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Abstract: Repeated measures analysis is a common analysis plan for clinical trials comparing change over time in
quantitative trait outcomes in treatment versus control. Mixed model for repeated measures (MMRM) assuming an
unstructured covariance of repeated measures is the default statistical analysis plan, with alternative covariance
structures specified in the event that the MMRM model with unstructured covariance does not converge. We here
describe a parsimonious covariance structure for repeated measures analysis that is specifically appropriate for
longitudinal repeated measures of chronic progressive conditions. This model has the parsimonious features of the
mixed effects model with random slopes and intercepts, but without restricting the repeated measure means to be linear
with time. We demonstrate with data from completed trials that this pattern of longitudinal trajectories spreading apart
over time is typical of Alzheimer's disease. We further demonstrate that alternative covariance structures typically
specified in statistical analysis plans using MMRM perform poorly for chronic progressive conditions, with the compound
symmetry model being anticonservative, and the autoregressive model being poorly powered. Finally, we derive power
calculation formulas for the chronic progressive repeated measures model that have the advantage of being independent
of the design of the pilot studies informing the power calculations. When data follow the pattern of a chronic progressive
condition. These power formulas are also appropriate for sizing clinical trials using MMRM analysis with unstructured

covariance of repeated measures.
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1. INTRODUCTION

A consistent feature of longitudinal studies of
normal aging [1], mild cognitive impairment [2], and
Alzheimer’s disease (AD) [3, 4] is that longitudinal
measures of cognition and function "fan out" over time.
This is typical of chronic progressive conditions, where
the rate of progression of symptoms is different for
each person, so that persons who progress more
quickly diverge from persons who progress more slowly
over time. A standard statistical analysis used by
clinical trialists to accommodate this pattern of
progression is mixed model for repeated measures
(MMRM) assuming an unstructured covariance matrix
[6]. As a measure of the importance of the MMRM
analysis plan, every pivotal phase 3 clinical trial of
monoclonal antibody therapy for the treatment of
Alzheimer’s disease that filed a statistical analysis plan
on clinicaltrials.gov (Table 1) listed MMRM as the
primary statistical analysis. Monoclonal antibody
therapy is the first treatment proven to affect the course
of Alzheimer’s disease and be approved by the FDA,
and MMRM was the the statistical analysis plan for
each of the clinical trials supporting three recently
approved treatments for early Alzheimer’s disease [6-
8]. A feature of MMRM is that the number of
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covariance parameters in the model increases
quadratically with the number of repeated measures,
and MMRM models may fail to converge. For this
reason, regulatory trial statistical analysis plans include
contingency analysis plans. Typically, MMRM analyses
assume parsimonious compound symmetric (CS) or
first order autoregression (AR1) covariance structures
for the contingency analysis plan (Table 1).

In this paper, we demonstrate that CS and AR1
models are not appropriate for chronic progressive
data. In large-scale computer simulations of data
typical of Alzheimer’s disease, we found that both of
these covariance structures performed poorly for
chronic progressive data. The MMRM analysis with CS
covariance is prone to type | error, with a type | error
rate that greatly exceeds the nominal 5% type | error
rate used in hypothesis testing. Hence this commonly
applied covariance structure is not valid for data typical
of Alzheimer’s disease. In contrast, the MMRM analysis
with AR1 covariance structure can result in a dramatic
loss of statistical power, meaning that otherwise well-
powered trials may miss effective treatments if a
contingency analysis with AR1 is required. To address
these concerns, we derived an alternative covariance
structure that is more appropriate for chronic
progressive data typical of Alzheimer's disease
(Section 2). The model we propose is an MMRM model
with arbitrary fixed effect means, but with a pattern of
dispersion of longitudinal repeated measures more
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Table 1: Contingency Covariance Structures for Phase 3 Alzheimer’s Disease Monoclonal Antibody Trials Listed on
clinicaltrials.gov.

