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Abstract: Background: RAD51C, a critical member of the RAD51 paralog family, is essential for homologous 
recombination (HR)-mediated DNA repair, a pathway crucial for maintaining genomic stability. Mutations in RAD51C 
have been linked to cancer susceptibility, particularly in breast and ovarian cancers, where impaired DNA repair 
mechanisms contribute to genomic instability and tumor progression. Despite its clinical significance, the functional 
impact of specific RAD51C variants remains poorly understood, necessitating a comprehensive investigation into their 
biological implications. 

Methods: This study classified RAD51C gene variants into damaging and tolerant categories using computational 
prediction tools, including SIFT, PolyPhen, CADD, MetaLR, and Mutation Assessor. Variants were prioritized based on 
consensus scores and classified as high-confidence damaging variants. Correlation and agreement among tools were 
analyzed to refine predictions. Principal Component Analysis (PCA) and clustering methods were employed to group 
variants based on prediction patterns. Protein-protein interaction (PPI) networks and pathway enrichment analyses were 
conducted to contextualize damaging variants within broader biological systems, with a focus on their roles in HR, DNA 
repair, and cellular processes. 

Results: A total of 2526 variants were analyzed, with damaging variants showing consistent patterns across tools. 
Consensus scores highlighted 302 high-confidence damaging variants, which were associated with disrupted biological 
processes, including double-strand break repair via homologous recombination, telomere maintenance, and regulation of 
cell cycle checkpoints. PPI analysis revealed an interconnected network with 11 nodes and 54 edges, with a clustering 
coefficient of 0.982, indicating tightly coordinated interactions among DNA repair proteins. Pathway enrichment analyses 
identified significant associations with homologous recombination (FDR = 2.55E-17) and the Fanconi anemia pathway 
(FDR = 2.96E-06). 

Conclusion: This study provides a comprehensive framework for assessing the functional impacts of RAD51C variants 
by integrating computational predictions with biological analyses. The findings underscore the importance of RAD51C in 
HR and DNA repair pathways, offering insights into its role in genomic stability and cancer progression. These results 
can inform the prioritization of variants for experimental validation and guide therapeutic strategies targeting DNA repair 
deficiencies. 
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INTRODUCTION 

Statistical methodologies form the backbone of 
genomic research, enabling the interpretation of vast, 
complex datasets to uncover biologically meaningful 
insights. In this study, we apply advanced statistical 
techniques to investigate RAD51C, a gene integral to 
homologous recombination (HR)-mediated DNA repair 
and genomic stability. Variants in RAD51C are 
implicated in breast and ovarian cancers, where 
impaired DNA repair pathways drive genomic instability 
and tumor progression. Despite its clinical significance, 
the functional consequences of specific RAD51C  
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variants remain unclear. This research leverages 
computational prediction tools and statistical 
frameworks-PCA, clustering, and consensus scoring-to 
classify and prioritize 2526 RAD51C variants. By 
integrating these approaches with PPI network and 
pathway enrichment analyses, this study highlights the 
transformative potential of statistical methodologies in 
identifying key variants and elucidating their roles in 
critical biological pathways. The findings underscore 
RAD51C’s significance in DNA repair and cancer 
biology while establishing a methodological foundation 
for future genomic investigations. 

The RAD51 paralog family, including RAD51C, 
plays a crucial role in maintaining genomic stability by 
facilitating homologous recombination (HR), a critical 
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pathway for repairing double-strand DNA breaks 
(DSBs) and ensuring proper chromosome segregation 
during cell division. Mutations or functional alterations 
in RAD51C have been implicated in various diseases, 
particularly hereditary cancers such as breast and 
ovarian cancer, where deficiencies in HR-mediated 
DNA repair contribute to genomic instability and 
tumorigenesis [1, 2]. Despite its recognized 
importance, the functional implications of specific 
RAD51C gene variants remain incompletely 
understood, particularly in the context of their potential 
impact on molecular pathways and cellular networks. 

The classification of gene variants into damaging or 
tolerant categories is a critical step in genomic 
research, especially when studying genes with 
essential roles in cellular processes like DNA repair. 
Functional prediction tools, such as SIFT, PolyPhen, 
CADD, MetaLR, and Mutation Assessor, have emerged 
as indispensable computational resources for this task, 
providing probabilistic assessments of a variant's likely 
impact on protein function [3, 4]. Each tool employs 
unique algorithms and data sources, leading to 
variability in predictions, but when used collectively, 
they offer a robust framework for prioritizing high-
confidence damaging variants for further investigation 
[5]. Identifying such variants in RAD51C could uncover 
new insights into their biological significance and 
potential clinical applications. 

Biological pathways and molecular functions 
influenced by damaging variants in RAD51C offer key 
insights into its role in maintaining genomic integrity. 
Studies have shown that RAD51C is integral to 
processes such as homologous recombination, 
telomere maintenance, and cell cycle checkpoint 
regulation [6, 7]. Damaging variants could disrupt these 
processes, leading to downstream effects that are 
particularly relevant in the context of cancer predis-
position and therapy resistance. Systematic pathway 
and molecular function analyses are, therefore, 
essential for contextualizing the functional implications 
of these variants within broader biological systems. 

Given the variability among prediction tools, 
analyzing the level of agreement and correlation 
among their predictions is vital for refining confidence 
in functional annotations. Some tools, such as SIFT 
and CADD, focus on evolutionary conservation and 
annotation databases, while others, like MetaLR and 
Mutation Assessor, integrate machine learning models 
or biochemical impact scores [8, 9]. Understanding the 
patterns of agreement and divergence among these 

tools provides a clearer picture of their predictive 
strengths and limitations, ultimately enhancing the 
reliability of variant classification. 

To achieve a comprehensive understanding of 
RAD51C variant impacts, it is critical to integrate these 
predictions with higher-order biological analyses, such 
as protein-protein interaction (PPI) networks and 
pathway enrichment studies. PPI networks provide 
insights into how RAD51C variants may affect 
interactions with other key DNA repair proteins, such 
as BRCA1, XRCC3, and FANCD2, all of which are 
involved in homologous recombination and associated 
repair pathways [10, 11]. Pathway enrichment analysis 
complements this by linking damaging variants to 
specific biological processes and molecular pathways, 
offering a systems-level perspective of their potential 
clinical relevance. 

Rationale of the Study 

The RAD51C gene plays a pivotal role in 
homologous recombination (HR), an essential DNA 
repair pathway that maintains genomic stability by 
repairing double-strand breaks (DSBs). Dysfunction in 
HR is a hallmark of several cancers, particularly breast 
and ovarian cancers, where defects in DNA repair 
contribute to tumor initiation and progression. Despite 
its importance, the functional impacts of specific 
RAD51C variants remain poorly understood, limiting 
our ability to predict their clinical relevance or 
therapeutic implications. 

