Bayesian Estimation of Spatiotemporal Immune-Viral Dynamics in COVID-19 Using Partial Differential Equations

Authors

  • Zahraa Mohsin Neamah Department of Statistics, College of Administration and Economics, University of Kerbala, Iraq
  • Mushtaq K. Abdalrahem Department of Statistics, College of Administration and Economics, University of Kerbala, Iraq and College of Pharmacy, University of Al-Ameed, Iraq
  • Manal Mousa Abdal-Ema College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala, Iraq

DOI:

https://doi.org/10.6000/1929-6029.2025.14.45

Keywords:

Parameter estimation, Partial differential equations, Bayes Method, Covid-19

Abstract

This study proposes a Bayesian framework for estimating parameters in partial differential equation (PDE) models of viral dynamics. We develop a computational methodology combining Markov Chain Monte Carlo (MCMC) sampling with B-spline basis expansions to address inverse problems in COVID-19 immunology. Applied to clinical data from 30 patients, the model quantifies lymphocyte recruitment kinetics and infection rates during SARS-CoV-2 pathogenesis. Key results demonstrate: (1) mean daily lymphocyte recruitment rate λ̂ = 11.87/day (range: 6.55–14.66), and (2) mean infection rate of pulmonary/lymphoid cells β̂ = 3,556 cells/mL (range: 2,290–5,699). The Bayesian estimator achieved 93.2% posterior coverage probability, confirming its efficacy in characterizing immune response dynamics. These findings provide clinically actionable parameters for optimizing antiviral therapies through precise quantification of host-pathogen interactions.

Notably, λ reflects the immune system's capacity to mobilize lymphocytes, with elevated values predicting rapid viral clearance and recovery. In contrast, β serves as a biomarker of viral infectivity severity, where higher values signal increased tissue-level viral load and a greater risk of adverse clinical outcomes.

References

Berry SM, Carroll RJ, Ruppert D. Bayesian smoothing and regression splines for measurement error problems. J Am Stat Assoc 2002; 97: 160-169. DOI: https://doi.org/10.1198/016214502753479301

Brenner SC, Scott R. The Mathematical Theory of Finite Element Methods, 3rd ed. New York: Springer, 2010.

de Boor C. A Practical Guide to Splines, Rev. ed. New York: Springer, 2001.

Gao Y, Xu C, Sun X, Wang Y, Guo S, Qiu S, et al. A systematic review of asymptomatic infections with COVID-19. J Microbiol Immunol Infect 2020. DOI: https://doi.org/10.1016/j.jmii.2020.05.001

Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of COVID-19 cases on board the Diamond Princess cruise ship. Euro Surveill 2020; 25(10). DOI: https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180

Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med 2020; 382(10): 970-971. DOI: https://doi.org/10.1056/NEJMc2001468

Morton KW, Mayers DF. Numerical Solution of Partial Differential Equations: An Introduction, 2nd ed. Cambridge: Cambridge University Press, 2005. DOI: https://doi.org/10.1017/CBO9780511812248

Verdoy PJ. Spatio-temporal hierarchical Bayesian analysis of wildfires with stochastic partial differential equations: A case study from Valencian Community (Spain). J Appl Stat 2019. DOI: https://doi.org/10.1080/02664763.2019.1661360

Bhaumik P, Ghosal S. Bayesian estimation in differential equation models. Ann Stat 2014; 42(2): 870-896. DOI: https://doi.org/10.1214/15-EJS1099

Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J 2020; 55(4): 2000607. DOI: https://doi.org/10.1183/13993003.00607-2020

Farlow SJ. Partial Differential Equations for Scientists and Engineers. Mineola, NY: Dover Publications, 1993.

Stavroulakis I, Tersian SA. Partial Differential Equations: An Introduction with Mathematics and Maple. Singapore: World Scientific, 2004. DOI: https://doi.org/10.1142/5516

Wazwaz A-M. Partial Differential Equations and Solitary Waves Theory. Chicago, IL: Saint Xavier University, 2009. DOI: https://doi.org/10.1007/978-3-642-00251-9

Xun X, Cao J, Mallick B, Carroll RJ, Maity A. Parameter estimation of partial differential equation models. J Am Stat Assoc 2013; 108(503) 1009-1020. DOI: https://doi.org/10.1080/01621459.2013.794730

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-422. DOI: https://doi.org/10.1016/S2213-2600(20)30076-X

Bener A, Yousafzai M, Zirie M, Al-Rawi R. Bayesian estimation for modelling congestive heart failure deaths and using Lorenz curve. Int J Stat Med Res 2007; 14.

Kuzu Z, Ozturk A, Erturk H, Ersoy MA. The impact of COVID-19 pandemic on coronary heart disease deaths: Using Bayesian Lorenz curve and Gini-index distribution. Int J Stat Med Res 2025; 14: 266-273. DOI: https://doi.org/10.6000/1929-6029.2025.14.26

Downloads

Published

2025-08-20

How to Cite

Neamah, Z. M. ., Abdalrahem, M. K. ., & Abdal-Ema, M. M. . (2025). Bayesian Estimation of Spatiotemporal Immune-Viral Dynamics in COVID-19 Using Partial Differential Equations. International Journal of Statistics in Medical Research, 14, 486–500. https://doi.org/10.6000/1929-6029.2025.14.45

Issue

Section

General Articles