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Abstract: In this study, an interval two-stage integer programming model is formulated for planning electric-power 
systems and managing carbon dioxide (CO2) emissions under uncertainty. The developed model can reflect dynamic, 
interactive, and uncertain characteristics of regional energy systems. Besides, the model can be used for answering 
questions related to types, times, demands and mitigations of energy systems planning practices, with the objective of 
minimizing system cost over a long-time planning horizon. The developed model is also applied to a case study of 
planning CO2-emission mitigation for an electric-power system that involves fossil-fueled and renewable energy sources. 
Solutions can help generate electricity-generation schemes and capacity-expansion plans under different CO2-mitigation 
options and electricity-demand levels. Different CO2-emission management policies corresponding to different renewable 
energy development plans are analyzed. A high system cost will increase renewable energy supply and reduce CO2 
emission, while a desire for a low cost will run into risks of a high energy deficiency and a high CO2 emission. 
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1. INTRODUCTION 

Carbon dioxide (CO2) is the prominent greenhouse 

gas (GHG) that leads to global warming and climatic 

change with increasing concentrations above 

preindustrial levels [1-3]. Current annual emissions now 

exceed 30 Gt/y of CO2, while atmospheric CO2 levels 

recently exceeded 400 ppm [4]. In the World average, 

the electricity sector is likely to play a pivotal role in 

reducing CO2 emissions. Because electricity can be 

produced by various ways such as fossil fuel burning, 

nuclear fission and by harnessing of various carbon-

free renewable energy resources, there are strong 

options for carbon mitigation in electricity sector, with 

different socio-environmental costs and benefits [1-4]. 

Therefore, innovative planning, adaptation, and 

mitigation approaches as well as policies for 

sustainable electric-power systems management are 

desired. 

However, electric-power systems planning and CO2 

emissions management efforts are complicated with a 

variety of uncertainties due to parameter estimation, 

input data, and model structure, which may affect the 

relevant optimization analyses and thus the associated 

decision-making process [5]. Uncertainties can be 

derived from energy-related processes and activities 

(e.g. exploration/exploitation, conversion/processing, 

and supply/demand); uncertainties can also arise due  
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to human-induced imprecision or fuzziness, such as 

lack of available data and biased judgments (or 

preferences) in assigning priority factors (weighting 

levels) to multiple management objectives. The 

inherent complexity and uncertainty that exist in 

electric-power systems planning have essentially 

placed them beyond the conventional deterministic 

optimization methods [5]. 

As a result, a number of energy systems planning 

models, which could facilitate reflection of such 

complexities as well as analyze tradeoffs between 

emission mitigation and cost minimization, were 

developed based on two-stage stochastic programming 

(TSP) approaches [6-12]. TSP had advantages in 

reflecting complexities of system uncertainties as well 

as analyzing policy scenarios when the pre-regulated 

targets were violated. In TSP, the first-stage decision is 

to be made before uncertain information is revealed, 

whereas the second-stage one (recourse) is to adapt to 

the previous decision based on the further information; 

the second-stage decision is used to minimize 

‘penalties’ that may appear due to any infeasibility [5, 

13-15]. Nürnberg and Römisch [6] developed a two-

stage stochastic programming model for the short- or 

mid-term cost-optimal electric power production 

planning, considering the power generation in a hydro-

thermal generation system under uncertainty in 

demand (or load) and prices for fuel and delivery 

contracts. Lin et al. [10] developed a hybrid interval-

fuzzy two-stage stochastic energy systems planning 

model to deal with uncertainties that can be expressed 

as fuzzy numbers, probability distributions, and discrete 

intervals. Lin and Huang [11] proposed an in exact two-
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stage stochastic energy systems planning model for 

managing greenhouse gas emission at a municipal 

level, where GHG-emission reduction target was 

treated as random variable. Chen et al. [12] discussed 

CO2- emission trading scheme with an integrated 

energy system using interval two-stage stochastic 

programming, which could deal with uncertainties 

expressed as discrete intervals and random variables. 

The previous studies emphasized on the planning of 

either electric power systems or entire energy systems 

by regarding the CO2 emissions management as a 

single constraint. Studies on how to apply various 

carbon-free renewable energy technologies to adjust 

the electricity generating structure, however, have 

hardly been covered in their models. There are many 

ways to generate electricity, and this flexibility gives the 

electricity sector a major advantage in responding to 

changes in market incentives to encourage carbon-free 

technologies [16]. 

Therefore, an interval two-stage integer 

programming model will be formulated for managing 

CO2 emissions within an electric-power system over a 

long-time planning horizon. This paper will be 

organized as follows: Section 2 describes the interval 

two-stage integer programming method; Section 3 

provides a case study of managing CO2 emissions in 

electric-power systems through the proposed method; 

Section 4 presents result analysis, where a number of 

scenarios based on different CO2-mitigation options 

and energy-demand levels are analyzed; Section 5 

draws some conclusions. 

2. METHODOLOGY 

Two-stage stochastic programming (TSP) method is 

effective for problems where an analysis of policy 

scenarios is desired and the related data are mostly 

uncertain. In TSP, decision variables are divided into 

two subsets: those that must be determined before 

random variables are disclosed, and those (recourse 

variables) that will be determined after the uncertainties 

are disclosed. A general TSP model can be formulated 

as follows [17, 18]: 
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Obviously, model (2) can deal with uncertainties in 

the right-hand sides presented as probability 

distributions when coefficients in the left-hand sides 

and in the objective function are deterministic. 

However, in real-world optimization problems, the 

quality of information that can be obtained is mostly not 

satisfactory enough to be presented as probabilities 

[17]. Such complexities cannot be solved through 

model (2).  