Functional prediction tools such as SIFT, PolyPhen, 
CADD, MetaLR, and Mutation Assessor offer 
computational methods to classify variants as 
damaging or tolerant. However, these tools have 
inherent differences in scoring methodologies, leading 
to variability in predictions. While individual tools 
provide useful insights, a consensus-based, multi-tool 
approach can enhance confidence in identifying high-
priority variants for experimental validation. Integrating 
these predictions with biological context, such as 
pathway analysis and protein-protein interactions 
(PPIs), is necessary to understand how damaging 
RAD51C variants disrupt DNA repair mechanisms and 
influence cellular processes. 

Moreover, damaging RAD51C variants are likely to 
impact key molecular pathways involved in 
homologous recombination, telomere maintenance, 
and cell cycle checkpoints. Investigating these 
pathways could uncover the broader implications of 
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RAD51C dysfunction, such as increased susceptibility 
to genomic instability, sensitivity to DNA-damaging 
agents, or resistance to therapies like PARP inhibitors. 
Understanding these effects has direct clinical 
relevance, as RAD51C is increasingly recognized as a 
biomarker for cancer susceptibility and a target for 
precision therapies. 

By combining computational predictions, PPI 
networks, and pathway enrichment analyses, this study 
aims to bridge the gap between variant classification 
and biological interpretation. This integrative approach 
will provide a comprehensive framework for assessing 
RAD51C variants, advancing our understanding of their 
roles in DNA repair, and identifying potential 
therapeutic opportunities. The study is particularly 
timely given the growing importance of HR pathway 
dysfunction in cancer biology and treatment. 

This study aimed to address these gaps by 
systematically classifying RAD51C gene variants into 
damaging and tolerant categories using a suite of 
prediction tools. High-confidence damaging variants 
are prioritized for further biological exploration, 
particularly in the context of their influence on 
molecular functions, biological pathways, and cellular 
networks. By analyzing the correlation among 
prediction tools and integrating variant classifications 
with PPI and pathway enrichment analyses, this study 
provides a deeper understanding of how RAD51C 
variants fit within larger biological contexts, with an 
emphasis on their potential clinical implications in 
genomic instability and cancer. 

Objectives 

This study aimed to: 

1. classify gene variants into damaging and tolerant 
categories based on functional prediction tools 
like SIFT, PolyPhen, CADD, MetaLR, and 
Mutation Assessor. High-confidence damaging 
variants were prioritized for further investigation. 

2. explore the biological pathways and molecular 
functions influenced by damaging variants.  

3. analyze the level of agreement and correlation 
among prediction tools, identifying consistent 
patterns and refining confidence in the functional 
predictions.  

4. integrate variant classification with protein-
protein interaction networks and pathway 

enrichment analyses. This integration will 
provide a deeper understanding of how 
damaging variants fit within larger molecular and 
cellular contexts, with an emphasis on their 
clinical relevance. 

METHODOLOGY 

This study employed a comprehensive bioinforma-
tics pipeline to analyze gene variant data and investi-
gate their potential functional impacts using multiple 
prediction tools, clustering analyses, protein-protein 
interaction (PPI) networks, and enrichment analyses.  

Data Collection and Preprocessing 

Gene variant data were obtained from publicly 
available datasets from ENSEMBL. Initial data 
processing included cleaning, normalization, and 
standardization. Missing values were imputed using 
mean substitution, and column names were 
standardized for consistency. Variants were filtered for 
those with complete annotation across all five 
functional prediction tools: SIFT, PolyPhen, CADD, 
MetaLR, and Mutation Assessor. Data preprocessing 
was performed using Python (pandas, NumPy) and R 
(dplyr, tidyr) to ensure accuracy and reproducibility. 

Functional Prediction Tools 

Functional predictions for each variant were 
generated using the following tools: 

SIFT: Scores were obtained from the SIFT 
database, with damaging variants classified as ≤0.05. 

• PolyPhen: Predictions were extracted from the 
PolyPhen-2 web server, using a threshold of 
≥0.85 for damaging variants. 

• CADD: Combined Annotation-Dependent 
Depletion scores were retrieved from the CADD 
v1.6 database, where damaging variants are 
defined as >20. 

• MetaLR: Predictions were computed using the 
MetaSVM/MetaLR framework implemented in 
ANNOVAR, with damaging variants defined as 
≥0.5. 

• Mutation Assessor: Scores were retrieved from 
the Mutation Assessor database, with a 
damaging threshold of ≥2. Batch processing of 
variants for these tools was automated using 
Bash scripts and the ANNOVAR software suite. 
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Descriptive Statistics and Threshold Classification 

Descriptive statistics were calculated to summarize 
the scores for each tool, including mean, standard 
deviation, and score distributions. Thresholds for 
damaging and tolerant variants were applied to classify 
variants into functional categories for each tool. The 
classification was performed using Python (pandas, 
SciPy) and R (ggplot2, dplyr) to generate summary 
tables and distribution plots. 

Overlap and Correlation Analysis 

The agreement between tools was visualized using 
Venn diagrams and bar charts to examine overlaps in 
damaging classifications. Correlation analysis between 
tool scores was conducted using Python (Seaborn, 
Matplotlib) and R (corrplot). The Pearson correlation 
coefficient was computed to quantify relationships 
between tools, and heatmaps were generated for 
visualization. 

Principal Component Analysis (PCA) and 
Clustering 

Dimensionality reduction was performed using 
Principal Component Analysis (PCA) to identify 
patterns in variant scores across tools. PCA was 
implemented using Python (scikit-learn), with 2D and 
3D visualizations generated using Matplotlib. Clustering 
analyses were performed on the PCA-transformed data 
using the k-means algorithm, implemented in Python 
(scikit-learn).  

Clusters were analyzed for mean scores across 
tools to identify biologically distinct groups, and 
visualizations were created to highlight cluster-specific 
patterns. 

Protein-Protein Interaction (PPI) Network Analysis 

PPI analysis was conducted to investigate the 
functional relationships among proteins encoded by 
damaging variants. Interaction data were retrieved from 
the STRING database (v11.5). The PPI network was 
constructed using Cytoscape with the STRING app, 
and key metrics, including the number of nodes, edges, 
average node degree, clustering coefficient, and PPI 
enrichment p-value, were calculated. The visualization 
of the PPI network was enhanced using Cytoscape’s 
network analysis tools. 

Gene Ontology and Pathway Enrichment Analysis 

Enrichment analysis for Gene Ontology (GO) terms 
and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways was performed to link damaging 
variants to biological processes, molecular functions, 
and cellular components. Variants mapped to genes 
were input into DAVID (v6.8) and g:Profiler for 
enrichment analyses. The false discovery rate (FDR) 
was calculated to assess the significance of enriched 
terms, and visualizations were created using R 
(clusterProfiler, enrichplot). 

