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Abstract: Machine learning is increasingly being applied to medical research, particularly in selecting predictive 
modelling variables. By identifying relevant variables, researchers can improve model accuracy and reliability, leading to 
better clinical decisions and reduced overfitting. Efficient utilization of resources and the validity of medical research 
findings depend on selecting the right variables. However, few studies compare the performance of classical and modern 
methods for selecting characteristics in health datasets, highlighting the need for a critical evaluation to choose the most 
suitable approach. We analysed the performance of six different variable selection methods, which includes stepwise, 
forward and backward selection using p-value and AIC, LASSO, and Elastic Net. Health-related surveillance data on 
behaviors, health status, and medical service usage were used across ten databases, with sizes ranging from 10% to 
100%, maintaining consistent outcome proportions. Varying database sizes were utilized to assess their impact on 
prediction models, as they can significantly influence accuracy, overfitting, generalizability, statistical power, parameter 
estimation reliability, computational complexity, and variable selection. The stepwise and backward AIC model showed 
the highest accuracy with an Area under the ROC Curve (AUC) of 0.889. Despite its sparsity, the Lasso and Elastic Net 
model also performed well. The study also found that binary variables were considered more crucial by the Lasso and 
Elastic Net model. Importantly, the significance of variables remained consistent across different database sizes. The 
study shows that no major variations in results between the fitness metric of the model and the number of variables in 
stepwise and backward p-value models, irrespective of the database's size. LASSO and Elastic Net models surpassed 
other models throughout various database sizes, and with fewer variables. 
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INTRODUCTION 

The healthcare sector is undergoing rapid evolution, 
largely fuelled by the proliferation of electronic 
database applications and an increasing volume of 
data generated through health research. This 
transformation has led to the creation of large-scale 
databases, which provide significant resources for 
advanced data analytics [1]. By leveraging these 
databases, sophisticated analytical techniques that 
incorporate a variety of predictive algorithms and 
statistical software enable the development of 
advanced predictive models. A comprehensive 
understanding of the nuances associated with each 
predictive method, coupled with clearly defined model 
selection strategies, is crucial for conducting effective 
analyses [2]. 

For predictive models to achieve robustness, both 
internal and external validation are essential. These 
validation processes ensure that the most relevant 
evidence is employed, particularly in the context of 
data-driven decision-making [2]. To determine the most 
appropriate methodologies for prediction exercises, it is 
imperative to benchmark the performance of commonly  
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used classical predictive techniques against healthcare 
datasets, particularly given their resource-intensive 
nature [3]. 

Prediction plays a fundamental role in the analysis 
of large datasets, with significant advancements made 
in the development of robust disease prediction models 
that utilize large-scale electronic databases and a 
combination of classical and naive methods [4]. A 
critical aspect of this model development process is 
variable selection, which significantly impacts model 
precision by refining inputs and eliminating 
unnecessary variables. However, reliance on literature-
based or expert-driven variable selection can introduce 
bias, potentially obstructing the identification of novel 
insights within existing findings [5]. 

The variable selection process is vital in developing 
effective predictive models, focusing on reducing the 
number of variables by eliminating those with weak or 
non-informative relationships to the outcome. Failing to 
implement variable selection can lead to several 
issues, including overfitting, which undermines the 
model's generalizability, as well as increased 
computational complexity, resulting in longer training 
times and greater resource consumption. Additionally, 
models that incorporate irrelevant features may exhibit 
decreased accuracy, suffer from the curse of 
dimensionality, face challenges in interpretation, and 
demonstrate instability and bias [5-7]. 
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To enhance model performance, interpretability, 
and efficiency, careful variable selection is essential. 
This process can be guided by the principle of 
parsimony, which advocates for simpler models over 
more complex ones, positing that explanations with 
fewer variables are generally preferable [8]. The 
prevailing view is that a model with non-significant 
variables removed is more parsimonious than a full 
model containing a greater number of predictors, thus 
justifying the preference for streamlined models in 
statistical practice [8]. 

Furthermore, to ensure accuracy and enable 
comprehensive comparisons of a single algorithm's 
performance, it is crucial to consider various study 
conditions. Neglecting these factors may introduce 
biases and yield misleading results [9]. The size of the 
database and the ratio of events per variable also play 
critical roles in the performance of models across 
various classical and naive approaches during the 
development of accurate prediction models [10].  