Trial SAP Contingency N Sponsor Intervention
NCT03289143 MMRM hetAR1 457 Genentech, Inc. Semorinemab
NCT02484547 MMRM hetAR1 1643 Biogen Aducanumab
NCT02670083 MMRM CS 813 Hoffmann-La Roche Crenezumab
NCT03518073 MMRM hetAR1, hetCS, CS 360 Eli Lilly and Company Zagotenemab
NCT01224106 MMRM not specified 799 Hoffmann-La Roche Gantenerumab

SAP = Statistical Analysis Plan; MMRM = Mixed Model for Repeated Measures; hetAR1 = heterogeneous AR1; CS = compound symmetric; hetCS = heterogeneous

Cs.

consistent with the covariance structure of a chronic
progressive condition. We call this alternative
covariance structure the chronic progressive (CP)
covariance structure, and the corresponding MMRM
analysis the chronic progressive repeated measures
(CPRM) analysis.

Unlike the unstructured covariance model, the CP
covariance model, formally defined in Section 2,
requires only four parameters for estimation regardless
of the number of repeated measures. Critical to
confirming the potential applicability of the CPRM
analysis, we demonstrate using data from completed
clinical trials that the CP covariance assumption holds
for longitudinal cognitive data in Alzheimer’s disease
(Section 3). Section 4 reports computer simulations
demonstrating how MMRM with a CS or AR1
covariance structures dramatically mis-represent
treatment associations with disease. These limitations
of the CS and AR1 models are relevant to any
condition with a chronic progressive pattern of decline.
Finally, we derive power formulas for the CPRM model
(Section 5). A unique advantage of the CPRM
parameterization is that power formulas are more
flexible in that they can be used to power future clinical
trials of arbitrary design (with arbitrary number and
interval between followup visits) regardless of the
design of the pilot study used to inform power
calculations. It is often the case that available data to
inform sample size calculations are from studies with a
different length of follow-up than the planned future
clinical trial. These formulas will allow power
calculations that fully utilize available data regardless of
the design of prior studies. Moreover, for chronic
progressive data the CP and unstructure covariance
estimate have the same expected value, meaning
CPRM power formulas can be used to power clinical
trial where MMRM with unstructure covariance is the
primary statistical analysis plan.

2. THE CHRONIC PROGRESSIVE REPEATED
MEASURES (CPRM) MODEL

The CPRM model is a modification of the commonly
applied parameterization of the Laird and Ware [9]
mixed effects model of longitudinal data

Yy =Bo+Bit; +by +byt; +ey, (1)

where y, is the response for subject i (i=1,2,....,n) at

time j (j=1,2,..,m), t,t t are times at which

12729 " m
measurements y, are made, B =(f,.6,) are the fixed

effect coefficients describing the mean longitudinal
trajectory, (b,,.b,;)~N(0,D) are random, subject-
specific intercepts and slopes, and e, ~N(0,R) is
residual variation about the individual trajectories.
Where convenient, we will represent the diagonal
elements of D as o;, and o,,, and the off-diagonal

elements as Oy in derivations to follow. This model,

familiarly called the random slopes model, has proved
to be useful for modeling longitudinal cohort study data,
where the linearity assumptions generally hold if the
length of longitudinal follow-up is small relative to the
full time course of the disease. The linearity
assumption can be problematic for clinical trials,
however, even when the period of follow-up is relatively
short, because the pattern of progression under the
alternative in the treatment arm cannot be known a
priori. For example, treatment effects may be acute but
not long lasting (e.g., Figure 1, top panel), or, there
may be some delay before treatment effects are
realized (e.g., Figure 1, bottom panel). We will
demonstrate in simulations below how the random
slope model can lead to dramatically anticonservative
hypothesis testing when the fixed effect mean pattern
of progression is consistent with the top panel of Figure
1. To accommodate non-linear patterns of fixed effect
mean change, we propose the CPRM model (equation

