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Abstract: Background: The unprecedented havoc of COVID-19 pandemic stressed medical infrastructure of every 
affected country. The developing countries were more affected as their already inadequate medical resources were 
strained further.  

Material and Methods: In order to estimate the time of onset of recovery through the period of hospitalisation stay, the 
retrospective data on the number of days that 83 COVID-19 patients stayed in a hospital in New Delhi, India was 
obtained. A Left-Right Truncated Poisson Distribution Model (LRTPD) was developed to estimate the average number of 
days that patients had to spend in the hospital before the onset of recovery and they were no longer infected. Left 
truncation is on the ‘u’ left most classes of the random variable and right truncation is after ‘v’ classes. The parametric 
estimates of the LOS were validated using the Monte-Carlo method.  

Results and Conclusion: The models suggested that if appropriate truncation limits (both the data-specific and as per 
expert advice) are used in case of critical medical emergencies, approximately 90 percent of the patients will be able to 
get hospital admission, without over-burdening the hospital infrastructure. The median recovery onset time/ Length of 
stay (LOS) obtained using the Kaplan-Meier estimator was consistent with the results of the parametric modeling and 
simulation. However, the Kaplan-Meier method overestimated the mean LOS as compared to the parametric methods.  

Keywords: COVID-19, Left-Right Truncated Poisson Model, Length of stay, Kaplan-Meier estimator, Monte-Carlo 
simulation. 

INTRODUCTION 

The unprecedented havoc of COVID-19 pandemic 
stressed medical infrastructure of every affected 
country. The developing countries were more affected 
as their already inadequate medical resources were 
strained further. In order to identify, map, and 
systemize existing knowledge about the relationships 
between COVID-19 and hospital infrastructure 
adaptation and capacity planning worldwide, 
Ndayishimiye C. et al. (2022) conducted a review of 
102 studies. They suggested the importance of 
preparing and planning in the future for an outbreak 
affecting a hospital infrastructure [1]. A similar 
conclusion was drawn in the study by Filip R. et al. 
(2022) [2]. In order to investigate the effect of an 
intensive care unit (ICU) bed capacity optimization on 
the average length of stay and average cost of 
hospitalization, Zheng Q. et al. (2024) collected data on 
5944 patients admitted by the outpatient and 
emergency access during the 2-month periods in China. 
They observed a significant positive impact of ICU bed 
optimization in mitigating the shortage of medical 
resources following an epidemic outbreak [3].  

The truncated statistical distributions can be used in 
optimisation  problems as these reduce the spread of  
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the data by truncating less frequent events at the tails 
of the data. Depending upon the need of the data, a 
number of truncated models have been suggested. 
The theoretical truncated Poisson distribution, as 
introduced by Plackett (1953), arises when some 
specified values are not possible to record (in terms of 
process and not in terms of availability) either initially or 
at the end of a variate range [4]. The zero truncated 
Poisson distribution has been used under various 
conditions: (i) fertility trait phenotypes (Xu and Hu, 
2011) (ii) word or species frequency count data 
(Ginebra and Puig, 2010), (iii) mental health services 
data (Elhai et al., 2008); and (iv) number of illegal 
immigrants in four large cities in the Netherlands (Van 
der Heijden et al., 2003), to name a few [5-8]. Fu, Liang, 
et al. (2014) used right truncated Poisson distribution to 
model the progression of asthma symptoms using data 
from Childhood Asthma Management Program. Their 
study established that the properties of asthma 
symptom severity progression distinctly differ from 
those of asthma prevalence [9]. Zhao, Shi, et al. (2021) 
developed a zero-truncated Negative Binomial 
distributed likelihood framework to estimate the 
individual heterogeneity in infectiousness. Their study 
demonstrated that the zero-truncated framework is 
recommended for less biased transmission hetero- 
geneity estimates than non-truncated version [10]. 