This study aims to provide an in-depth assessment 
of the relative performance of various algorithmic 
regression techniques for outcome prediction. By 
offering a critical understanding of the relative 
performance of these methodologies, this research will 
assist researchers in selecting appropriate algorithms, 
ultimately contributing to improve predictive modelling. 

METHODS 

We evaluated the performance of various modelling 
techniques, including stepwise selection with a p-value 
stopping rule, backward selection with a p-value 
stopping rule, stepwise selection based on the lowest 
Akaike Information Criterion (AIC), backward selection 
based on the lowest AIC, the Least Absolute Shrinkage 
and Selection Operator (LASSO), and the Elastic Net 
approach. 

Stepwise and backward selection using p-values is 
a classical variable selection that has been extensively 
used by the researchers. In this method, all the 
variables will be used, and subsequently, the ones with 
the least significance will be eliminated. The stopping 
rule will be less than a 5% significance level while 
using the p-value [11] as criteria. The stepwise and 
backward selection using AIC is similar to the p-value 
methods except for the stopping rule, which was based 
on achieving the lowest information criterion using AIC 
[12]. 

Lasso regression combines shrinkage with variable 
selection by applying penalties to regression 
coefficients. It introduces the L1 norm for the problem 
of least squares, reduces the coefficients to zero, and 
is therefore eliminated from the model. This difference 
in model metrics may seem minor, but it has a major 
impact on the model validity [13]. To find the optimal 
constraint parameter in our implementation, we 
performed 100 sequential searches over a parameter 
grid of 0.02 increments and calculated the area under 
the receiver operating characteristic curve (AUC) using 
ten-fold cross-validation. Elastic Net is an extension of 
Lasso where L1 and L2 penalties are imposed. The 
characteristics of the L2 standard promote group 
effects, allowing highly correlated variables to be 
retained in the model or eliminated together in a 
structured manner similar to Lasso. An elastic network 
can better manage situations in which the number of 
predictors exceeds the number of cases [14]. In our 
implementation, the optimal parameters were found by 
performing 100 random searches over a parameter grid 
and calculating the AUC using a two-dimensional ten-
fold cross-validation. The models of these methods 
achieving the highest AUC was employed to identify 
selected variables and assess method performance on 
the validation set. 

Datasets 

The Behavioral Risk Factor Surveillance System 
(BRFSS) is a thorough telephone survey designed to 
gather self-reported information from adult residents 
aged 18 and older regarding their health-related 
behaviors, overall health status, and use of medical 
services. For further information on the survey's 
methodology and data, please refer to the detailed 
explanation provided elsewhere [15]. 

The 2022 BRFSS data was utilized for predictive 
modelling of general health status. A total of 34 
variables were selected for analysis, encompassing 
factors such as residential area, age, marital status, 
gender, body mass index, education, income, 
occupation, physical activity, days without good 
physical or mental health, sleep duration, depression 
status, access to healthcare, and various comorbidities 
including stroke, cancer, COPD, kidney problems, 
diabetes, asthma, arthritis, heart disease, COVID, and 
disabilities like deafness, blindness, concentration 
difficulties, walking difficulties, smoking habits, and 
alcohol consumption. Prior to analysis, all missing 
values were removed, and every dataset was divided 
into a 75/25 split for training and validating the model, 
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ensuring that the outcome proportion was the same in 
both sets [16].  

For analysis, we created nine additional databases 
with data ranging from 10% to 90%, maintaining the 
same proportion of 16.8% Poor Health vs 83.2% Good 
Health. Database sizes varied from 25083 to 225746, 
with the total dataset consisting of 250829 records. 

Method Evaluation 

The evaluation of the methods was conducted 
based on specific criteria such as parsimony, 
performance changes in relation to the reference 
model, and variable importance during selection. 
Previous research has indicated that parsimony plays a 
crucial role in enhancing prediction accuracy [8,17], 
and it was used to assess the trade-off between 
sparsity and prediction accuracy for each method. 
Performance of the validation was performed by 
assessing the AUC and the number of variables 
chosen by the approach was used to quantify sparsity. 