Interval mathematical programming (IMP) is 

effective in tackling uncertainties expressed as interval 

values with known lower and upper bounds but 

unknown distribution functions [20]. Moreover, mixed 

integer linear programming (MILP) technique is used 

for facilitating dynamics analysis of the timing, sizing 

and siting in terms of capacity expansions. Therefore, 

through incorporating IMP, MILP and TSP within a 

general optimization framework, an interval two-stage 

integer programming (ITSIP) model can be formulated 

as follows: 



Regional Electric-Power Systems Planning and Carbon Dioxide Journal of Technology Innovations in Renewable Energy, 2015, Vol. 4, No. 4      131 

  

Min  f ±
= C

T
1

± X + p
h
D

T
2

±Y ±

h=1

v

       (3a) 

subject to: 

  
A

r

±
X

±
B

r

±
,  r = 1,  2,  ...,  m

1
       (3b) 

  
A

t

±
X

±
+ A

t

'±
Y

±
w

h

±
,  t = 1,  2,  ...,  m

2
;  h = 1,  2,  ...,  v      (3c) 

x
j

±
0,  x

j

±
X

±
,  j = 1,  2,  ...,  n

1
       (3d) 

  
y

jh

±
0,  y

jh

± Y ±
,  j = 1,  2,  ...,  n

2
;  h = 1,  2,  ...,  v      (3e) 

where 
  
A

r

±
R

±{ }
m

1
n

1

, 
  
A

t

±
R

±{ }
m

2
n

2

, 
  
B

r

±
R

±{ }
m

1
1

, 

  
C

T
1

±
R

±{ }
1 n

1

, 
  
D

T
2

±
R

±{ }
1 n

2

, 
  
X

±
R

±{ }
n

1
1

, 
  
Y

±
R

±{ }
n

2
1

 

and R
±{ }  denote a set of interval parameters and/or 

variables; superscripts ‘ ’ and ‘+’ represent lower and 
upper bounds of the interval values, respectively. In 
model (3), decision variables can be sorted into two 
categories: continuous and binary. Model (3) can be 
transformed into two deterministic sub models that 
correspond to the lower and upper bounds of desired 
objective function value. This transformation process is 
based on an interactive algorithm, which is different 
from the best/worst case analysis [20]. Interval 
solutions can then be obtained by solving the two sub 
models sequentially. The sub model corresponding to 

the lower-bound objective function value (
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3. CASE STUDY 

3.1. Overview of the Study System 

Consider an electric-power system where local 

decision makers are responsible for supplying electric 

power to multiple end users over a long-term planning 

horizon. A number of power-conversion technologies 

are available for installation to meet electricity demand 

in each period. Since different technologies have 

diverse conversion efficiencies, CO2 emissions, capital 

investments, and operation costs, they compete with 

each other to supply a mixture of options to end users. 

The existing electric utilities include coal-fired, natural 

gas-fired, petroleum-fired, hydropower, wind power and 

solar power facilities. The electricity demand would rise 

with the economy development and population growth. 

Thus the planners are forced to decide whether new 

electric-power utilities (hydropower, wind power and 

solar power facilities) should be established. The 

second measure is to expand the existing electric-

power utilities to satisfy the increasing demand. Energy 

strategy and policy are strongly driven by the twin 

objectives of sustainability (including environmental 

aspects) and security of energy supply. The utilization 

of energy resources is restrained by source 

availabilities, high costs of new technologies, as well as 

environmental and CO2 concerns. On one hand, 

increasing concentration of CO2 emitted from fossil fuel 

combustion is likely to accelerate the rate of global 

warming. Consequently, less fossil fuel consumptions 

and more renewable energy resources (e.g. hydro, 

wind and solar) are utilized to satisfy increasing energy 

demand and CO2 reduction requirement. On the other 

hand, availabilities of renewable energy resources (e.g. 

hydro and wind) are highly dependent on 

meteorological conditions that fluctuate within a certain 

range due to climate change. Such variations of 

renewable energy availabilities would then affect 

operating statuses of relevant facilities, resulting in 

changes in their energy outputs [13-15]. 

The study system is complicated with uncertainties 

related to various economic and technical parameters 

as well as the process of energy demand/supply, 

conversion, transmission, consumption, CO2-emission 

inventory control measures. In this study, potential 

energy demand may vary with the population increase 

and economic development, which can be expressed 

as random variable with a given probability level in one 

case and the other uncertain parameters may be 

expressed as intervals (e.g. generation target, cost and 

benefit parameters, CO2-emission permit, pollutant 

control capacity); besides, the relevant electricity-

generation plan would be of dynamic features and a 

pre-regulated policy is desired [13-15]. 

In the study system (as shown in Figure 1), six 

kinds of power conversion technologies are 

considered, including coal-fired power, gas-fired power, 

petroleum-fired power, hydropower, wind power and 

solar power conversion technologies. The planning 

horizon is 15 years, which is further divided into three 

5-year periods. The end-user’s random electricity 

demands and electricity generation targets of each 

power conversion technology are presented in Table 1. 

The peak load demands are [1.5, 3.0], [2.0, 3.5] and 

[2.5, 4.0] GW in periods 1, 2 and 3, respectively. Table 

2 provides the economic and technological datum of 

each power conversion technology. Each technology 

has a residual capacity; coal-fired power has a residual 

capacity of 1 GW, natural gas-fired power has a 

residual capacity of 0.22 GW, petroleum-fired power 

has a residual capacity of 0.15 GW, hydropower has a 

residual capacity of 0.28 GW but the initial capacity of 

wind power and solar power are all 0. The 

representative costs and technical data were 

investigated based on governmental reports and other 

related literature [10-15, 21]. 

Two measures are used to reduce the amount of 

CO2 emissions for three fossil-fueled power plants: (i) 

capture and storage (CS), and (ii) chemical absorption 

(CA). In order to meet the increasing electricity 

demand, CO2 emissions will rise sharply if the current 

trends (exploiting a large amount of fossil fuels) 

continue. Decision makers are thus forced to make 

efforts to reduce the carbon intensity by replacing fossil 

fuels with non-CO2-emission sources (e.g. 

hydroelectric plants, wind power, and solar power). 