For the parameter estimation and validation of 
various distributions, simulation has been a preferred 
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tool. Alomair, Gadir, et al. (2024) assessed the 
performance of the two estimation methods viz. 
Maximum Likelihood Estimation (MLE) & Method of 
Moments while estimating the parameter of the 
Zero-Truncated Poisson-improved second-degree 
Lindley distribution through simulation. Their study 
established that both estimates were asymptotically 
unbiased and consistent [11]. A Abd El-Hady, H. et al. 
(2022) used simulation in order to evaluate the 
performance of the Endpoint-Inflated Double Truncated 
Poisson !!,!!, !    distribution and the 
Endpoint-Inflated Double Truncated Poisson 
Regression model [12]. Aydin, D. (2018) designed and 
conducted a Monte-Carlo simulation study to evaluate 
the performances of the considered estimation 
methods viz. maximum likelihood, least squares and 
weighted least squares for Doubly-truncated 
exponentiated inverse Weibull (DTEIW) distribution. 
Their study concluded all the considered estimators of 
the parameters of DTEIW distribution are 
asymptotically unbiased and consistent [13]. 

If the underlying distribution of a data set is 
unknown; or if the data is censored, then in order to 
estimate the mean and median of the survival time, 
non-parametric methods, such as the Kaplan-Meier 
(K-M) method, are recommended. Zare, Ali, et al. 
(2014); Xie, J., Brayne, C., & Matthews, F. E. (2008); 
Kato, I., Severson, R. K., & Schwartz, A. G. (2001) 
employed the Kaplan-Meier method to estimate the 
median survival time of patients with gastric cancer, 
from date of onset of dementia, and breast carcinoma 
respectively [14-16]. Ashfaq et al. (2006) compared 
survival time of diabetic and non-diabetic groups to 
observe the effect of vein graft intervention [17]. Bruce, 
Sheppard and others (2004) compared survival times 
of three categories: no diabetes, diabetes without 
peripheral vascular disease and renal failure, and 
diabetes with peripheral vascular disease and/or renal 
failure [18]. Joss et al. (2002) work concludes that 
survival time of type-2 diabetic patients, once diabetic 
nephropathy has developed, becomes even worse 
after starting dialysis [19]. Rossing et al. (1995) study 
compared three levels of albuminuria in insulin 
dependent diabetic patients [20]. 

Objective and Novelty of the Present Study 

For any disease, the period of hospitalisation is a 
direct function of onset of recovery. However, for a 
pandemic like COVID-19, standard operating 
procedures suggest an optimal period of hospitalisation 
as the patient, even if not recovered, is unable to 
spread the infection to others. The WHO guidelines 
suggest an optimal stay of 6-10 days before a 
COVID-19 patient is either discharged or is shifted to a 
general ward. The authors wished to estimate the 

mean time of onset of recovery through the period of 
hospitalisation stay. For this purpose, the retrospective 
data on the number of days that the COVID-19 patients 
stayed in a hospital in New Delhi, India was obtained. 
This was the only information available. We developed 
a Left-Right Truncated Poisson Distribution Model 
(LRTPD) in order to estimate the average number of 
days that patients had to spent in the hospital before 
onset of recovery (no death was reported for these 
patients) (i.e. they were no longer infected or were 
capable of spreading the infection) and to see if our 
results corroborated the directions of WHO on the 
desired duration of stay of the patients. Left truncation 
is on the ‘u’ left most classes of the random variable 
and right truncation is after ‘v’ classes. Justification of 
the left and right truncation has been discussed. The 
unknown model parameter !  has been estimated using  

(i)  Method of Maximum Likelihood Estimation 

(ii) Method of Moments 

(iii) Monte Carlo Method (!!"_!) 

The 95% confidence interval for the unknown 
parameter !  has been obtained. The mean has been 
calculated using distribution based methods viz. the 
Moment generating function and Method of Moments; 
and has been compared with Monte-Carlo method and 
the distribution free Kaplan-Meier Method. Further the 
median of the applied distribution is computed and 
compared with that obtained using the Kaplan-Meier 
Method. 

The novelty of this study is optimisation of 
truncation limits in order to determine the length of 
hospital stay so as to optimise the medical facilities in 
order to accommodate the maximum number of 
patients. To the best of our knowledge, this is the first 
study which aims to achieve this objective through 
truncated models. 

Besides introduction, this paper includes three more 
sections. In section 2 material and methods have been 
presented. Section 3 is about the results, section 4 is 
about the discussion of the model on real data. Section 
5 is about conclusions. 