Reference models were established for each 
method using all available variables in the dataset, and 
comparison models were created using the selected 
variables based on the parsimony exercise. The 
change in performance from the reference model was 
evaluated for each method using the method-specific 
default settings, in line with previous literature 
comparing modelling methods. The procedure for 
assessing the importance and selection of variables 
involved ranking each variable according to its 
significance. Each variable was then assigned a 
category, ranging from first to fourth, based on its 
importance quartile, the variables with the highest 
importance being represented by the fourth quartile. 
With zero importance denoting the non-selection of that 
particular variable, this approach was chosen to allow 
for comparison between methods. In all evaluations 
conducted, 75% of the data was used for deriving 
methods, while the remaining 25% was reserved for 
validating the metrics. This approach ensured a 
comprehensive assessment of the methods' 
performance using a representative subset of the 
original dataset. 

Analysis 

STATA version 16.0 (StatCorp, College Station, TX) 
and R version 4.2.2 (R Foundation for Statistical 
Computing, Vienna, Austria) were used to analyze the 
data. For metric estimation purposes, the R packages 
glmnet, VSURF, gbm, and caret were used [18]. 

RESULTS 

Out of 250829 records, 208687 (83.2%) had better 
health outcomes and 42142 (16.8%) had poor health 
outcomes. The preliminary analysis in Table 1 
demonstrates that all listed features were significantly 
associated with the health outcomes of the data.  

Further analysis was performed using six different 
models, and their performance was shown in Figure 1 
and Supplementary Figure 1. These figures show the 
area under the curve against the number of features 
selected. Overall, the most accurate model in the 
dataset was stepwise and backward AIC with 28 
variables and an AUC of 0.889. Lasso and Elastic Net 
had 26 variables with an AUC of 0.888, making it the 
sparsest model. The least performing models were 
stepwise and backward p-value with 30 variables and 
an AUC of 0.886 (Figure 1).  

The performance of these six models was similar in 
the varying database size as it was in the whole 
dataset (Supplementary Figure 1).  

The AUC improved and stabilized as the volume of 
the database for the stepwise and backward AIC 
models, whereas both the AUC and the number of 
variables improved and stabilized as the volume of the 
dataset increased (Figure 2). 

The reference models for the complete dataset had 
an AUC of 0.886 in the validation set for the stepwise 
and backward AIC & p-value models, whereas 0.882 
for the Lasso and Elastic Net models. In evaluating 
model performance, Elastic Net, LASSO, stepwise, and 
backward AIC models demonstrated superior results. 
This assessment was based on the performance 
changes measure, calculated by subtracting the AUC 
of the reference model from the AUC of the tested 
models. The comparison also took into account the 
number of variables selected for different database 
sizes (Figures 2 and Supplementary Figure 2).  

The performance of the Elastic Net and Lasso in the 
complete dataset showed a significant improvement 
when compared to their reference model, whereas 
there was no significant change in the performance in 
the AIC models, and the p-value models showed some 
loss of performance. Lasso and Elastic Net Model 
sparsity had a negligible impact on this relationship, 
implying that approaches with a smaller number of 
variables performed better than other approaches. This 
similar trend existed throughout the varying size of the 
database. 
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Table 1: The Data Profile by the Participants Health Status used for the Comparison of the Different Methods 

Variable 
Overall, 

N = 250,829 

Good or Better 
Health, 

N = 208,687 

Fair or Poor 
Health, 

N = 42,142 
p-value1 

Gender, n (%)    <0.001 

Female 128,214 (51.1) 106,146 (50.9) 22,068 (52.4)  

Male 122,615 (48.9) 102,541 (49.1) 20,074 (47.6)  

Age, Median (IQR) 58 (42 – 70) 57 (41 – 69) 62 (50 – 72) <0.001 

Residential Area, n (%)    <0.001 

Rural 33,290 (13.3) 26,721 (12.8) 6,569 (15.6)  

Urban 217,539 (86.7) 181,966 (87.2) 35,573 (84.4)  

Marital Status, n (%)    0.040* 

Never Married 51,081 (20.4) 42,344 (20.3) 8,737 (20.7)  

Ever Married 199,748 (79.6) 166,343 (79.7) 33,405 (79.3)  

Body Mass Index (kg/m2), n (%)    <0.001 

Under-Weight (BMI<18.5) 3,532 (1.4) 2,666 (1.3) 866 (2.1)  

Normal (18.5≥BMI<25.0) 70,207 (28.0) 61,554 (29.5) 8,653 (20.5)  

Over-Weight (25.0≥BMI<30.0) 89,331 (35.6) 77,366 (37.1) 11,965 (28.4)  