Consensus Score Calculation 

A consensus score was calculated for each variant 
to quantify agreement across prediction tools. The 
score represented the proportion of tools classifying a 
variant as damaging. This was implemented using 
Python (pandas), and distribution plots were generated 
with Matplotlib to identify high-confidence damaging 
variants. 

Data Visualization 

Visualizations were central to this study for 
communicating results effectively: 

• Venn diagrams: Created using R (Venn 
Diagram) to illustrate overlaps between tools. 

• Bar charts: Generated with Python (Matplotlib) 
to show the distribution of damaging classifi-
cations. 

• Heatmaps: Produced using R (pheatmap) for 
correlation analysis. 

• Scatter plots for PCA and clusters: Created 
using Python (Matplotlib, Seaborn). 

• PPI networks: Visualized in Cytoscape with 
detailed annotations. 

Software and Resources 

Key software and tools used in this study include: 

• Python: For data processing, statistical analysis, 
and visualizations (pandas, NumPy, SciPy, 
Matplotlib, Seaborn, scikit-learn). 

• R: For additional statistical analysis and 
enrichment visualizations (dplyr, ggplot2, 
clusterProfiler). 

• Cytoscape: For PPI network construction and 
visualization. 

• ANNOVAR: For variant annotation and MetaLR 
predictions. 
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• STRING database: For retrieving PPI data. 

• DAVID and g:Profiler: For enrichment analyses. 

The multi-step methodology integrated diverse 
computational tools and software to analyze gene 
variant data comprehensively. By leveraging functional 
prediction scores, clustering analyses, PPI networks, 
and pathway enrichment, this study provided robust 
insights into the biological significance of the variants. 
Each step in the workflow was designed to ensure 
rigor, reproducibility, and biological relevance. 

RESULTS 

The descriptive statistics provide a comprehensive 
overview of the variant data across all five prediction 
tools (Table 1). The SIFT scores range from 0 to 1, with 
a mean of 0.126, reflecting a skewed distribution where 
most variants tend toward the damaging range (lower 
values). PolyPhen scores show a mean of 0.405, with a 
wider spread from 0 to 1, suggesting greater variability 
in predictions. The CADD tool, which scores on a larger 
scale, has an average of 21.39 with a standard 
deviation of 6.48, indicating that a significant proportion 
of variants are close to the threshold of 20 for 
damaging classification. MetaLR and Mutation 
Assessor scores both have lower means (0.258 and 
0.555, respectively), with standard deviations indicating 
moderate variability. Across all tools, the 25th and 75th 
percentiles illustrate clear thresholds that separate 
potential damaging and tolerant variants. 

The SIFT tool classified 1620 variants as damaging 
and 906 as tolerant (Table 2). Damaging variants have 
an extremely low mean score of 0.01, indicating a 
strong prediction of deleterious effects. In contrast, 
tolerant variants have a mean score of 0.33, showing a 
clear separation between the two groups. The standard 

deviation of tolerant variants is higher than that of 
damaging ones, reflecting a broader range of scores. 
The maximum score for damaging variants is 0.05, 
aligning well with the classification threshold, while 
tolerant variants span from 0.06 to 1. This distinction 
reinforces the reliability of SIFT in separating damaging 
and tolerant variants. 

PolyPhen identified 687 variants as damaging and 
1839 as tolerant (Table 3). Damaging variants exhibit a 
high mean score of 0.965, close to the upper limit of 1, 
which aligns with its threshold of ≥0.85 for damaging 
classification. Tolerant variants, on the other hand, 
show a mean of 0.196, demonstrating a marked 
contrast with damaging variants. The data also reflects 
a significant standard deviation for tolerant scores, 
suggesting variability within the tolerant group. 
Damaging variants are tightly clustered around high 
confidence scores, as seen in their low standard 
deviation, emphasizing PolyPhen's stringency for 
predicting damaging effects. 

The CADD tool classified 1752 variants as 
damaging and 774 as tolerant (Table 4). Damaging 
variants have a mean score of 24.8, significantly above 
the threshold of 20, with a relatively narrow standard 
deviation of 2.64. This highlights the precision of CADD 
in identifying potentially deleterious variants. Tolerant 
variants have a mean score of 13.6, indicating a clear 
distinction from damaging scores. The distribution of 
tolerant scores spans a wider range, reflecting greater 
diversity in predictions for non-damaging variants. The 
separation between damaging and tolerant groups 
underscores the robustness of CADD as a predictive 
tool. 

MetaLR classified 330 variants as damaging and 
2196 as tolerant, with damaging variants showing a 
mean score of 0.6, well above the threshold of 0.5 

Table 1: Descriptive Statistics of Variant Data 

 SIFT PolyPhen CADD MetaLR Mutation Assessor 

count 2526 2526 2517 2506 2455 

mean 0.126112 0.405186 21.38697 0.25765 0.555402 

std 0.228045 0.407473 6.480529 0.176995 0.30118 

min 0 0 0 0.018 0 

25% 0 0.015 19 0.113 0.305 

50% 0.02 0.2245 23 0.207 0.57 

75% 0.12 0.89075 26 0.369 0.828 

max 1 1 36 0.915 0.986 
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Table 2: Damaging and Tolerant Summary for SIFT 

    SIFT PolyPhen CADD MetaLR Mutation Assessor 

Damaging count 1620 1620 1615 1609 1586 

Damaging mean 0.009926 0.588266 24.23282 0.332111 0.699701 

Damaging std 0.014333 0.387029 4.404604 0.17355 0.241864 

Damaging min 0 0 0 0.034 0.026 

Damaging 25% 0 0.164 23 0.191 0.537 

Damaging 50% 0 0.724 25 0.306 0.744 

Damaging 75% 0.02 0.972 26 0.45 0.924 

Damaging max 0.05 1 36 0.915 0.986 

Tolerant count 906 906 902 897 869 

Tolerant mean 0.333863 0.077823 16.29157 0.124085 0.292045 

Tolerant std 0.278128 0.167307 6.481795 0.075587 0.205305 

Tolerant min 0.06 0 0 0.018 0 

Tolerant 25% 0.11 0.003 13 0.07 0.119 

Tolerant 50% 0.24 0.012 17.5 0.102 0.27 

Tolerant 75% 0.45 0.05775 21.75 0.169 0.438 

Tolerant max 1 0.986 34 0.538 0.954 

 