(2))-

The CPRM model parameterization replaces the
fixed effects intercept and slope in equation (1) with m
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Figure 1: Top panel. Hypothetical trajectory of expected
values by arm for a treatment with short term efficacy but no
difference in treatment versus control at the end of the trial.
Bottom panel. Hypothetical trajectory of expected values for a
treatment with positive effect starting after the third
observation and persisting to the end of the trial.

means, one for each repeated measurement time, and
can be written as

y;=a;+b, +bt +e,, (2)

where a;,j=1,..m are mean levels at each visit,

(by;,b,;) ~ N(0,D) as above are random intercepts and

slopes modeling the dispersion of the longitudinal
trajectories, and e, ~ N(0,R) are residual errors. The

alternative parameterizations of fixed effects by the two
models is illustrated with a toy example in Figure 2.

Estimation of the parameters in equation (2) is by
maximum likelihood or restricted maximum likelihood

(REML). Derivation of the asymptotic variance of the
fixed effect estimates for power calculation formulas
proceeds analogously to the derivation of the variance
of the fixed effects parameters under the random
slopes model [10].

Writing equation (2) in matrix notation, we have
Vv, =X,a+Zb, +¢, (3)

where identity matrix X; is the fixed effects design
matrix for subject i, and Z;=(1.t;) is the random
effects design matrix for subject i. More generally, X,
can include additional fixed effect covariates.

Under this model, the covariance V, for subject i
with data completion pattern t, is

V,=Cow(y,)=Z,DZ, +R,. 4)

Assuming independent and identically distributed
(iid) residual error Gf, R, =01, and the elements of
V; are a function of the pattern t;, of observations
obtained for subject i, the residual error variance o’ ,
and the covariance parameters o,fo, o,f], and o,, .

Specifically, V, are matrices with off diagonal elements

uy equal to o, +(,+1,)0, , +1,,0, and diagonal
elements w.u equal to o, +21,0,, +1,0, +0;. See

reference [10] for a formal derivation.

Given V, and X,, when data are missing at random

the asymptotic variance of REML estimates of the
coefficients in equation (3) is

V(6) = (E(X;V;‘Xi)) : (5)

Note that there is a finite set of missing value
patterns defining X; and V,. Indexing these missing

value patterns by k& and summing over participants
with the same dropout pattern k, equation (5) can be
expressed as

V(a)= (Enk (X;(Vl(_lxk)) = (”Epk (XkVQIXk)) (6)
% X

where the n, are counts of subjects in each set and
sumto n,and p, =n,/n. Equation (6) will be useful for

power calculation formulas for the CPRM model
derived in Section 4 below.
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Figure 2: Fixed effect estimates by a repeated measures
model (red) and a random slopes model (blue). The repeated
measures model estimates the expect level at each time

point while the random slopes model assumes a linear
trajectory of fixed effect levels as a function of time.

3. EMPIRICAL VALIDATION OF THE CHRONIC
PROGRESSIVE COVARIANCE STRUCTURE FOR
ALZHEIMER’S DISEASE DATA

We explore the relevance of the CPRM model for
modeling cognitive decline in Alzheimer's disease
using placebo arm data from representative clinical
trials performed by the National Institute of Aging
funded Alzheimer's Disease Cooperative Study
(ADCS). Alzheimer’s disease is a chronic progressive
condition characterized by gradual loss of short term
memory and other cognitive faculties. The primary
outcome measures for Alzheimer’s disease clinical
trials are typically so called global cognitive measures,
meaning neuropsychometric instruments querying
multiple domains of cognitive function affected by the
disease. We here report data from two representative
clinical trials, an Alzheimer’s treatment trial of vitamins
to reduce homocysteine levels using the Alzheimer’s
Disease Assessment Scale - cognitive domain (the
ADAS-cog) as the primary outcome [11], and a
prodromal Alzheimer’s disease trial of vitamin E or
donepezil using the Mini-Mental Status Exam (MMSE)
as a secondary outcome [12]. The vitamin E arm was
null in the prodromal Alzheimer trial [12], and therefore
we pooled the placebo and vitamin E arm data from
this trial to increase the available sample size.