MATERIAL AND METHODS 

Material 

The retrospective data used in this study is on the 
hospitalization times of 83 COVID-19 patients, 
admitted in a hospital in New Delhi, India, at the time of 
disease outbreak. No other information was available 
with respect to patients' age, gender, comorbidities (if 
any) and severity of disease etc.  
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Methods 

Left Right Truncated Poisson (LRTPD) Model 

Let X ij i = u ,...,v  ;  j =1,2,...,k  ( )  
are independently 

distributed random variables following LRTPD !( ) . The 

probability mass function of the random variable ijX  
for the    !!!  respondent with ‘u’ classes from the left and 
classes after ‘v’ on the right are truncated, is given by  
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The maximum likelihood estimate ! of  !  is obtained 
by solving (3) by the method of iteration. 
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Moment Estimator of !   

Here number of unknown parameters is 1. 
Therefore, we solve the equation given by 
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Characteristics of LRTPD  

Moment Generating Function 

Moment generating function of LRTPD !( )  is given 

by 
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The first four moments of LRTPD  

Using the moment generating function 
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Median and Mode of LRTPD  

Median is obtained by solving the equation. 
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Probabilities of Left and Right Truncated Classes

 

The tail probabilities of the truncated classes are 
given by 
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Hence the probability of Xij to lie in the observation 
range is  
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Mean and Median Survival Time using 
Kaplan-Meier Method  

The mean survival time is approximated by 
summing the products of the observed survival times 
and the probability of surviving beyond each observed 
time point. Mathematically, it can be represented as:  

µ = Ŝ ti( )
i =1

k !1

" ti +1 ! ti( )       (19) 

where Ŝ ti( )  is the estimated survival probability at 

each time point and ti  and ti +1  are two consecutive 
survival times. 

The median survival time is the time point at which 
the Kaplan-Meier survival curve crosses the 0.5 
threshold. In other words, it is the time point where 
approximately 50% of the subjects have experienced 
the event of interest. 

Monte Carlo Simulation 

In this method the value of each output parameter is 
one particular value in the simulation run. Monte Carlo 
algorithm used in this study is: 

(i) Each distinct value of the output parameter is 
used to run simulation. 

(ii) Each run is performed 500 times. 

(iii) Corresponding to each run parameter, mean of 
distribution (Poisson) is computed. 

(iv) All the runs are used to compute the final value 
of the parameter. 

RESULTS  

The data for the study consisted of the 
hospitalisation period of 83 patients suffering from 
COVID-19, in a hospital in New Delhi, India. The 
hospital stay data was further truncated/ censored 
based on the criteria discussed below: 

The Truncation Criteria for the Parametric Models: 

Left Truncation 

Patients were discharged either from OPD or after 
one day medical observation. 

Right Truncation 

Two different criteria were used for right truncation: 

Criterion 1 

Onset of recovery was not observed up to 8 days, 
so patients were either shifted to a different ward or 
were discharged under medical observation (due to the 
limited number of beds). This was Data_1. 

Criterion 2 

Onset of recovery was not observed up to 10 days, 
so patients were either shifted to different ward or were 
discharged under medical observation (due to the 
limited number of beds). This was Data_2. 

Table 1: Day Wise Descriptive Statistics of the Respondents without and with Truncation 

Descriptive Statistics Complete data Data_1* Data_2** 

Mean 6.662 5.122 5.727 

Standard Deviation 4.693 1.918 2.356 

Minimum 0 2 2 

Maximum 25 8 10 
*Data_1: Right truncation after 8 days, left truncated before 2 days. 
**Data_2: Right truncation after 10 days, left truncated before 2 days. 
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The Censoring Criteria for the Kaplan-Meier 
Method 

Without assuming the form of the distribution, the 
following criteria have been used to obtain the mean 
and median of the survival time using Kaplan-Meier 
method: 

Case 1 

Observations are uncensored i.e. complete 
discharge time of each and every patient has been 
recorded. 

Case 2 

Observations are censored based on  

(a) Onset of recovery was not observed for patients 
having stay time 0 or 1 days as expert did not 
feel the need of hospitalisation at that time 
(onset of recovery was unknown). 

(b) Study was terminated after 8 (10) days. 

The Table 1 above represents descriptive statistics 
of the 83 patients before and after truncation. 

Table 2: Frequency Table for the Number of Days an Individual Patient Stayed at Hospital 

S. No. Number of days stay at hospital 
!!"  

Frequency !!  