However, decision makers are unaware of the 

occurrences of CO2-reduction levels under uncertain 

electricity demand over a long-term planning horizon. 
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Based on the regional environmental protection 

policy, the gross of CO2 emissions are interpreted as 

constraints in the developed model. Correspondingly, 

different environmental management policies may lead 

to varied power generation plans and changed capacity 

expansion schemes. In this study, three different cases 

are considered in order to make in-depth analysis of 

interactions among energy-supply security, economic 

cost, and environmental requirement. These cases can 

be described as follow: 

• Case 1 is based on current status of the regional 

electric-power system without any particular 

regulatory, economic or political barriers, targets 

or strategies. Under this case, the developed 

model is run without any exterior constraints 

(e.g. without CO2 emission control constraints). 

Given a range of energy resources and 

technology alternatives, it will automatically 

choose the lowest-cost set of options to meet the 

random electricity demand in the region. 

 

Figure 1: The schematic of regional electric-power system. 

 

Table 1: End-User’s Total Electricity Demands and Electricity Generation Targets 

Time Period t = 1 t = 2 t = 3 

End-User’s Total Electricity Demand (10
3
GWh) 

Demand Level 
Probability 

(%) 
Electricity 
Demand  

Probability 
(%) 

Electricity 
Demand 

Probability 
(%) 

Electricity 
Demand 

Low (L) 25 [50, 65] 20 [85, 105] 15 [135, 150] 

Medium (M) 50 [65, 81] 60 [105, 127] 55 [150, 175] 

High (H) 25 [81, 96] 20 [127, 147] 30 [175, 200] 

Electricity generation targets of each power conversion technology (10
3
GWh) 

Coal-fired power [27.5, 50.0] [25.0, 60.0] [22.5, 70.0] 

Gas-fired power [6.0, 20.0] [7.0, 25.0] [8.0, 30.0] 

Petroleum-fired power [0.5, 8.0] [0.75, 8.5] [1.0, 9.5] 

Hydropower [5.0, 10.0] [5.5, 15.0] [6.0, 20.0] 

Wind power [0, 5.0] [0, 5.0] [0, 5.0] 

Solar power [0, 5.0] [0, 5.0] [0, 5.0] 
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• In Case 2, the totaling amount of CO2 emitted 

are to be mitigated by 30% based on case 1over 

the planning horizon. Therefore, this case 

corresponds to decisions with efforts for 

allocation and management of energy resources, 

services, activities and investment under 

stabilized environmental management policies. 

• Case 3 provides an analysis of varied 

environmental management policies for CO2 

emissions allowances under an aggressive 

environmental protection goal over the planning 

horizon. Based on case 1, the gross of region’s 

CO2 emissions are to be mitigated by 50% along 

with the time period. 

Table 2: Economic and Technological Datum of Each Power Conversion Technology 

Time Period 
Conversion technology 

t = 1 t = 2 t = 3 

Regular and surplus costs for power generation by each power conversion technology ($10
3
/GWh) 

Regular cost [6.5, 7.0] [7.0, 7.5] [7.5, 8.0] 
Coal-fired power 

Surplus cost [4.0, 5.0] [4.5, 5.5] [5.0, 6.0] 

Regular cost [6.0, 6.5] [6.5, 7.0] [7.0, 7.5] 
Gas-fired power 

Surplus cost [3.5, 4.5] [4.0, 5.0] [4.5, 5.5] 

Regular cost [5.5, 6.0] [6.0, 6.5] [6.5, 7.0] 
Petroleum-fired power 

Surplus cost [3.0, 4.0] [3.5, 4.5] [4.0, 5.0] 

Regular cost [5.0, 6.0] [5.5, 6.5] [6.0, 7.0] 
Hydropower 

Surplus cost [4.5, 5.5] [5.0, 6.0] [5.5, 6.5] 

Regular cost [3.0, 3.5] [3.5, 4.0] [4.0, 4.5] 
Wind power 

Surplus cost [1.5, 2.5] [2.0, 3.0] [2.5, 3.5] 

Regular cost [2.0, 3.0] [2.5, 3.5] [2.7, 4.0] 
Solar power 

Surplus cost [1.0, 2.0] [1.5, 2.5] [2.0, 3.0] 

Fixed ($10
6
) and variable ($10

6
/GW) costs for capacity expansion 

Fixed cost [385, 395] [445, 455] [505, 515] 
Coal-fired power 

Variable cost [825, 850] [875, 900] [925, 950] 

Fixed cost [350, 375] [405, 425] [455, 475] 
Gas-fired power 

Variable cost [785, 800] [835, 850] [885, 900] 

Fixed cost [310, 335] [370, 395] [415, 435] 
Petroleum-fired power 

Variable cost [735, 750] [775, 800] [835, 850] 

Fixed cost [875, 900] [950, 970] [1000, 1040] 
Hydropower 

Variable cost [1790, 1800] [1890, 1900] [1990, 2000] 

Fixed cost [975, 1000] [1055, 1080] [1135, 1160] 
Wind power 

Variable cost [2400, 2450] [2450, 2500] [2500, 2550] 

Fixed cost [1175, 1200] [1215, 1250] [1285, 1300] 
Solar power 

Variable cost [2350, 2400] [2450, 2500] [2550, 2600] 

Variable upper bounds for capacity expansion of each power conversion technology (GW) 

Coal-fired power 0.7 0.5 0.3 

Gas-fired power 0.5 0.6 0.7 

Petroleum-fired power 0.45 0.5 0.6 

Hydropower 0.3 0.4 0.5 

Wind power 0.1 0.2 0.3 

Solar power 0.2 0.3 0.4 
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3.2. Modeling Formulation 