Tables 2 and 3 report empirical covariance matrices
and covariance matrices estimates by the CPRM
model for the two trials. The empirical covariance

matrices for these trials represent the covariance
pattern one would expect for longitudinal trajectories
that are fanning apart as a function of time. Under this
pattern, we observe two phenomena. First, the
variance increases over time, as reflected in the
diagonal terms. Second, the covariance of neighboring
observations increases over time, as reflected in the

off-diagonal terms. The CPRM covariance model
consistently recapitulates the empirical covariance
observed in these data (Tables 2 and 3). For

comparison, we have included covariance matrices for

Table 2: Covariance Matrices Estimated from the ADCS
Homocysteine Trial (ADAS-cog Data, n=330
Subjects, Quarterly Observations for One and

One Half Years).

Empirical covariance matrix

686 618 606 660 677 739 784
618 804 672 748 754 845 89.6
606 672 795 769 774 846 932
660 748 769 10277 910 96.1 106.1
67.7 754 774 910 1049 1028 1124
739 845 846 96.1 102.8 1237 123.7
784 89.6 932 106.1 1124 1237 155.6

Covariance assuming the CPRM model

69.1 588 623 657 69.1 725 760
588 769 67.7 721 765 809 853
623 677 867 785 839 893 947
657 721 785 985 913 976 1040
69.1 765 839 913 1123 1060 1134
725 809 893 976 1060 1280 1228
760 853 947 1040 1134 1228 1458

Covariance assuming heterogeneous CS

7277 644 635 722 722 782 892
644 816 672 765 765 829 945
635 672 792 754 753 816 931
722 765 754 1025 857 929 1059
722 765 753 857 1024 928 1059
782 829 816 929 928 1202 1147
892 945 9311 1059 1059 1147 1563

Covariance assuming heterogeneous AR1

78.1 736 62.1 588 493 455 446
736 921 777 735 617 570 558
62.1 7777 871 824 69.1 639 626
588 735 824 1034 867 80.1 786
493 617 69.1 867 966 892 875
455 570 639 80.1 892 1095 1073
446 558 626 78.6 875 1073 139.6
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the heterogeneous CS and heterogeneous AR1
MMRM model fits to the ADCS homocysteine trial data
(Table 2). In these data, the CS model overestimates
covariance terms away from the diagonal and the AR1
model underestimates these terms. Similar CS and
AR1 covariance patterns were observed in the
prodromal Alzheimer’s disease trial (data not shown).
Critically, in both data sets the covariance of the first
and last observations, a critical component of the
standard error of change first to last, is misrepresented
by these models. Bias in estimates of the standard
error of change can dramatically effect the performance
of hypothesis testing by MMRM, as will be illustrated in
Section 4.

Table 3: Covariance Matrices Estimated from the ADCS
Clinical Trial of Vitamin E and Donepezil
(MMSE Data, n = 510, Biannual Observations
for Three Years)

Empirical covariance matrix

346 208 200 252 230 276 320
208 488 292 397 352 434 518
200 292 541 447 422 491 625
252 397 447 913 6.15 819 1002
230 352 422 6.5 887 825 9.89
276 434 491 8.19 825 1344 1455
320 5.18 625 1002 9.89 1455 21.69

Covariance assuming the CPRM model
513 220 250 281 3.2 342 373
220 6.12 356 424 493 561 629
250 356 786 568 674 780 8.85
281 424 568 1036 855 998 1142
3.12 493 674 855 13,60 12.17 1398
342 561 7.80 998 12.17 17.60 16.54
373 629 885 1142 1398 1654 22.34

4. PERFORMANCE OF MMRM ON CHRONIC
PROGRESSIVE DATA

We use computer simulations to empirically
characterize the performance of MMRM applied to
chronic progressive data under null and alternative
scenarios. We consider MMRM analyses assuming
unstructured, chronic progressive, compound
symmetric (standard and heterogeneous), and first
order autoregressive (standard and heterogeneous)
covariance structures. We also consider the random
slopes analysis in the simulations. MMRM models were
fit using the gls function within the R nlme package
[13]. Random slopes and CPRM models were fit using
the Ime function within the same package. The random

slopes models were constrained to have a single fixed
effect intercept shared by both groups as
recommended for randomized clinical trials [14].