Obese (BMI≥20.0) 87,759 (35.0) 67,101 (32.2) 20,658 (49.0)  

Education, n (%)    <0.001 

Did not graduate High School 10,629 (4.2) 6,237 (3.0) 4,392 (10.4)  

Graduated High School 56,591 (22.6) 43,563 (20.9) 13,028 (30.9)  

Attended College or Technical School 69,550 (27.7) 56,272 (27.0) 13,278 (31.5)  

Graduated from College or Technical School 114,059 (45.5) 102,615 (49.2) 11,444 (27.2)  

Income, n (%)    <0.001 

<$15K 12,676 (5.1) 6,852 (3.3) 5,824 (13.8)  

$15K to <$25K 22,485 (9.0) 14,504 (7.0) 7,981 (18.9)  

$25K to <$35K 28,612 (11.4) 21,264 (10.2) 7,348 (17.4)  

$35K to <$50K 33,168 (13.2) 26,797 (12.8) 6,371 (15.1)  

$50K to <$100K 80,418 (32.1) 70,555 (33.8) 9,863 (23.4)  

$100K to <$200K 55,561 (22.2) 51,630 (24.7) 3,931 (9.3)  

≥$200K 17,909 (7.1) 17,085 (8.2) 824 (2.0)  

Employed, n (%)    <0.001 

Not Employed 115,382 (46.0) 86,338 (41.4) 29,044 (68.9)  

Employed 135,447 (54.0) 122,349 (58.6) 13,098 (31.1)  

Student, n (%)    <0.001 

Non-Student 246,251 (98.2) 204,556 (98.0) 41,695 (98.9)  

Student 4,578 (1.8) 4,131 (2.0) 447 (1.1)  

Retired, n (%)    <0.001 

Non-Retired 171,341 (68.3) 145,155 (69.6) 26,186 (62.1)  

Retired 79,488 (31.7) 63,532 (30.4) 15,956 (37.9)  

Sleep Time in Hours 7 (6 – 8) 7 (6 – 8) 7 (6 – 8) <0.001 

No of days with poor physical health 0 (0 – 3) 0 (0 – 2) 10 (0 – 30) <0.001 

No of days with poor mental health 0 (0 – 5) 0 (0 – 3) 2 (0 – 15) <0.001 
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(Table 1). Continued. 

Variable 
Overall, 

N = 250,829 

Good or Better 
Health, 

N = 208,687 

Fair or Poor 
Health, 

N = 42,142 
p-value1 

Having health insurance, n (%)    <0.001 

Do not have some form of health insurance 11,063 (4.4) 8,752 (4.2) 2,311 (5.5)  

Have some form of insurance 239,766 (95.6) 199,935 (95.8) 39,831 (94.5)  

Leisure Time Physical Activities, n (%)    <0.001 

No physical activity or exercise in last 30 days 55,750 (22.2) 36,553 (17.5) 19,197 (45.6)  

Had physical activity or exercise 195,079 (77.8) 172,134 (82.5) 22,945 (54.4)  

Depression, n (%)    <0.001 

Yes 54,260 (21.6) 38,171 (18.3) 16,089 (38.2)  

No 196,569 (78.4) 170,516 (81.7) 26,053 (61.8)  

Affordable to seek Doctor, n (%)    <0.001 

Affordable to Consult Doctor 231,538 (92.3) 196,057 (93.9) 35,481 (84.2)  

Could not Afford, Doctor 19,291 (7.7) 12,630 (6.1) 6,661 (15.8)  

Stroke, n (%)    <0.001 

Yes 10,611 (4.2) 5,902 (2.8) 4,709 (11.2)  

No 240,218 (95.8) 202,785 (97.2) 37,433 (88.8)  

Cancer, n (%)    <0.001 

Yes 29,895 (11.9) 21,743 (10.4) 8,152 (19.3)  

No 220,934 (88.1) 186,944 (89.6) 33,990 (80.7)  

COPD, n (%)    <0.001 

Yes 20,082 (8.0) 10,457 (5.0) 9,625 (22.8)  

No 230,747 (92.0) 198,230 (95.0) 32,517 (77.2)  

Kidney Problem, n (%)    <0.001 

Yes 11,730 (4.7) 6,412 (3.1) 5,318 (12.6)  

No 239,099 (95.3) 202,275 (96.9) 36,824 (87.4)  