Table 3: Damaging and Tolerant Summary for PolyPhen  

    SIFT PolyPhen CADD MetaLR Mutation Assessor 

Damaging count 687 687 682 677 677 

Damaging mean 0.006012 0.965064 26.18182 0.459941 0.864591 

Damaging std 0.026504 0.039997 3.198626 0.156855 0.145837 

Damaging min 0 0.85 8 0.093 0.202 

Damaging 25% 0 0.941 25 0.332 0.805 

Damaging 50% 0 0.982 26 0.459 0.928 

Damaging 75% 0 0.997 27 0.581 0.966 

Damaging max 0.44 1 36 0.915 0.986 

Tolerant count 1839 1839 1835 1829 1778 

Tolerant mean 0.170979 0.19603 19.6049 0.182772 0.437674 

Tolerant std 0.252537 0.257997 6.487575 0.114305 0.258629 

Tolerant min 0 0 0 0.018 0 

Tolerant 25% 0.01 0.007 17 0.091 0.21425 

Tolerant 50% 0.05 0.05 22 0.161 0.438 

Tolerant 75% 0.24 0.324 24 0.243 0.63725 

Tolerant max 1 0.849 36 0.651 0.979 
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Table 4: Damaging and Tolerant Summary for CADD 

    SIFT PolyPhen CADD MetaLR Mutation Assessor 

Damaging count 1752 1752 1752 1751 1751 

Damaging mean 0.040862 0.547857 24.79737 0.318376 0.666579 

Damaging std 0.104747 0.395136 2.642735 0.17556 0.258088 

Damaging min 0 0 21 0.029 0 

Damaging 25% 0 0.10675 23 0.179 0.49 

Damaging 50% 0.005 0.6065 25 0.289 0.702 

Damaging 75% 0.03 0.963 26 0.433 0.907 

Damaging max 1 1 36 0.915 0.986 

Tolerant count 774 774 765 755 704 

Tolerant mean 0.319083 0.082239 13.57647 0.116813 0.278884 

Tolerant std 0.302094 0.195233 5.877321 0.06417 0.208507 

Tolerant min 0 0 0 0.018 0 

Tolerant 25% 0.07 0.001 10 0.065 0.103 

Tolerant 50% 0.23 0.009 15 0.099 0.237 

Tolerant 75% 0.47 0.045 18 0.1625 0.4225 

Tolerant max 1 0.998 20 0.364 0.966 

 

Table 5: Damaging and Tolerant Summary for MetaLR 

    SIFT PolyPhen CADD MetaLR Mutation Assessor 

Damaging count 330 330 330 330 330 

Damaging mean 0.003212 0.934839 26.85152 0.599952 0.936794 

Damaging std 0.009737 0.168113 2.053779 0.080573 0.076694 

Damaging min 0 0 23 0.502 0.418 

Damaging 25% 0 0.94625 25.25 0.549 0.93 

Damaging 50% 0 0.992 27 0.583 0.961 

Damaging 75% 0 0.998 28 0.625 0.98 

Damaging max 0.11 1 36 0.915 0.986 

Tolerant count 2196 2196 2187 2176 2125 

Tolerant mean 0.144581 0.325593 20.56241 0.205738 0.496175 

Tolerant std 0.239158 0.371815 6.520298 0.120932 0.278895 

Tolerant min 0 0 0 0.018 0 

Tolerant 25% 0 0.01 18 0.102 0.268 

Tolerant 50% 0.03 0.117 22 0.182 0.501 

Tolerant 75% 0.17 0.685 25 0.292 0.723 

Tolerant max 1 1 36 0.499 0.986 

 

(Table 5). The standard deviation for damaging 
variants is relatively low (0.08), indicating high 
confidence in predictions. Tolerant variants have a 
mean score of 0.206, reflecting their categorization as 

non-damaging. The spread of scores within the tolerant 
group is broader than for damaging variants, 
suggesting variability in non-damaging predictions. 
MetaLR appears more selective in identifying 
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damaging variants, as indicated by the smaller count 
and tighter clustering of scores. 

The Mutation Assessor tool did not identify any 
damaging variants within this dataset when applying its 
threshold of ≥2 (Table 6). All 2455 variants fall into the 
tolerant category, with a mean score of 0.555. The 
standard deviation of 0.301 indicates moderate 
variability, with scores spanning from 0 to 0.986. While 
Mutation Assessor’s conservative classification 
approach may result in fewer damaging predictions, its 
thresholds ensure high confidence in identifying 
functional impacts when variants do meet the 
damaging criteria. 

Overlap Analysis Among Tools for Damaging 
Variants: 

The Venn diagram shows the extent of agreement 
and differences between these tools in classifying 
damaging variants (Figure 1). Similarly, this diagram 
highlights overlaps and unique classifications between 
these two tools (Figure 2). 

The bar chart illustrates the distribution of damaging 
classifications across tools (Figure 3). Variants were 
grouped based on how many tools classified them as 
damaging (ranging from 0 to 4). This provides insight 
into the consensus among prediction tools for 
identifying deleterious variants. 

 
Figure 1: Overlapping variants in SIFT and Polyphen. 

 

 
Figure 2: Overlapping variants in CADD, MetaLR. 

Table 6: Damaging and Tolerant Summary for Mutation Assessor 

    SIFT PolyPhen CADD MetaLR Mutation Assessor 

Damaging count 0 0 0 0 0 

Damaging mean           

Damaging std           

Damaging min           

Damaging 25%           

Damaging 50%           

Damaging 75%           

Damaging max           

Tolerant count 2526 2526 2517 2506 2455 

Tolerant mean 0.126112 0.405186 21.38697 0.25765 0.555402 

Tolerant std 0.228045 0.407473 6.480529 0.176995 0.30118 

Tolerant min 0 0 0 0.018 0 

Tolerant 25% 0 0.015 19 0.113 0.305 

Tolerant 50% 0.02 0.2245 23 0.207 0.57 

Tolerant 75% 0.12 0.89075 26 0.369 0.828 

Tolerant max 1 1 36 0.915 0.986 
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Overlap Counts: 643 variants were not classified 
as damaging by any tool .415 variants were classified 
as damaging by only one tool. 816 variants were 
classified as damaging by two tools .378 variants 
overlap in the damaging classification across three 
tools.302 variants were classified as damaging by all 
four tools. 

The correlation analysis between prediction tool 
scores revealed the following (Table 7, Figure 4): 

Mutation Assessor and MetaLR: Strong positive 
correlation (0.81), indicating similar tendencies in 
predicting functional impact. 

PolyPhen and Mutation Assessor: High 
correlation (0.77), suggesting these tools often align in 
their assessments. 

CADD and PolyPhen: Moderate correlation (0.60), 
reflecting partial agreement. 

Negative Correlations 

SIFT with other tools: SIFT showed a negative 
correlation with most other tools, especially Mutation 
Assessor (-0.61) and CADD (-0.59), as it uses a 

different scoring direction (lower scores indicate more 
damaging predictions). 

Moderate Relationships 

MetaLR and CADD: A moderate positive 
correlation (0.59), reflecting some alignment in their 
predictions. 

To explore consensus scores across all tools, we 
calculated a composite score or a consensus score for 
each variant. This consensus score represents how 
many tools agree on classifying a variant as damaging 
(Figure 5 and Table 8). 