Simulations under the null. Longitudinal repeat
measures were generated following a CPRM model
using covariance and residual error variance
parameters estimated from the placebo arm of the
ADCS homocysteine trial [11], and using fixed effects
means under the hypothetical scenario of a treatment
with short term palliative effect that washes out by the
end of the study period (Figure 1, top panel). A total of
10,000 simulated samples were performed (n=80 per
group, 18 month trial with quarterly observations, and a
nominal p-value for hypothesis testing of 0.05).

Type | error rate estimates under the different model
fits are listed in Table 4. The CPRM model and
unstructured MMRM met the nominal five percent type
| error rate to within the accuracy of simulations. The
compound symmetry and heterogeneous compound
symmetry MMRM models had type | error rates of 13.4
percent and 9.6 percent respectively, meaning these
two models are invalid and not appropriate for data that
follow the chronic progressive pattern. The mixed
effects model with random slopes was likewise
anticonservative, with a type | error rate of nearly 15%
(Table 4). This result clearly illustrates the concern of
regulatory  agencies that analyses imposing
assumptions about the shape of the mean trajectory,
such as the random slopes model with linear fixed
effect mean illustrated here, can result in positive trial
findings even when the treatment has no persistent
efficacy. Finally, we observe that the AR1 and
heterogeneous AR1 models (Table 4) had type | error
rates much less than 0.05 (i.e., were substantively
conservative).

Simulations under the alternative. We next
simulated data following the CPRM model as above,
but under the alternative scenario depicted in Figure 1,
bottom panel, and with an effect size chosen to
ensured an expected power of 80 percent under the
CPRM analysis. The unstructured MMRM and the
CPRM models acheived the expected 80 percent
power, while power for the AR1 MMRM models was
close to 50 percent (Table 4). We do not report power
for the compound symmetry models because type |
error rates for these models are substantially greater
than 0.05, meaning these models are invalid for chronic
progressive longitudinal data. We also do not report
power for the random slopes model because the type |
error rate for this model (15%) is likewise greater than
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the nominal 5% error rate under the null, meaning the
random slopes model is invalid for plausible scenarios
relevant to regulatory agencies.

Table 4: Type | error rate under the null (Figure 1, Top
panel), and power under the alternative (Figure
1, Bottom panel). (10,000 simulations each,
with effect size under the alternative chosen to
achieve 80% power for the CPRM model).
Power is not reported for models that did not
meet the nominal 5% type | error rate under the
null.
a error rate Power
CPRM 0.0536 0.7981
random slopes 0.1499 -
MMRM, CS 0.1343 -
MMRM, hetCS 0.0955 -
MMRM, AR1 0.0069 0.5187
MMRM, hetAR1 0.0058 0.4997
MMRM, UN 0.0539 0.7989

CS = compound symmetric; hetCS = heterogeneous CS; AR1 =
autoregressive; hetAR1 = heterogeneous AR1; UN = unstructured.

5. SAMPLE SIZE CALCULATIONS FOR THE CPRM
MODEL

Derivation of sample size formulas for the CPRM
model follows directly from derivations for the random
slopes model [10]. Power is a function of the sample
size in each arm, the covariance of repeated measures
in each arm, the study design (the study length and
interval between followups), the missing data pattern,
and the effect size. To simplify presentation, we begin
by describing power formulas for the common
circumstance of equal allocation to arms and
equivalent covariance structure in the two arms. In this
case, the variance of change first to last visit in each
arm is V(a,-¢&), and the sample size required to
detect a difference A in change scores between arms
at last visit with power 1- and type | error rate a is

given by the familiar formula

N/ Am=2(z,, +2,)*V(&, - &)/ A @)

We use this formula to demonstrate two power
calculation approaches commonly used when sizing a
clinical trial, a conservative estimate of required sample
size informed by the power of a completers-only
analysis, and a less conservation estimate that
explicitly adjusts for the anticipated missing data
pattern to be obtained by the trial. We describe each of
these in turn.