Complete data Data_1 Data_2 

1 0 4 - - 

2 1 2 - - 

3 2 8 8 8 

4 3 8 8 8 

5 4 7 7 7 

6 5 9 9 9 

7 6 9 9 9 

8 7 13 13 13 

9 8 6 6 6 

10 9 4 - 4 

11 10 2 - 2 

12 11 3 - - 

13 12 1 - - 

14 14 2 - - 

15 15 1 - - 

16 17 1 - - 

17 21 1 - - 

18 22 1 - - 

19 25 1 - - 

Table 3: Monte Carlo Simulation Result 

Runs 1 2 3 4 5 6 7 8 9 

Mean 11.8977 11.3262 10.4313 8.5195 6.9960 6.9061 5.9332 5.3595 5.1654 

Runs 10 11 12 13 14 15 16 17 18 

Mean 4.2983 4.0690 3.4221 3.0087 2.4548 1.9747 1.5832 0.9539 0.4731 

 
Table 4: Estimates, Variances of the Estimates and the 95% Confidence Intervals for the ‘Complete’, ‘Truncated’ and 

‘Simulated Monte Carlo (MC)’ Data 

Model ! !"#(!) 95% Confidence Interval 

LCL UCL 

MLE (without Truncation) 6.6626 0.07841277 5.9594 7.0571 

MLE (Data_1) 5.2404 0.008720993 5.0573 5.4234 

MLE (Data_2) 5.98 0.0078587 5.8062 6.1537 

MLE(MC) 5.2651 0.737442 5.0581 5.4601 
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The day wise frequency distribution of the number 
of patients is presented in Table 2 above. 

As the sample size was small, we used Monte Carlo 
simulation to generate data for estimation of the 
unknown model parameter and validation of the 
proposed models results. Each distinct value of the 
number of days of hospital stay was taken as a 
parameter to for a single run of simulation. There were 
18 distinct such values yielding 18 runs as indicated in 
Table 3 below:  

The estimates of !, !"#(!) and 95% confidence 
intervals for ! obtained by the method of MLE (on 
non-truncated data and using both truncation criteria) 
and simulation are displayed in Table 4 below. 

The probability plots of the model using the 
estimated values of the parameter λ in Table 4 are 
presented in Figure 1 below: 

The Table 5 below shows first four moments about 
origin and mean for the number of days an individual 
patient stayed at hospital during COVID-19 pandemic 
(as identified by the values that the random variables 
ijX  assumes) for the ‘Complete’ and the ‘Truncated’ 

data respectively.  

Mean and Median of the survival time for complete 
and censored data (based on specified criteria) are 
computed below in Table 6 using Kaplan-Meier method, 
where survival time T is the onset recovery time of the 
COVID patients. Survival probabilities have been 

 
Figure 1: Probability plots of Poisson distribution and LRTPD for the estimated parameters. 

Table 5: First Four Moments about Origin and Mean for all the Four Models 

Moments 
About 

Complete data Simulated data Data_1 Data_2 

Origin Mean Origin Mean Origin Mean Origin Mean 

1st 6.508 0 5.259 0 5.122 0 5.726 0 

2nd 48.982 6.625 32.894 5.235 29.001 2.758 36.151 3.356 

3rd 407.672 2.645 232.949 4.886 175.878 -0.957 245.401 -0.068 

4th 3680.515 133.765 1821.155 84.517 1119.251 15.769 1764.483 30.091 

Skewness  0.024  0.166  0.043  0.0001 

Kurtosis  3.047  3.083  2.071  2.670 

Median 6 6 4.5767 5.31816 

Mode 7 7 7 7 

 
Table 6: Means and Medians for Survival Times using Kaplan-Meier Method 

Data Means and Medians for Survival Time 

Mean Median 

Estimate 
Std. 

Error 

95% Confidence Interval 

Estimate Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound Lower Bound Upper Bound 

Complete 6.663 .515 5.653 7.672 6.000 0.413 5.191 6.809 

Censored (8 days) 9.799 .974 7.891 11.707 6.000 0.399 5.218 6.782 

Censored (10 days) 8.481 .807 6.898 10.063 6.000 0.399 5.218 6.782 
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calculated at using the censoring criteria: (i) at 8 days 
(left censoring before 2 days and right censoring after 8 
days); and (ii) at 10 days (left censoring before 2 days 
and right censoring after 10 days). 