PCA Results 

The scatter plot of the first two principal components 
(PC1 and PC2) shows the clustering of variants based 
on their scores across the prediction tools. Each point 
represents a variant, and its position reflects the 
combined contribution of all tool scores. PC1 explains 
89.0% of the total variance, indicating that most 
variability in the data is captured by this component. 
PC2 explains an additional 9.5%, contributing to a 
cumulative variance of approximately 98.5%. 

 
Figure 3: Distribution of damaging classifications across the tools. 

Table 7: Correlation Matrix of Prediction Tools 

  SIFT PolyPhen CADD MetaLR Mutation Assessor 

SIFT 1 -0.47324 -0.58576 -0.48022 -0.60543 

PolyPhen -0.47324 1 0.600859 0.761743 0.773122 

CADD -0.58576 0.600859 1 0.593138 0.663958 

MetaLR -0.48022 0.761743 0.593138 1 0.807913 

MutationAssessor -0.60543 0.773122 0.663958 0.807913 1 
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3D PCA Visualization 

Each point represents a variant, positioned based 
on the first three principal components (PC1, PC2, 
PC3) (Figure 6B). This 3D visualization provides a 
more detailed view of the data's structure, showing 

clustering or spread that may not be evident in 2D. PC1 
Explains 89.0% of the variance. PC2 Adds 9.5% of 
variance. PC3 Contributes a small amount (1.0%), 
cumulatively accounting for about 99.5% of the total 
variance. 

The thresholds and validation approaches for 
clustering were selected to ensure biologically 
meaningful and statistically robust results. The 
clustering was performed based on PCA-transformed 
data, where the dimensionality reduction captured key 
variance across prediction tools, allowing for distinct 
clustering in the transformed space. The use of PCA 
ensures that clustering focuses on the most informative 
features of the dataset, reducing noise and 
redundancy. Clustering results were validated by 
examining the consistency of predictions across tools 
and the biological plausibility of cluster-specific profiles. 
For example, Cluster 0 variants showed uniformly high 
damaging predictions across multiple tools, justifying 

 
Figure 4: Correlation between Prediction tool scores. 

 

 
Figure 5: Distribution of Consensus scores Across All Tools. 

Table 8: Description Statistics of Consensus Scores 

  Consensus Score 

count 2455 

mean 0.394913 

std 0.169516 

min 0.046856 

25% 0.251973 

50% 0.352925 

75% 0.552233 

max 0.781708 



Statistical Analysis of Gene Variants for Homologous Recombination International Journal of Statistics in Medical Research, 2024, Vol. 13      415 

their classification as highly damaging. Additionally, the 
small cluster sizes reflect tightly grouped, high-
confidence variant predictions, further supported by 
clear separation in PCA visualization (Figure 7). The 
clustering thresholds and consensus scores were 
chosen to maximize agreement among tools while 
distinguishing meaningful biological categories, as 
evidenced by the clear functional distinctions between 
highly damaging, benign, and mixed impact clusters. 
This approach ensures robust identification of variants 
for downstream functional and experimental studies. 

Clustering Results from PCA Visualization 
(Figure 7): The scatter plot shows distinct clusters in 

the PCA-transformed space, with each cluster color-
coded.This highlights groups of variants with similar 
prediction patterns across the tools. 

Cluster Sizes 

• Cluster 0: Contains 2 variants. 

• Cluster 1: Contains 3 variants. 

• Cluster 2: Contains 1 variant. 

• These sizes suggest small, tightly grouped 
clusters, likely reflecting unique or extreme 
variants 

 
A 

 
B 

Figure 6: A: PCA Analysis. B: 3D PCA of Prediction tool scores. 



416     International Journal of Statistics in Medical Research, 2024, Vol. 13 Adiga et al. 

Cluster 0: Highly Damaging Variants 

Variants in Cluster 0 are characterized by 
consistently high damaging predictions across 
PolyPhen (0.9), CADD (26), MetaLR (0.75), and 
Mutation Assessor (2.7). The SIFT score of 0.85 
suggests these variants may not strongly align with its 
damaging classification (lower scores indicate higher 
impact), but the overall consensus score of 6.24 
indicates strong agreement among the other tools. This 
cluster likely represents variants with significant 
functional impacts, potentially associated with critical 
biological disruptions. The alignment across multiple 
tools highlights this group as containing high-
confidence damaging variants, making them strong 
candidates for further experimental validation. 

Cluster 1: Benign or Neutral Variants 

Cluster 1 is dominated by tolerant predictions, as 
evidenced by low average scores across all tools: SIFT 
(0.027), PolyPhen (0.133), CADD (12.33), MetaLR 
(0.3), and Mutation Assessor (1.2). The consensus 
score of 2.8 is markedly lower compared to other 
clusters, reinforcing the benign or neutral nature of 
these variants. This group likely includes variants with 

minimal or no functional consequences, representing 
the least deleterious cluster. The agreement among 
tools in identifying these variants as tolerant 
underscores their likely benign role in biological 
processes. 

Cluster 2: Mixed or Nuanced Functional Impacts 

Variants in Cluster 2 present a mixed pattern of 
predictions. They show high damaging scores in 
PolyPhen (0.9), CADD (25), and MetaLR (0.8), but 
relatively lower scores in SIFT (0.05). The Mutation 
Assessor score (2.8) is also higher, aligning with a 
damaging classification. The consensus score of 5.91 
reflects partial agreement among the tools, suggesting 
this cluster may include variants with tool-specific 
impacts or more nuanced functional consequences. 
These variants might represent cases where specific 
biological contexts or additional experimental data are 
needed to determine their exact role. This cluster may 
also capture borderline cases that challenge strict 
damaging or tolerant classification thresholds. 

The clustering analysis identified three groups of 
variants with distinct functional profiles (Table 10). 
Cluster 0 includes highly damaging variants with 

 
Figure 7: 3D PCA of Prediction tool scores with clusters. 

 

Table 9: Cluster Means 

Cluster SIFT PolyPhen CADD MetaLR Mutation Assessor 

0 0.85 0.9 26 0.75 2.7 

1 0.026667 0.133333 12.33333 0.3 1.2 

2 0.05 0.9 25 0.8 2.8 
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consistently high scores across PolyPhen (0.9), CADD 
(26), MetaLR (0.75), and Mutation Assessor (2.7), and 
the highest consensus score (6.24), indicating 
significant functional impact. Cluster 1 consists of 
benign or neutral variants, showing low scores across 
all tools (e.g., SIFT = 0.027, PolyPhen = 0.133, CADD 
= 12.33) and the lowest consensus score (2.8), 
reflecting minimal impact on protein function. Cluster 2 
captures variants with mixed effects, with high 
damaging scores in PolyPhen (0.9), CADD (25), and 
MetaLR (0.8), but lower SIFT (0.05) scores, and a 
consensus score of 5.91, suggesting nuanced or tool-
specific impacts. These clusters help prioritize variants 
for further investigation based on their predicted 
biological significance. 