Completers-only approach. A conservative
approach is to determine the sample size required to

power a completers-only analysis and then increase
the sample size to ensure this many subjects complete
the trial. This method has the advantages of relying on
a straightforward power calculation formula and
resulting in statistically conservative sample size
estimates. For completers, there are no missing data
and X; and Z, are equivalent full matrices for all

subjects so that

2 2 2
Vi@, -a) =22 =) O (®)
n

See the Appendix for derivation of this result.
Equation (6) then reduces to

N | Arm =2(z,, +2,) 202 + (1, — 1,021/ 4. (9)

completers

If p, is the proportion of subjects who will complete
the trial, then setting total N/Arm to N,
ensure an expected N,
trial.

completers /pm WI“

complete the planned

completers

Study subject attrition approach. Alternatively,
one can use equation (6) to directly account for the
anticipated dropout pattern expected in a study. Setting
W =nV(&), under equal allocation to study arm and
assuming equivalent repeated measures covariance
across arms, the sample size required to detect
treatment effect A with power 1- and type | error

rate a is
N/Arm=2(za/2+zﬁ)2(Wmm+W”—2W,m)/A2. (10)

As a practical matter, investigators restrict to the m
missing data patterns determined by study subject

dropout [15]. Given iid residual error variance o}, W
and by extension equation (9) are simple linear
functions of the variance parameters o’

£

O, O,
and Oy, and the design vector t (see Appendix).

Given these four parameters as input, equation (10)
can be used to determine sample size as a function of
power (1- ), type | error rate a, and effect size A.

Implementation. Formula (8) and the study subject
attrition approach formula (9) under the usual
assumption of iid residual error are implemented in the
CPRM.power function within the R package longpower
[16]. Generalizing these formulas to allow unequal
allocation and to the case where the covariance
structure is different in the two groups is straightforward
[10], and has also been implemented for the CPRM
model in the CPRM.power function. Different
covariance structures may be anticipated across
groups. For example, in clinical trials a greater variance
of change may occur within the treatment arm because
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the change observed in the treatment arm reflects both
normal background variability in change and the
variability in response to treatment [5]. The formulas
provided in CPRM.power can be used to perform
sensitivity analyses of the potential magnitude of this
effect on trial power. Note that the variance parameters
required for the power calculation formulas can be
estimated from prior data of arbitrary design. Stated
differently, if we have variance parameter estimates
from pilot studies or prior trials, we can use these
values to power a future trial of arbitrary design (with
arbitrary number and interval between followup visits).
Furthermore, for chronic progressive data, the CPRM
covariance estimate is a consistent estimate of the
unstructure covariance, meaning these power
calculation formulas are appropriate for trials using
MMRM with unstructured covariance as the primary a
priori analysis plan.

5.1. Validation of Sample Size Formulas by
Computer Simulation

We used computer simulations to evaluate the
performance of equation (6). We simulated data
following a CPRM model (equation (1)) using
parameters estimated from the ADCS homocysteine
trial described above, assuming an 18 month trial with
quarterly observations and a 25% shift in mean change
in treatment versus control. Power observed in
simulations closely matches predicted power (Figure
3).

0.8
07
e
@
g
o
06
05 --- Simulated
: —— Theoretical
200 250 300 350 400

Sample Size/Group

Figure 3: Theoretical power curve versus power estimated
by computer simulation (10,000 simulations per sample size,
two-sided test, type | error ¢ =0.05).