DISCUSSION 

Whenever a medical emergency (due to an 
epidemic, pandemic or natural disasters) arises, we 
need sufficient medical facilities to deal with it. 
However, a country is not always well equipped with 
adequate infrastructure. One of the dimensions of the 
medical infrastructure is the number of beds available 
for all the needy patients. This is directly linked to the 
stay time of the patients in the hospital. However the 
stay time of the patients is determined by the severity 
of the problem being faced by an individual patient. 

With the outbreak of COVID-19 in 2020, the number 
of COVID cases rose sharply from January to June 
2021 in many states in India. In order to provide 
adequate medical facility to all, it was imperative to 
predict hospital bed demand and to estimate the length 
of hospital stay (LOS) for any patient. This was crucial 
for decision-making and contingency planning. 
However, estimating LOS was not only crucial during 
the time mentioned above but is still a major problem 
as it is a fact that the risk COVID (or a similar 
pandemic) is not over globally. To plan disease 
prevention and control, researchers and policymakers 
need to make/suggest policies to handle these 
abnormal situations. With the objective of estimating 
hospital LOS, the retrospective data on the LOS of 83 
COVID-19 patients was obtained from a Delhi-based 
hospital.  

By selecting appropriate model(s), we extracted 
maximum possible information from the available data. 
Monte Carlo simulation was then applied to validate the 
models. This also helped us to overcome the 
limitation(s) of small sample. The models that we 
applied were (i) a parametric discrete Poisson 
distribution; and (ii) the distribution free Kaplan-Meier 
method to obtain the mean and median onset recovery 
days/LOS.  

Under the first model, the range of LOS (n) was 
taken to be 0 - 28 days, which was based on the 
available data and probability of onset of recovery on a 
particular day was taken as ‘p’. Then the parameter of 
the distribution was obtained as np (= λ) and hence the 
Poisson model was applied. 

Next, we applied truncation to the parametric model. 
According to WHO, the risk of spreading the disease is 
over after 6-10 days (after confirmed diagnosis of the 
disease). So after this period, a patient may either be 

discharged or can be shifted to a general ward as s/he 
is safe from the risk of further spread. For our data, the 
mode of LOS for the complete data was 7 days. Hence 
the 8 days truncation was applied in the first case. After 
10 days, the frequency of patients still requiring 
hospital stay reduced substantially. Hence 10 days 
truncation point was taken in the second case. These 
limits were data specific. 

Left truncation is justified as either the patient was 
examined in OPD and was not found to be a fit case of 
admission. Secondly, the patient was found to be safe 
to be discharged after one day, under medical 
supervision. Hence 0 and 1 values were truncated. 

The data based truncations limits were applied on 
the model(s) used in the study. The following results 
(Table 7) were obtained: 

Table 7: Probabilities of LOS using Different Truncation 
Criteria 

Truncation Probability 

T < 2 0.0361308 

T > 8 0.08782592 

T > 10 0.04255144 

2 <= T <=8 0.87604328 

2 <= T <=10 0.92131776 

 

When we applied both the left and right truncation of 
8 days, it was found that 87% of the cases would be 
included in general (irrespective of data). If the right 
truncation is done at 10 days, the proportion of 
included cases would be 92%. According to this 
inference, the 10 days truncation on LOS is better 
justified as compared with 8 days truncation and it also 
agrees with the WHO upper limit recommendation (21). 

While using the Kaplan-Meier estimator, the 
truncation limits were taken as the censoring values. 
For the patients whose discharge time was below 2 
days, the recovery onset was unknown and hence 
censored. On the other hand, for the patients who were 
there in the hospital after 8 (10) days, the recovery time 
was not observed and hence censored. The median 
recovery onset time/ LOS obtained using the 
Kaplan-Meier estimator was consistent with the results 
of the parametric modeling and simulation. However, 
the Kaplan-Meier method overestimated the mean LOS 
as compared to the parametric methods.  

CONCLUSION 

The study establishes the role of truncation models 
for optimizing a scarce utility. The models suggested 
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that if appropriate truncation limits (both the 
data-specific and as per expert advice) are used in 
case of critical medical emergencies, approximately 90 
percent of the patients will be able to get hospital 
admission, without over-burdening the hospital 
infrastructure. This should help the hospital 
management to optimize the use of their medical 
infrastructure. 
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