The protein-protein interaction (PPI) network 
analysis revealed a highly interconnected structure with 
11 nodes and 54 edges, significantly exceeding the 
expected number of edges (14) (Figure 8). This 
indicates that the observed interactions are not 
random. The average node degree of 9.82 
demonstrates that most proteins are well-connected 
within the network, suggesting central roles in shared 
biological processes. Additionally, the average local 

clustering coefficient of 0.982 highlights a high degree 
of local connectivity, where nodes tend to form tightly-
knit clusters. The PPI enrichment p-value of 5.55e-16 
strongly supports the biological relevance of the 
interactions, suggesting that the proteins within this 
network are functionally related and likely involved in 
coordinated cellular processes. This enriched 
connectivity underscores the importance of these 
proteins in the studied biological pathways. 

The Gene Ontology (GO) biological processes, 
molecular functions, and KEGG pathway analyses 
highlight critical cellular mechanisms influenced by the 
variants studied.  

Processes such as double-strand break repair via 
homologous recombination, DNA recombination, and 
DNA repair are strongly represented, with significant 
enrichment scores (e.g., homologous recombination 
with a strength of 2.15 and a false discovery rate (FDR) 
of 9.1E-15) (Table 11). Telomere maintenance and cell 
cycle regulation also emerged as key processes, 
reinforcing the role of these genes in genomic stability 
and replication. High signals in processes like strand 
invasion and regulation of DNA damage checkpoints 

Table 10: Cluster Summary with Biological Patterns 

Cluster SIFT PolyPhen CADD MetaLR Mutation Assessor Consensus Score 

0 0.85 0.9 26 0.75 2.7 6.24 

1 0.026667 0.133333 12.33333 0.3 1.2 2.798667 

2 0.05 0.9 25 0.8 2.8 5.91 

 
Figure 8: String analysis for protein protein interactions. 



418     International Journal of Statistics in Medical Research, 2024, Vol. 13 Adiga et al. 

Table 11: Gene Ontology Biological Process 

Description Count in network Strength Signal False discovery rate 

Double-strand break repair via homologous recombination 9 of 114 2.15 5.91 9.10E-15 

Telomere maintenance via recombination 5 of 14 2.81 4.99 4.24E-10 

DNA recombination 10 of 235 1.88 4.89 9.10E-15 

Homologous recombination 6 of 63 2.23 4.25 1.17E-09 

DNA repair 11 of 497 1.6 3.61 1.18E-14 

Regulation of cell cycle checkpoint 5 of 49 2.26 3.54 7.03E-08 

Histone H2A monoubiquitination 4 of 23 2.49 3.21 7.55E-07 

Regulation of DNA damage checkpoint 4 of 27 2.42 3.08 1.19E-06 

Strand invasion 3 of 5 3.03 2.99 3.54E-06 

Double-strand break repair via synthesis-dependent strand 
annealing 3 of 8 2.83 2.75 9.02E-06 

Replication fork processing 4 of 45 2.2 2.66 5.07E-06 

Reciprocal meiotic recombination 4 of 56 2.11 2.48 9.88E-06 

Meiosis I 5 of 126 1.85 2.46 2.91E-06 

Response to ionizing radiation 5 of 143 1.8 2.32 4.72E-06 

Meiotic cell cycle 6 of 250 1.63 2.27 1.29E-06 

Cellular response to ionizing radiation 4 of 75 1.98 2.2 2.69E-05 

Protein autoubiquitination 4 of 77 1.97 2.18 2.91E-05 

Blastocyst growth 3 of 21 2.41 2.17 8.16E-05 

Regulation of cell cycle phase transition 7 of 431 1.46 2.03 7.19E-07 

Regulation of G2/M transition of mitotic cell cycle 4 of 99 1.86 1.95 7.22E-05 

Response to X-ray 3 of 31 2.24 1.91 0.00022 

Mitotic recombination-dependent replication fork processing 2 of 2 3.25 1.85 0.00046 

Interstrand cross-link repair 3 of 41 2.12 1.72 0.00046 

DNA recombinase assembly 2 of 4 2.95 1.66 0.00099 

Cell cycle process 8 of 835 1.23 1.55 1.19E-06 

Response to gamma radiation 3 of 55 1.99 1.53 0.00095 

Regulation of mitotic cell cycle 6 of 493 1.34 1.49 3.46E-05 

DNA strand resection involved in replication fork processing 2 of 7 2.71 1.46 0.0022 

Regulation of mitotic cell cycle phase transition 5 of 332 1.43 1.44 0.00018 

Histone H2A K63-linked deubiquitination 2 of 8 2.65 1.41 0.0027 

Protein K6-linked ubiquitination 2 of 9 2.6 1.37 0.0031 

Somite development 3 of 82 1.82 1.27 0.0027 

Regulation of cell cycle 8 of 1108 1.11 1.25 6.36E-06 

Centrosome cycle 3 of 88 1.79 1.23 0.0031 

Inner cell mass cell proliferation 2 of 14 2.41 1.21 0.006 

Positive regulation of mitotic cell cycle 3 of 121 1.65 1.05 0.0067 

Positive regulation of cell cycle 4 of 349 1.31 0.93 0.0054 

Positive regulation of G2/M transition of mitotic cell cycle 2 of 28 2.11 0.92 0.0188 

Male meiosis I 2 of 28 2.11 0.92 0.0188 

Mitotic cell cycle 5 of 631 1.15 0.9 0.0028 
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(Table 11). Continued. 

Description Count in network Strength Signal False discovery rate 

Chromosome organization 6 of 968 1.05 0.88 0.0012 

Chordate embryonic development 5 of 654 1.14 0.87 0.0032 

In utero embryonic development 4 of 393 1.26 0.85 0.0082 

Developmental growth 4 of 412 1.24 0.82 0.0095 

Regulation of DNA repair 3 of 213 1.4 0.72 0.0286 

Regulation of centrosome duplication 2 of 47 1.88 0.71 0.0456 

Mitotic cell cycle process 4 of 537 1.13 0.65 0.0235 

Regulation of DNA metabolic process 4 of 541 1.12 0.65 0.024 

Positive regulation of cell cycle process 3 of 251 1.33 0.62 0.0453 

Organelle organization 8 of 3470 0.62 0.42 0.0145 

 

Table 12: Represents Molecular Function 

GO-term Description Count in network Strength Signal False discovery rate 

GO:0140664 ATP-dependent DNA damage sensor activity 7 of 19 2.82 7.47 4.66E-15 

GO:0003697 Single-stranded DNA binding 4 of 120 1.78 1.69 0.00023 

GO:0003677 DNA binding 10 of 2498 0.86 0.86 6.57E-06 

GO:0043015 Gamma-tubulin binding 2 of 32 2.05 0.82 0.0298 

GO:0005524 ATP binding 7 of 1491 0.92 0.75 0.0014 

 

further indicate their involvement in preserving DNA 
integrity. 

