. Our statistical analysis software 
used Breslow’s method to process tie data in the Cox 
models. Therefore, we recommend Efron’s method 
considering its superior performance. 

In the simulation study, we assumed that each 
subject underwent a test at two types of regular 
intervals. Sim1 generated interval censoring such that 
the interval widths were small and there was no overlap, 
and the absolute error and power relative to the true 
regression coefficient were compared for each method. 
Cox’s method gave results that did not change with 
changing assignment points, but Finkelstein’s method 
was superior in terms of power. In Sim2, the interval 
width was increased to generate an interval termination 
with overlap, and the results were compared. Again, 
Cox’s method did not change significantly based on the 
assignment point, and Finkelstein’s method was 
superior in terms of power. Finkelstein’s method was 
found to be superior throughout the simulation. In terms 
of the estimation method of the reference survival 
function, PW and Spline were compared, and the 
Spline method was superior to PW in terms of absolute 
error reduction. 

In addition to simulations, real data were analyzed 
in this study. The results were similar, regardless of the 
method used. Furthermore, it is known that the 
confidence interval changes depending on the point of 
imputation in the Cox model. Although this result could 
not be confirmed in this case, the analysis results were 
expected to differ, depending on the imputation point 
when analyzing other data. In such cases, robust 
methods should be used instead of unstable methods. 
However, actual data may have multiple groups, 
multiple covariates, and overlapping intervals, which 
may not be regular. Moreover, the exhaustive analysis 
of such data to identify optimal methods is impractical. 
Nevertheless, we believe that the optimal method can 
be identified by modeling the mechanism by which 
interval-censored data occur in the real world and by 
repeatedly conducting simulations with virtual data that 
are like real data. 

Table 4: Hazard Ratio Estimation and 95%CI of Breast Cancer Study 

Left Efron Mid Efron Right Efron Finkelstein PW Finkelstein Spline 

HR 95%CI HR 95%CI HR 95%CI HR 95%CI HR 95%CI 

2.52 [1.44, 4.42] 2.47 [1.41, 4.33] 2.17 [1.24, 3.81] 2.50 [1.43, 4.38] 2.47 [1.40, 4.31] 
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In this study, we conducted a simulation study and 
real data analysis of interval censoring data. As a result, 
we were able to show that the likelihood-based method 
yields more accurate analysis results than the 
assignment method. While this in itself is meaningful, it 
does not fully represent the actual occurrence of 
section termination, and further simulation research 
and analysis method proposals are needed. 
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