Based on the ITSIP method, the objective is to 

minimize the system cost under consideration of 

generating desired energy resources allocation, import 

electricity quantities, capacity expansion plans and CO2 

emissions management policies. The system cost 

includes expense for energy resources supply, cost for 

import electricity, operating cost, and capacity 

expansion cost for power conversion technologies, 

operating cost for CO2 control techniques, and 

economic penalty as corrective measures or recourse 

cost against any infeasibilities arising due to a 

particular realization of an uncertain event. Therefore, 

the study problem can be formulated as follows: 

Min f ±
 = (a) + (b) + (c) + (d)       (7a) 

(a) Purchase costs for coal, natural gas, petroleum and 
imported electricity: 
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(b) Operating costs for electricity conversion: 
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(C) Capital costs for capacity expansions of electricity 
conversion technologies: 
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(d) Operating costs for CO2 emission control: 

  

CC
j
c
t

± XC
ij

c
t

±

t=1

T

j
c
=1

n
c

i=1

I

+ p
th

h=1

H
t

t=1

T

j
c
=1

n
c

i=1

I

DC
j
c
t

± YC
ij

c
th

±      (7e) 

Meanwhile, the total system cost should be 
minimized subject to a set of constraints that describe 
various impact factors and their interactions. The 
constraints can be formulated as follows: 

(1) Constraints for mass balance: These constraints 
describe the balance of energy flows in the study 
system. They are established to ensure that the input 
energy is greater than the output one. 
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(2) Constraints for availabilities of energy resources: 
These constraints identify energy resource 
availabilities. There are limited renewable energy 
resources, which imply necessity for effective use of 
them. When local available resources cannot meet 
demand, importing electricity from other regions at high 
purchase costs will become necessary. 
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(3) Constraints for electricity supply and demand 
balance: These constraints are established to ensure 
that the electricity generated from various energy 
resources is not less than the amount of demand 
specified by the end users. Electricity demand is 
presented by random intervals with a given probability. 
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(4) Constraints for electricity load demand: These 
constraints regulate the existing and future expanding 
capacities have to satisfy the local electricity load 
demand. 
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(5) Constraints for capacity expansion of electricity-
generation facilities: If electricity supply cannot 
sufficiently meet increasing demand from end-users, 
decision-makers have to face a dilemma of either 
investing more funds on capacity expansion of existing 
facilities or turning to other energy production options 
with higher costs. Integer programming technique is 
used to facilitate dynamic analysis, such as timing, 
sizing and siting decisions in capacity-expansion 
schemes for electricity-generation facilities [5]. 
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(6) Constraints for CO2 control demand: These 
constraints assure that the amount of CO2 be mitigated 

by control measure j
c
 in period t must exceed actual 

emissions. 
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(7) Constraints for CO2 emission allowance: These 
constraints require the cumulative CO2 emissions over 
the planning horizon must not exceed specified 
amount. 
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(8) Non-negativity constraints: These constraints 
assure that only positive electricity-conversion activities 
are considered in the solution. 
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The detailed nomenclatures for the variables and 
parameters are provided in Appendix A. Solution 
procedure of the proposed model is provided in 
Appendix B. 

4. RESULT ANALYSIS 

4.1. Energy Resources Supply Scheme 

Figures 2 and 3 show the energy resources supply 

schemes under cases 1, 2 and 3. In this study, coal, 

natural gas and petroleum would be supplied based on 

the results of the worst scenario (i.e. related to a 

maximum electricity deficit level); this is to guarantee 

the security of energy supplies under uncertainty. 

Under case 1, as shown in the Figure 2a, the amount 

of coal supply would significantly increase, being 

[390.0., 487.50], [579.15, 725.40] and [496.86, 663.59] 

10
3
 TJ in periods 1, 2 and 3, respectively. Coal would 

play the most important role in the energy supply 

activities under this case. This is due to the following 

two facts: (i) there are no CO2 emission control 

constraints under this case; (ii) coal-fired power 

conversion technology has the lowest operating and 

penalty cost of all the power conversion technologies. 

Natural gas supply would be [75.24, 96.14], [277.32, 

355.22] and [307.65, 426.24] 10
3
 TJ in periods 1, 2 

and 3, respectively. Petroleum supply would be [83.54, 

103.20], [148.38, 183.70] and [217.88, 293.55] 10
3
 TJ 

in periods 1, 2 and 3, respectively. In addition, for the 

imported electricity, as shown in the Figure 3a, the 

amount would be varied according to the electricity 

demand-levels in each period. 

Compared with the results under case 1, as shown 

in the Figure 2b, the amount of coal supply would 

almost be stabilized at a certain level over the planning 

horizon. This is because the total amount of CO2 

emitted would be confined with a certain level during 

the planning periods, while coal-fired power conversion 

technology corresponds to a higher air pollution-

emission rate, compared with other power conversion 

technologies. In comparison, the amount of natural gas 

supply would be raised with the increasing electricity 

demand. This is because capacities of gas-fired power 

would be expanded to meet the random electricity 

demands in these periods. The amount of petroleum 

supply would decrease in period 1, but increase in 

period 2. For the imported electricity, as shown in the 

Figure 3b, there would also be decrease in periods 1 

and 2. Under case 3, the role of coal supply would be 

ever decreasing in the energy supply activities 

compared with the results under cases 1 and 2 as 

shown in Figure 2c. This is because, under this case, 

strict environmental policies for CO2 emissions 

management would be adopted.  