The molecular functions analysis revealed key roles 
for ATP-dependent DNA damage sensor activity 
(strength = 2.82, FDR = 4.66E-15) and single-stranded 
DNA binding, essential functions for DNA repair and 
response to damage (Table 12). Proteins involved in 
DNA binding and structural interactions like gamma-
tubulin binding and ATP binding emphasize their 
functional importance in maintaining cellular 
homeostasis. 

In cellular processes, complexes such as RAD51C-
XRCC3 and BRCA1-associated complexes (e.g., 
BRCA1-B, BRCA1-C) showed significant enrichment, 
highlighting their direct roles in DNA repair and 
homologous recombination pathways (Table 13). Key 
locations like the chromosome’s telomeric region and 
microtubule organizing center also emerged as 
enriched sites, reflecting their structural and regulatory 
functions in the cell cycle and genomic maintenance. 

The KEGG pathway analysis pointed to critical 
pathways, including homologous recombination 

(strength = 2.58, FDR = 2.55E-17) and the Fanconi 
anemia pathway (strength = 2.15, FDR = 2.96E-06). 

DISCUSSION 

This study introduces key biostatistical innovations, 
such as consensus scoring, dimensionality reduction 
using PCA, and clustering to refine the classification 
and prioritization of RAD51C gene variants. These 
methods enable the integration of predictions from 
diverse computational tools, creating a robust 
framework for analyzing high-dimensional genomic 
data. However, challenges remain, including handling 
discrepancies among prediction tools, optimizing 
thresholds for variant classification, and ensuring 
biological relevance in clustering results. Despite these 
hurdles, the study demonstrates the transformative 
potential of biostatistics in genomic research by linking 
statistical analyses to functional biological insights. It 
underscores the broader implications for the field of 
biostatistics, highlighting its critical role in advancing 
precision medicine, improving variant interpretation 
frameworks, and guiding experimental validations. By 
situating biostatistical methodologies at the core of the 
research, this work exemplifies their capacity to bridge 
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the gap between data and biological understanding, 
driving innovation in the analysis of complex biological 
systems. 

The results of this study provide a detailed analysis 
of gene variant predictions using multiple functional 
annotation tools and their biological implications. By 
integrating descriptive statistics, clustering, protein-
protein interaction (PPI) networks, and pathway 
enrichment analyses, we identified significant patterns, 
clusters, and molecular processes relevant to genomic 
stability, DNA repair, and disease mechanisms. 

Variant Prediction and Classification 

The descriptive statistics summarized in Table 1 
illustrate distinct scoring distributions across the 
prediction tools, emphasizing their varying sensitivity 
and specificity. SIFT demonstrated a skewed 
distribution with most scores clustering toward the 
damaging range (mean = 0.126), while PolyPhen 
(mean = 0.405) showed greater variability. CADD, with 
its larger scoring scale, identified a significant portion of 
variants near its damaging threshold (mean = 21.39). 

The strong separation between damaging and tolerant 
classifications across all tools (e.g., SIFT: Table 2, 
PolyPhen: Table 3, CADD: Table 4, MetaLR: Table 5) 
validates their reliability in functional impact predictions. 
For instance, SIFT classified 1620 variants as 
damaging, with a low mean score of 0.01, indicative of 
severe predicted effects. Similarly, CADD identified 
1752 damaging variants, with a mean score of 24.8, 
significantly higher than its threshold of 20. Mutation 
Assessor’s conservative approach (threshold ≥ 2) 
resulted in no damaging variants in this dataset (Table 
6), suggesting high stringency in its classifications. 

Overlap and Correlation Analysis 

The overlap analysis (Figures 1, 2) revealed the 
extent of agreement and divergence among tools. 
While 302 variants were classified as damaging by all 
tools, 643 variants were not identified as damaging by 
any, indicating discrepancies due to differences in 
scoring models and thresholds. The bar chart in Figure 
3 highlights the distribution of damaging classifications, 
with the majority of variants classified as damaging by 
one or two tools, underscoring the complementary 

Table 13: GO Cellular Process 

GO-term Description Count in network Strength Signal False discovery rate 

GO:0033065 RAD51C-XRCC3 complex 2 of 2 3 25 1 91 0 00036 

GO:0070532 BRCA1-B complex 2 of 4 2.95 1.79 0.00058 

GO:0031436 BRCA1-BARD1 complex 2 of 4 2.95 1.79 0.00058 

GO:1990391 DNA repair complex 3 of 43 2.1 1.76 0.00036 

GO:0070533 BRCA1-C complex 2 of 6 2.78 1.66 0.00095 

GO:0000781 Chromosome, telomeric region 4 of 143 1.7 1.63 0.00024 

GO:0070531 BRCA1-A complex 2 of 8 2.65 1.56 0.0014 

GO:0140513 Nuclear protein-containing complex 9 of 1290 1.1 1.32 5.70E-07 

GO:0005694 Chromosome 8 of 1850 0.89 0.8 0.00023 

GO:0005815 Microtubule organizing center 5 of 825 1.04 0.78 0.0037 

GO:0005654 Nucleoplasm 10 of 4169 0.63 0.53 0.00036 

GO:0032991 Protein-containing complex 10 of 5506 0.51 0.4 0.0023 

GO:0043232 Intracellular non-membrane-bounded organelle 9 of 5191 0.49 0.35 0.0144 

GO:0005634 Nucleus 11 of 7672 0.41 0.33 0.0029 

 

Table 14: KEGG Pathway 

Pathway Description Count in network Strength Signal False discovery rate 

hsa03440 Homologous recombination 8 of 38 2.58 8.09 2.55E-17 

hsa03460 Fanconi anemia pathway 4 of 51 2.15 2.73 2.96E-06 
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strengths of these tools. Correlation analysis (Table 7, 
Figure 4) revealed strong positive correlations between 
MetaLR and Mutation Assessor (0.81) and PolyPhen 
and Mutation Assessor (0.77), reflecting shared 
prediction tendencies. Conversely, SIFT showed 
negative correlations with other tools, such as Mutation 
Assessor (-0.61) and CADD (-0.59), due to its scoring 
direction, where lower scores indicate higher functional 
impact. 

Clustering and Principal Component Analysis 
(PCA) 

Clustering and PCA analyses offered deeper 
insights into the dataset. PCA revealed that the first two 
principal components captured 98.5% of the variance 
(Figure 6A), while the inclusion of PC3 in the 3D 
visualization increased the cumulative variance to 
99.5% (Figure 6B). This highlights the efficiency of 
dimensionality reduction in summarizing the dataset’s 
variability. Clustering based on PCA (Figure 7, Table 9) 
identified three distinct groups: 

• Cluster 0 contained highly damaging variants 
with consistently high scores across PolyPhen 
(0.9), CADD (26), MetaLR (0.75), and Mutation 
Assessor (2.7), and a consensus score of 6.24, 
indicating high confidence in their functional 
impact. 