6. DISCUSSION

We have introduced a novel parsimonious
parameterization of the covariance structure of
longitudinal repeated measures appropriate for chronic

progressive conditions. We have demonstrated that
alternative parsimonious parameterizations typically
used in MMRM analysis are not appropriate for this
pattern of longitudinal data that fan apart over time. In
application, the MMRM analysis assuming compound
symmetry is anticonservative, and the MMRM analysis
assuming AR1 is underpowered for this type of data,
while the CPRM analysis is both valid (maintaining its
nominal type | error rate) and has equivalent power to
MMRM with unstructured covariance when applied to
chronic progressive data.

Further, we have derived power calculation
formulas for the CPRM model that are independent of
pilot study design. This is helpful when the design of
pilot studies available to inform power calculations
does not match the design of the future trial being
powered.

The CPRM model has the heuristic advantage of
testing treatment efficacy based explicity on
differences in response at the end of the trial period
without any assumptions about the shape of mean
trajectories of response over time. Model results are
therefore unambiguous and easier to describe to a
non-technical audience. We illustrated with computer
simulations the concern of regulators and clinical
trialists that false positive findings are possible under
the random slopes analysis plan (Table 4). Recent
advances in analytic methods, including natural cubic
spline [17] and progression repeated measures [18]
models, may be less susceptible to type | error
concerns, and this is an area of future research.
However, MMRM remains the de facto standard for
Alzheimer’s disease treatment trials [6-8], and has the
distinct advantage of providing an unambiguous
characterization of treatment effect independent of any
assumptions about the pattern of mean progression in
the treatment or control arm. Finally we note that a
current limitation of the CPRM model is that it has not
been implemented as an option to MMRM functions
contained in standard statistical analysis packages.
Although the model parameters can be estimated with
a linear mixed effect model, it would be more
convenient and useful to include CP in the panoply of
covariance structures available to the functions
typically used for MMRM analysis. This is an area of
future research.

The suitability of CPRM for data beyond the
longitudinal Alzheimer data considered here will have
to be examined on an individual basis. However, we
note that the CPRM model assumptions hold for any
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scenario where the mixed effects model with random
slopes is appropriate, so applications of CPRM are
equally as broad as this common analytic approach.
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APPENDIX
A. Proofs

A.1. Derivation of Equation (8)

Restricting to completers only, there is only one
drop-out pattern in equation (6) (the complete data
pattern, with design matrix X, an m by m identity
matrix). Hence, the asymptotic variance of & reduces
to

nXV'X)" =nIV'D)" =V/n,

where
V=7ZDZ +01

1 ¢ 2
_| - I O, boby 1 1 +oI
- . . P t £

1z, Oppy, Oy : "

2 2 2

=| 0y, +1:0,p +1,0,, +11,0, +0.1 (A1)

ij=1..m

Applying elements of this matrix to the variance of
a, - a,, we obtain

var(a,, - &) =var(a,,)+var(Q,)-2cov(a,,.q,)
_ 1 2 2 2 2 2
= —[ob(J +2t,0,, +1,0, +0,

n

2 2 .2 2
+0, + 2t10,70,,l +1,0, +0,

2 2

_2(Ob0 +t10h0h1 +tmoh0h1 +tltmoh1 )]
_ 1 2 2 2 2
=20+, =1) 0]

This completes the proof.

A.2. Explicit Expression of W in Equation (10)

Let V,, be the covariance of repeated measures of

completers defined above. Study subject dropout
defines m -1 additional covariance matrices

U, 0

V, =
“1o o

k=1,..m-1 Where U, are the k by k upper left
submatrices of the completers’ covariance matrix V,,.
Then by equation (6)

W =nV(&) = (Epkv,;‘) . (A2)
k

The indexing in equation (A1) defines the elements
of V, as a function of the variance parameters o,fo,

o, , o,,,and o’. Calculation of W involves setting
hl bohl &

the elements of V, to values determined by these four

parameters, and applying the matrix operations
specified in equation (A2).
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