4.2. Electricity Generation Plan 

Figure 4 present the optimized electricity generation 

plans of every power conversion technology under the 

three cases. Under case 1, coal-fired power would play 

the most important part in the electricity generation 

activities, whose optimized generation targets would be 

39.50, 29.25 and 50.70 10
3
GWh in periods 1, 2 and 3, 

respectively. For the gas-fired power, its optimized 

generation targets would be 14.18, 15.58 and 

28.96 10
3
GWh in the three planning periods, 

respectively, which would nearly reach its upper target 

level in periods 2 and 3 (as shown in Table 1). For 

petroleum-fired power, its optimized generation targets 

would be 4.91, 8.33 and 9.25 10
3
GWh in the three 

planning periods, respectively. For the hydropower, its 

optimized generation targets would increase in period 

3, being 14.95 10
3
GWh. The optimized generation 

targets of the wind and solar power would be 0, 0, 

3.00 10
3
GWh and 0, 0, 4.14 10

3
GWh in periods 1, 2 

and 3, respectively. Under case 2, as constraints for 
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Figure 2: Coal, natural gas and petroleum supply under cases 1, 2 and 3. 

  

 

Figure 3: Imported electricity supply under cases 1, 2 and 3. 
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Figure 4: Optimized electricity generation plans for each power conversion technology under cases 1, 2 and 3. 

gross control of CO2 emission are added, generation 

quantity of coal-fired power would not significantly 

increase, due to its high CO2-emission rates. 

Meanwhile, generation quantities of gas-fired power 

and hydropower would markedly increase and clean 

power conversion technologies (associated with low 

CO2-emission rates) would be adopted. Under case 3, 

as more strict environmental protection objectives must 

be achieved than those under cases1 and 2, the 

dominant role of coal-fired power would completely be 

replaced by other conversion technologies. 

Deficits would occur if the available generation 

targets cannot meet the random electricity demand, 

especially when the demand-level is high. In general, 

different power conversion technology has varied 

excess generation quantities under changed possible 

scenarios. For example, under case 3, the excess 

generation quantities would be [0, 3.25] 10
3
GWhfor 

the coal-fired power, [0, 2.76] 10
3
GWh for the gas-

fired power, [0, 2.25] 10
3
GWh for the petroleum-fired 

power, [8.45, 12.35] 10
3
GWh for the hydropower, 3.00 

10
3
GWh for the solar power and [2.86, 4.00] 10

3
GWh 

for the solar power when the demand-level is high in 

period 1 (probability is 25%). 

4.3. Capacity Expansion 

Table 3 displays the solutions of capacity expansion 

schemes of each conversion technology under the 

three cases. Generally, shortages would occur if the 

electricity demand-levels are continuously high, and a 

capacity expansion project would be undertaken to 

avoid insufficient electricity supply. For example, under 

case 3, there would be [0, 0.65] GW for coal-fired 

power conversion technology to be expanded when the 

electricity demand-level is low (probability is 25%) in 

period 1. When the demand-level is medium 

(probability is 50%) and high (probability is 25%) in 

period 1, the amount of expansion would all be [0, 0.57] 

GW. For hydropower, the amount of expansion would 

all be [0, 0.20], 0.28 and 0.28 when the demand-level is 

low, medium and high, respectively. For wind power 

and solar power, there would be no capacity expansion 
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Table 3: Capacity Expansion Schemes under Cases 1, 2 and 3 

Expansion Amount (GW) under Varied Electricity Demand-Level 

Low Medium High 
Conversion 
Technology 

Period 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

t=1 [0, 0.70] [0, 0.40] [0, 0.65] [0, 0.70] [0, 0.65] [0, 0.57] [0, 0.62] [0, 0.57] [0, 0.57] 

t=2 
[0.34, 
0.50] 

[0, 0.50] [0, 0.45] 
[0.23, 
0.50] 

[0.15, 
0.50] 

[0, 0.35] 0.50 0.50 [0, 0.35] 
Coal-fired 

power 

t=3 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

t = 1 0 [0, 0.50] 
[0.18, 
0.50] 

0 
[0.22, 
0.50] 

[0.35, 
0.50] 

0 
[0.22, 
0.50] 

[0.35, 
0.50] 

t = 2 
[0.19, 
0.60] 

[0.50, 
0.60] 

[0.59, 
0.60] 

0.60 0.60 0.60 0.60 0.60 0.60 
Gas-fired 

power 

t = 3 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

t = 1 [0, 0.45] [0, 0.45] 0 
[0.11, 
0.45] 

0 0 
[0.13, 
0.45] 

0 0 

t = 2 
[0.10, 
0.50] 

[0.14, 
0.50] 

[0.12, 
0.50] 

[0.35, 
0.50] 

[0.44, 
0.50] 

[0.38, 
0.50] 

[0.35, 
0.47] 

[0.44, 
0.47] 

[0.38, 
0.50] 

Petroleum- 

fired power 

t = 3 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

t = 1 [0, 0.20] 0 [0, 0.20] [0, 0.20] [0, 0.20] 0.28 0.28 0.28 0.28 

t = 2 [0, 0.25] [0, 0.25] 
[0.06, 
0.30] 

[0, 0.25] [0, 0.25] 0.40 0.28 0.28 0.40 
Hydropower 

t = 3 
[0.22, 
0.34] 

[0.22, 
0.37] 

[0.22, 
0.37] 

0.50 0.50 0.50 0.50 0.50 0.50 

t = 1 0 0 0 0 0 0 0 0 0 

t = 2 0 0 0 0 0 0 0 0 0 Wind power 

t = 3 0.15 0.15 0.15 0.30 0.30 0.30 0.30 0.30 0.30 

t = 1 0 0 0 0 0 0 0 0 0 

t = 2 0 0 0 0 0 0 0 0 0 Solar power 

t = 3 0.26 0.26 0.26 0.40 0.40 0.40 0.40 0.40 0.40 

 

in periods 1 and 2. 0.15, 0.30 and 0.30 GW would be 

expanded for wind power when the demand-level is low 

(probability is 15%), medium (probability is 55%) and 

high (probability is 30%) in period 3, respectively. 0.26, 

0.40 and 0.40 GW would be expanded for solar power 

when the demand-level is low, medium and high in 

period 3, respectively. 