Diabetes, n (%)    <0.001 

Non-Diabetes 210,207 (83.8) 182,760 (87.6) 27,447 (65.1)  

Pre-Diabetes 5,665 (2.3) 4,182 (2.0) 1,483 (3.5)  

Diabetes 34,957 (13.9) 21,745 (10.4) 13,212 (31.4)  

Asthma, n (%)    <0.001 

No Asthma 213,657 (85.2) 181,664 (87.1) 31,993 (75.9)  

Past Asthma 10,939 (4.4) 8,939 (4.3) 2,000 (4.7)  

Current Asthma 26,233 (10.5) 18,084 (8.7) 8,149 (19.3)  

Arthritis, n (%)    <0.001 

No Arthritis 161,667 (64.5) 144,163 (69.1) 17,504 (41.5)  

Arthritis 89,162 (35.5) 64,524 (30.9) 24,638 (58.5)  

Heart Disease, n (%)    <0.001 

No Heart Disease 227,457 (90.7) 195,253 (93.6) 32,204 (76.4)  

Heart Disease 23,372 (9.3) 13,434 (6.4) 9,938 (23.6)  

COVID, n (%)    <0.001 

Yes 80,692 (32.2) 67,658 (32.4) 13,034 (30.9)  

No 170,137 (67.8) 141,029 (67.6) 29,108 (69.1)  
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(Table 1). Continued. 

Variable 
Overall, 

N = 250,829 

Good or Better 
Health, 

N = 208,687 

Fair or Poor 
Health, 

N = 42,142 
p-value1 

Deaf, n (%)    <0.001 

Yes 22,506 (9.0) 15,641 (7.5) 6,865 (16.3)  

No 228,323 (91.0) 193,046 (92.5) 35,277 (83.7)  

Blind, n (%)    <0.001 

Yes 12,331 (4.9) 6,897 (3.3) 5,434 (12.9)  

No 238,498 (95.1) 201,790 (96.7) 36,708 (87.1)  

Difficulty in Concentration, n (%)    <0.001 

Yes 27,755 (11.1) 15,885 (7.6) 11,870 (28.2)  

No 223,074 (88.9) 192,802 (92.4) 30,272 (71.8)  

Difficulty in Walking, n (%)    <0.001 

Yes 38,098 (15.2) 17,883 (8.6) 20,215 (48.0)  

No 212,731 (84.8) 190,804 (91.4) 21,927 (52.0)  

Smoking Status, n (%)    <0.001 

Non-Smoker 226,627 (90.4) 192,430 (92.2) 34,197 (81.1)  

Current Smoker 14,857 (5.9) 9,797 (4.7) 5,060 (12.0)  

Past Smoker 9,345 (3.7) 6,460 (3.1) 2,885 (6.8)  

Heavy Alcohol, n (%)    <0.001 

Non-Alcohol 232,947 (92.9) 193,224 (92.6) 39,723 (94.3)  

Alcohol 17,882 (7.1) 15,463 (7.4) 2,419 (5.7)  
1Mann Whitney test for the continuous observations; Fisher Exact and or Chi-square test was used for categorical observations. 
The table presents a detailed data profile based on the prediction class, which represents the participants' health status in this study. It includes the frequency and 
column percentage for each variable, as well as the statistical association between the variables and health status. This information provides valuable insights into 
the relationship between the predictors and the outcome, allowing for a deeper understanding of the factors influencing health status. 

 
Figure 1: Parsimony measures, the area under the curve is 
the discrimination performance on the validation set. 

A higher AUC value indicates better discrimination 
performance, meaning the model is able to effectively 
distinguish between the classes. On the other hand, a model 
with a higher AUC value and fewer variables is considered 
more robust as it is able to achieve good performance with 
less complexity. 

 
Figure 2: An evaluation of the discrimination ability of a 
model showing the variance in AUC between the full variable 
model and the reduced variable model. 

The discrimination performance of a model was evaluated by 
comparing the difference in Area Under the Curve (AUC) 
between a model with all variables and a model with fewer 
variables from variable selection. A change greater than zero 
indicates improved performance, while a change less than 
zero indicates decreased performance. A model with fewer 
variables is considered more robust as it achieves good 
performance with less complexity. 
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Figure 3: Heat map illustrating the predictive ability 
importance of variables based on their selection method. 