• Cluster 1 comprised benign or neutral variants 
with low scores across all tools (e.g., SIFT = 
0.027, PolyPhen = 0.133, CADD = 12.33) and 
the lowest consensus score (2.8), indicating 
minimal impact on protein function. 

• Cluster 2 captured mixed or nuanced impacts, 
with high damaging scores in PolyPhen (0.9), 
CADD (25), and MetaLR (0.8), but relatively 
lower SIFT scores (0.05). These variants, with a 
consensus score of 5.91, likely represent 
borderline cases that challenge strict damaging 
or tolerant classification thresholds (Table 10). 

Protein-Protein Interaction (PPI) Network Analysis 

The PPI network analysis (Figure 8) revealed a 
highly interconnected structure with 11 nodes and 54 
edges, far exceeding the expected number of edges 
(14). The average node degree of 9.82 and the local 
clustering coefficient of 0.982 reflect tightly knit 
interactions within the network. The significant PPI 
enrichment p-value (5.55e-16) further supports the 
functional relevance of these connections. This 

enriched connectivity suggests that the proteins in this 
network are involved in coordinated processes central 
to genomic stability and cellular response to DNA 
damage. 

Biological Processes, Molecular Functions, and 
Pathways 

The Gene Ontology (GO) enrichment analysis 
(Table 11) identified several biological processes 
essential for genomic maintenance, such as double-
strand break repair via homologous recombination, 
DNA recombination, and telomere maintenance via 
recombination, with strong enrichment scores (e.g., 
homologous recombination, strength = 2.15, FDR = 
9.1E-15). Regulation of cell cycle checkpoints and DNA 
damage checkpoints were also enriched, reflecting the 
pivotal role of these variants in preserving genomic 
stability. Molecular functions analysis (Table 12) 
highlighted ATP-dependent DNA damage sensor 
activity (strength = 2.82, FDR = 4.66E-15) and single-
stranded DNA binding, critical for the DNA repair 
process. The cellular processes analysis (Table 13) 
emphasized key protein complexes, including the 
RAD51C-XRCC3 and BRCA1-associated complexes, 
which are directly involved in homologous 
recombination and DNA repair pathways. 

The KEGG pathway analysis (Table 14) further 
reinforced these findings by identifying significant 
enrichment in the homologous recombination pathway 
(strength = 2.58, FDR = 2.55E-17) and the Fanconi 
anemia pathway (strength = 2.15, FDR = 2.96E-06). 
These pathways are essential for maintaining genomic 
integrity and preventing deleterious mutations that 
could lead to disease. 

Overall Role of RAD51C in Cancer Based on the 
Results 

The results of this study highlight the critical role of 
RAD51C in maintaining genomic stability through its 
involvement in homologous recombination (HR)-
mediated DNA repair. The identified damaging variants 
in RAD51C are linked to disruptions in fundamental 
biological processes such as double-strand break 
repair, telomere maintenance, and cell cycle regulation, 
all of which are essential for preventing genomic 
instability, a hallmark of cancer development. 

 Genomic Stability and Homologous Recombina-
tion 

RAD51C plays a central role in HR by facilitating 
strand invasion and DNA recombination, as evidenced 
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by the pathway enrichment analyses that revealed 
strong associations with HR pathways (FDR = 2.55E-
17). Damaging RAD51C variants are likely to impair 
these repair processes, leading to the accumulation of 
DNA damage and chromosomal abnormalities, both of 
which drive oncogenesis. 

Tumor Suppression and DNA Damage Response 

The regulation of cell cycle checkpoints and DNA 
damage response pathways, strongly enriched in this 
study, underscores RAD51C's role in preserving 
genomic integrity under stress conditions. The 
identified disruptions in processes like DNA damage 
checkpoint regulation and replication fork processing 
suggest that RAD51C dysfunction compromises 
cellular ability to detect and repair DNA damage, 
thereby increasing cancer susceptibility. 

Telomere Maintenance and Aging 

Telomere maintenance via recombination, enriched 
among damaging variants (FDR = 4.24E-10), further 
links RAD51C to genomic stability. Defects in this 
process are associated with telomere shortening and 
chromosomal instability, both of which are observed in 
aging cells and many cancers. 

Interaction Networks and Cancer Pathways 

The protein-protein interaction (PPI) network 
analysis revealed that RAD51C is embedded in a 
highly interconnected network involving key DNA repair 
proteins like BRCA1, XRCC3, and FANCD2. These 
interactions are essential for the orchestration of HR 
and related DNA repair pathways. Dysfunctional 
RAD51C variants could disrupt these interactions, 
affecting the efficacy of DNA repair and increasing 
vulnerability to tumorigenesis. 

RAD51C's critical role in DNA repair pathways 
positions it as a key biomarker for cancer susceptibility, 
particularly in hereditary cancers like breast and 
ovarian cancer. Moreover, RAD51C dysfunction could 
sensitize tumors to DNA-damaging agents such as 
PARP inhibitors, highlighting its potential as a 
therapeutic target. Overall, RAD51C variants likely 
contribute to both cancer initiation and therapeutic 
resistance by impairing genomic integrity and cellular 
repair mechanisms. 

This study not only advances our understanding of 
viral pathogenesis but also contributes significantly to 
the statistical methodology for genomic analysis. By 

integrating PCA for dimensionality reduction, clustering 
techniques, and consensus scoring across multiple 
predictive tools, it demonstrates a robust framework for 
analyzing high-dimensional genomic data. The clear 
separation of clusters in the PCA space and the 
alignment of variant classifications with biological 
plausibility highlight the effectiveness of these 
statistical approaches. Furthermore, the study refines 
the process of variant prioritization by introducing 
consensus scores, enabling the identification of high-
confidence damaging, benign, and mixed-effect 
variants. This methodological approach can be widely 
applied to other genomic datasets, offering a scalable 
and reproducible strategy for unraveling complex 
genetic interactions and their implications for disease 
mechanisms and therapeutic targets. 

CONCLUSION 

This comprehensive analysis combines the 
strengths of multiple prediction tools, clustering 
methods, and enrichment analyses to identify and 
prioritize variants with significant functional impacts. 
The clustering and PCA results provide a structured 
framework for categorizing variants, while the PPI 
network and pathway analyses offer insights into their 
biological significance. These findings underscore the 
critical role of the identified variants in DNA repair, cell 
cycle regulation, and genomic stability, making them 
strong candidates for further experimental validation 
and exploration in the context of disease mechanisms. 
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