4.4. CO2 Emissions Control 

In this study, a project of air-pollution control was 

considered, in order to satisfy the ambient air quality 

requirement and to reduce the penalty towards excess 

emission. Figure 5 shows the optimized CO2 mitigation 

plans under the three cases. Under case 1, the target 

amounts of treated CO2 would be significantly 

increased along with the ever increasing electricity 

demand-levels as shown in Figure 5a. This is attributed 

to the fact that the developed model is run without any 

exterior constraints (e.g. without CO2 emissions control 

constraints) under this case. There would be [40.97, 

43.97], [27.80, 33.32] and [27.31, 33.32] 10
3 

tonnes of 

CO2 mitigated by CS, [0, 6.01], [26.34, 27.31] and 

27.31 10
3 

tonnes of CO2 mitigated by CA, when the 

electricity demand-levels are low, medium and high 

(probabilities are 25%, 50% and 25%) in period 1, 

respectively. When the electricity demand-levels are 

low, medium and high (probabilities are 20%, 60% and 

20%) in period 2, the amount of mitigation by CS would 

be [70.88, 75.12], [58.30, 62.54] and [47.25, 55.74]  

10
3 

tonnes, the amount of mitigation by CA would be [0, 

8.48], [25.16, 33.65] and 47.25 10
3
tonnes, 

respectively. 

Under case 2, when environmental constraints are 

added, high-efficiency mitigation measures must be 

installed to reduce the CO2 emissions and to satisfy the 

environmental requirements. Thus, the results would 
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provide useful bases for generating decision 

alternatives with a desired technology combination that 

would lead to a satisfied environmental quality as well 

as a minimized abatement cost. Under case 3, the 

target amounts of treated CO2would be significantly 

decreased along with the time periods. This is because 

an aggressive environmental protection goal must be 

achieved under this case. Therefore, electricity 

generated from coal-fired, gas-fired and petroleum-fired 

power conversion technologies would be reduced 

accordingly. And thus, mitigation measures with higher 

efficiency must be installed to reduce the pollution 

emissions and to satisfy the stricter environmental 

requirements. 

4.5. System Cost 

The system cost includes expenses for energy 

resources supply, operating costs and capacity 

expansion costs for power conversion technologies, 

and operating costs for CO2 emissions control 

techniques. Figure 6 presents the detailed systems 

cost under different cases. The costs for energy 

resources supply are $[21.19, 43.15] 10
9
 (or [51.12, 

61.84]% of the total system cost) under case 1,$[20.84, 

41.42] 10
9
 (or [48.96, 59.46]% of the total system 

cost) under case 2, and $[23.74, 49.82] 10
9
 (or [50.68, 

63.99]% of the total system cost) under case 3. This 

indicates that the strict environmental policies would 

lead to an increased energy resources supply cost. The 

operating costs for power conversion are $[6.03, 7.56] 

10
9
 (or [10.83, 14.55] % of the total system cost) 

under case 1, $[7.61, 9.44] 10
9
 (or [13.55, 17.89] % of 

the total system cost) under case 2, $[7.46, 9.09] 10
9
 

(or [11.67, 15.93] % of the total system cost) under 

case 3. This demonstrates that the strict environmental 

policies would lead to reduced operating costs for 

power conversion. The expenses for capacity 

expansion of power conversion technologies are 

$[11.85, 16.02] 10
9
 (or [22.96, 28.59] % of the total 

system cost) under case 1, $[11.87, 15.89] 10
9
 (or 

   

 

Figure 5: CO2 mitigation plans under cases 1, 2 and 3. 
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[22.81, 27.89] % of the total system cost) under case 2, 

and $[13.50, 16.25] 10
9
 (or [20.88, 28.81] % of the 

total system cost) under case 3. This is due to more 

power conversion technologies with high price but low 

CO2 emission rates would be adopted in cases 2 and 3 

compared with those in case 1. The operating costs for 

CO2 emissions control techniques are $[2.38, 3.05] 

10
9
 (or [4.37, 5.74] % of the total system cost) under 

case 1, $[2.24, 2.91] 10
9
 (or [4.18, 5.26] % of the total 

system cost) under case 2, and $[2.14, 2.69] 10
9
 (or 

[3.46, 4.58] % of the total system cost) under case 3. 

This implies that aggressive environmental 

management policies would lead to reduced operating 

costs for CO2 emissions control techniques. Therefore, 

decisions with stricter environmental constraints would 

lead to a higher system cost but a cleaner environment; 

conversely, a desire for reducing the system cost would 

result in increased risk of violating the environmental 

criteria. 

5. CONCLUSIONS 

In this study, an interval two-stage integer 

programming model is formulated for planning electric-

power systems and managing CO2 emissions under 

uncertainty. The proposed model could not only reflect 

    

 

Figure 6: Detailed system cost under cases 1, 2 and 3. 
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interactions among multiple energy-related activities, 

but also address uncertainties in multiple forms and 

dynamics within a multi-period, multi-facility, and multi-

demand-level context. It has also advantages in 

providing an effective linkage between the pre-

regulated environmental policies and the associated 

economic implications. The CO2-emission reduction 

target and energy demand are both assumed to be 

random over a long-term planning horizon. The 

modeling results can be used for supporting decisions 

of electricity-generation schemes and capacity-

expansion plans under different CO2-mitigation options 

and electricity-demand levels. The results suggest that, 

aggressive environmental management policies would 

lead to reduced operating costs for CO2 emissions 

control techniques. Therefore, decisions with stricter 

environmental constraints would lead to a higher 

system cost but a cleaner environment; conversely, a 

desire for reducing the system cost would result in 

increased risk of violating the environmental criteria. 

ACKNOWLEDGEMENTS 

This research was supported by the National Basic 

Research Program of China (2013CB430406), the 

National Natural Sciences Foundation (51225904) and 

the Fundamental Research Funds for the Central 

Universities (2014QN33). The authors are grateful to 

the editors and the anonymous referees for their 

insightful comments and suggestions. 