The heat map provides a visual representation of the 
relationship between variables and feature selection 
methods, highlighting the importance of each method for 
each specific variable. By standardizing the importance 
metrics using quartiles, the heat map allows for easy 
comparison of the performance between variables and 
methods. This analysis aids in understanding the predictive 
ability and importance of variables in relation to the selection 
method. 

The selected variables were ranked from the 
highest (4th quartile) to lowest (1st quartile) based on 
their importance, and the not included variables as zero 
for the whole dataset (Figure 3), and the same has 
been shown for all the size varying databases in the 
Supplementary Figure 3.  

The Lasso and Elastic Net Model were found to be 
a sparsest models and they considered binary 
variables as higher importance in comparison to other 
models, as they did not rank continuous variables like 
Physical and Mental health as important, whereas all 

other four models highlighted it as a key variable. 
Walking ability and heart disease have consistently 
emerged as the most significant factors, consistently 
ranking in the highest quartile across different methods.  

The importance of the variables was similar and 
consistent throughout the varying size of the database 
(Figure 4). This indicates the strong and stable 
relationship between these variables regardless of the 
size of the dataset. 

DISCUSSION 

Varying dataset sizes were utilised to assess the 
performance of the different variable selection 
methods. There are no significant performance 
differences between model fitness metric and number 
of variables in stepwise and backward p-value models, 
regardless of database size. The performance of 
stepwise and backward AIC models improves with 
larger database sizes, along with the number of 
variables. Elastic Net and Lasso models outperform 
other models across different database sizes, with 
Lasso and Elastic Net performing better with fewer 
variables. However, these stepwise and backward 
techniques were overshadowed by few selection 
methods, such as recursive feature elimination with 
cross- validation [19,20] and regularized tree 
ensembles [21], those were addressing the curse of 
dimensionality and avoid overfitting. Those were also 
aimed to classify a parsimonious set of predictors and 
are confirmed with out-of-sample data for successful 
feature selection. 

In stepwise regression models, the use of 
theoretical arguments or expert opinion to select initial 
predictors has been shown to be valuable. It is more 
successful to start with at least five to ten true variables 
and five to ten nuisance variables rather than starting 
with hundreds of nuisance variables. A Bayesian 
method is recommended, which integrates data with a 
prior distribution for the model's parameters to account 
for uncertainty in the relevance of potential predictors. 
As the amount of data increases, Bayesian posterior 
distributions increasingly prioritize error minimization, 
converging towards least squares estimates. This 
reduces uncertainty and improves precision, but may 
simultaneously mask the true variability inherent in the 
underlying data [22,23].  

For explanatory variable coefficients, the LASSO, 
Elastic Net, and Ridge regression methods all implicitly 
assume independent, zero-mean, identical-variance 
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prior distributions[24]. However, it is implausible that 
predictor coefficients determined based on expert 
judgment would have previous means of zero. Explicit 
priors may be more appealing than implicit priors. The 
performance metrics of a model are influenced by the 
feature selection procedure and the classifier used. 
Certain combinations may excel with small sample 
sizes, while others may perform better with larger 
samples and show lower variance. It is important to 
carefully consider the selection of features and 
classifier to optimize model performance [25]. It is 
crucial to acknowledge that our investigation was 
limited to a select number of combinations, indicating 
that the results may not be directly transferable to 
variables obtained from data with non-Gaussian class 
distributions in smaller databases. 

CONCLUSIONS 

In summary, the performance of the model fitness 
metric and the number of variables extracted in the 
stepwise and backward p-value models do not show 
significant differences across different database sizes. 
The AUC performance of the stepwise and backward 
AIC models improves with larger databases and more 
variables, demonstrating some consistency. The Lasso 

and Elastic Net models consistently outperform other 
models across varying database sizes. While the AUC 
performance of the stepwise and backward AIC 
models, as well as the Lasso and Elastic Net models, 
show similar trends with database size, the Lasso and 
Elastic Net models perform better with fewer variables. 
Further research is needed to assess the 
generalizability of these findings to different clinical 
scenarios and datasets. 
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Figure 4: The relationship between the area under the curve and the number of features extracted depends on the size of the 
database. 

The figure illustrates the correlation between the area under the curve and the number of features extracted by different 
methods, highlighting the impact of database size on this relationship. Despite the fluctuations in database size, the figure 
demonstrates a level of similarity and consistency in results for a specific method. This suggests that the method is robust and 
reliable across varying database sizes. 
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Operator 
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