APPENDIX A. NOMENCLATURES FOR 
PARAMETERS AND VARIABLES 

 
f ±

 
Expected system cost over the planning 
horizon ($10

9
) 

 i  Type of power conversion technology, 

  i = 1,  2,  ...,  I ; i = 1  for coal-fired power 

conversion technology,   i = 2  for natural 
gas-fired power conversion technology, 
i = 3  for petroleum-fired power 
conversion technology,   i = 4  for 
hydropower,   i = 5  for wind power;   i = 6  
for solar power 

 
j
c
 Type of CO2 control measure, 

  
j
c
= 1,  2,  ...,  n

c
; 

  
j
c
= 1  for capture and 

storage (CS); 
  
j
c
= 2  for chemical 

absorption (CA) 

 t  Time period, t = 1,  2,  ...,  T  

 h  Electricity demand-level, 
  
h = 1,  2,  ...,  H

t
 

Parameters 

 
p

th
 Probability of demand level h occurrence 

in period t (%) 

PEC
t

±  Cost for coal supply in period t ($10
3
/TJ) 

PEN
t

±  Cost for natural gas supply in period t 
($10

3
/TJ) 

 
PEO

t

±  Cost for petroleum supply in period t 
($10

3
/TJ) 

 
PIE

t

±  Cost for imported electricity supply in 
period t ($10

3
/GWh) 

PV
it

±  Operating cost of power conversion 
technology i for pre-regulated electricity 
generation in period t ($10

3
/GWh) 

 
PP

it

±  Penalty cost of power conversion 
technology i for excess electricity 
generation in period t ($10

3
/GWh) 

 
A

it

±  Fixed-charge cost for capacity expansion 
of power conversion technology i in 
period t ($10

6
) 

 
B

it

±  Variable cost for capacity expansion of 
power conversion technology i in period t 
($10

6
/GW) 

 
CC

j
c
t

±  Operating cost of control measure 
 
j
c
 for 

pre-regulated CO2 emissions during 
period t ($/tonne) 

DC
j
c
t

±  Operating and penalty cost of control 

measure 
 
j
s
 for excess CO2 emissions 

during period t ($/tonne) 

 
FE

it

±  Units of energy carrier per units of 
electricity production for power 
conversion technology i in period t 
(TJ/GWh) 

 
UPH

t

±  Upper bound of the availability of 
hydropower in period t (10

3
 TJ) 

 
UPW

t

±  Upper bound of the availability of wind 
power in period t (10

3
 TJ) 

 
UPS

t

±  Upper bound of the availability of solar 
power in period t (10

3
 TJ) 

 
d

th

±  Random variable of total electricity 
demand during period t (GWh) 



Regional Electric-Power Systems Planning and Carbon Dioxide Journal of Technology Innovations in Renewable Energy, 2015, Vol. 4, No. 4      143 

 
RC

i
 Residual capacity of conversion 

technology i (GW) 

ST
it

 Average service time of power 
conversion technology i in period t (h) 

 
V

t
 Peak load demand in period t (GW) 

M
it

 Variable upper bounds for capacity 
expansion of power conversion 
technology i in period t (GW) 

 
N

it
 Variable lower bounds for capacity 

expansion of power conversion 

technology i in period t, and N
it

0 (GW) 

INC
it

±  Units of CO2 emission per unit of 
electricity production for power 
conversion technology i in period t 
(tonne/GWh) 

j
c

±  Average efficiency of CO2 control 

measure 
 
j
c
 (%) 

 
EC

t

±  CO2 emission allowance in period t 
(tonne) 

Decision Variables 

Z1
t

±  Coal supply in period t (TJ) 

Z2
t

±  Natural gas supply in period t (TJ) 

Z3
t

±  Petroleum supply in period t (TJ) 

  
Z4

th

±  Imported electricity supply when 
electricity demand level is h in period t 
(10

3 
GWh) 

 
W

it

±  Pre-regulated electricity generation 
target of power conversion technology i 
which is promised to end-users during 
period t (10

3
GWh) 

 
Q

ith

±  Excess electricity generation of power 
conversion technology i by which 

electricity generation target (
 
W

kt
) is 

exceeded when electricity demand level 
is h in period t (10

3
GWh) 

 
X

ith

±  Continuous variables about the amount 
of capacity expansion of power 
conversion technology i when electricity 
demand level is h in period t (GW) 

 
Y

ith

±  Binary variables for identifying whether 
or not a capacity expansion action of 

power conversion technology I needs to 
be undertaken when electricity demand 
level is h in period t 

 
XC

ij
c
t

±  Pre-regulated amount of CO2 generated 
from power conversion technology i to be 

mitigated by control measure j
c
 in period 

t (tonne) 

 
YC

ij
c
th

±  Excess amount of CO2 generated from 
power conversion technology i to be 

mitigated by control measure 
 
j
c
 when 

electricity demand level is h in period t 
(tonne) 

APPENDIX B. SOLUTION PROCEDURE OF THE 
PROPOSED MODEL 

In the proposed model, the electricity generation 

targets of each conversion technology (
 
W

it

± ) are 

expressed as interval numbers; however, as the first-
stage decision variables, they should be identified 
before the related total electricity demand (i.e. random 
variables) are known [13]. In this study, an optimized 

set of 
 
W

it

± values will be identified by having 
 
u

it
being 

decision variables; this optimized set may correspond 
to minimized system cost under the uncertain electricity 
generation targets of each conversion technology and 
total electricity demand [14]. In detail, let 

 
W

it

±
=W

it
+ W

it
u

it
, where 

 
W

it
=W

it

+
W

it
 and 

  
u

it
[0,1] . 

Thus, when 
 
W

it

±  approach their lower bounds (i.e. 

when 
  
u

it
= 0 ), a relatively low cost would be obtained; 

however, a higher penalty may have to be paid when 
the electricity demand is not satisfied. Conversely, 

when 
 
W

it

±  reach their upper bounds (i.e. when u
it
= 1), 

a higher cost would be generated but, at the same 
time, a lower risk of violating the promised targets (and 
thus lower penalty). Then, model (7) can be 
transformed into two deterministic submodels based on 
the interactive algorithm [17]. Because the objective is 
to minimize the system cost, submodel corresponding 

to
 
f  is first desired. The lower bounds of cost 

coefficients and total electricity demand, as well 
aselectricity generation shortages and capacity 

expansions will correspond to
 
f . Thus, 

submodel
 
f can be formulated as follows: 

  
Min f  =

  

(PEC
t
Z1

t
+ PEN

t
Z2

t
+ PEO

t
Z3

t
t=1

T

)+ p
th

PIE
t
Z4

th
h=1

H
t

t=1

T
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+ PV
it

(W
it

t=1

T

+ W
it
u

it
)+ p

th
(PV

it
+ PP

it
)Q

ith
h=1

H
t

t=1

T

i=1

I

i=1

I

 

+ p
th
(A

it
Y
ith
+ B

it
X
ith
)

h=1

H
t

t=1

T

i=1

I

 

  

CC
j
c
t
XC

ij
c
t

t=1

T

j
c
=1

n
c

i=1

I

+ p
th

h=1

H
t

t=1

T

j
c
=1

n
c

i=1

I

DC
j
c
t
YC

ij
c
th

     (9a) 

Subject to: 

  
(W

1t
+ W

1t
u

1t
+ Q

1th
)FE

1t
Z1

t
,   t;h = 1,..., H

t
     (9b) 

  
(W

2t
+ W

2t
u

2t
+ Q

2th
)FE

2t
Z2

t
,   t;h = 1,..., H

t
     (9c) 

  
(W

3t
+ W

3t
u

2t
+ Q

3th
)FE

3t
Z3

t
,   t;h = 1,..., H

t
     (9d) 

  
(W

4t
+ W

4t
u

4t
+ Q

4th
)FE

4t

+ UPH
t

,   t;h = 1,..., H
t
     (9e) 

(W
5t

+ W
5t
u
5t

+Q
5th
)FE

5t

+ UPW
t
,   t;h = 1,...,H

t
      (9f) 

  
(W

6t
+ W

6t
u

6t
+ Q

6th
)FE

6t

+ UPS
t

,   t;h = 1,..., H
t
     (9g) 

(W
it

+ W
it
u
it

+Q
ith

+ Z4
th
) d

th
i=1

I

,   t;h = 1,...,H
t
     (9h) 

  

W
it

+ W
it
u

it
+ Q

ith
(RC

i
+ X

ith

t '
=1

t

)ST
it

,   i,t;h = 1,..., H
t
 (9i) 

W
it

+ W
it
u
it
Q
ith

0,   i,t;h = 1,...,H
t
       (9j) 

  

(RC
i

+ X
ith

t
'
=1

t

)
i=1

I

V
t

,   t;h = 1,..., H
t
      (9k) 

  

Y
ith

= 1, if capacity expansion is undertaken

= 0, if otherwise                                     ,   i,t;h = 1,..., H
t

      (9l) 

  
N

it
X

ith
M

it
Y

ith
,   i,t;h = 1,..., H

t
      (9m) 

  

(W
it

+ W
it
u

it
)INC

it
XC

ij
c
t

j
c

n
c

,   i;t       (9n) 

  

Q
ith

INC
it

YC
ij

c
th

j
c

n
c

,   i;t;h = 1,..., H
t
      (9o) 

  

(1
j
c

+ )( XC
ij

c
t

j
c

=1

n
c

i=1

I

+ YC
ij

c
th

) EC
t

,   t;h = 1,..., H
t
     (9p) 

  

Z1
t
,   Z2

t
,   Z3

t
,   Z4

th
,   W

it
,   Q

ith
,   XC

ij
c
t
,   

YC
ij

c
th

0,   i; j
c
; t; h = 1 ,..., H

t

      (9q) 

where 
 
Q

ith
, 

 
X

ith
, 

 
XC

ij
c
t
and

 
YC

ij
c
th

are continuous 

decision variables, and 
 
Y

ith
 are binary ones. Solution 

for
 
f  provides the extreme lower bound of system 

cost under uncertain inputs. Let Q
ith opt

, X
ith opt

, 
  
XC

ij
c
t opt

, 

  
YC

ij
c
th opt

, 
  
Y

ith opt
, and 

  
f

opt
 be solutions of sub model (9). 

Then the optimized electricity generation targets would 

be 
  
W

it opt

±
= W

it
+ W

it
u

it opt
. Therefore, sub model (10) 

corresponding to the upper bound of the objective 

function value (
 
f + ) can be formulated as follows: 

  
Min f +

 =

  

(PEC
t

+Z1
t

+
+ PEN

t

+Z2
t

+
+ PEO

t

+Z3
t

+

t=1

T

)+ p
th

PIE
t

+Z4
th

+

h=1

H
t

t=1

T

 

  

+ PV
it

+W
it opt

t=1

T

+ p
th

(PV
it

+
+ PP

it

+ )Q
ith

+

h=1

H
t

t=1

T

i=1

I

i=1

I

 

  

+ p
th

( A
it

+Y
ith

+
+ B

it

+ X
ith

+ )
h=1

H
t

t=1

T

i=1

I

 

  

CC
j
c
t

+ XC
ij

c
t

+

t=1

T

j
c
=1

n
c

i=1

I

+ p
th

h=1

H
t

t=1

T

j
c
=1

n
c

i=1

I

DC
j
c
t

+ YC
ij

c
th

+    (10a) 

Subject to: 

  
(W

1t opt
+ Q

1th

+ )FE
1t

+ Z1
t

+ ,   t;h = 1,..., H
t
    (10b) 

  
(W

2t opt
+ Q

2th

+ )FE
2t

+ Z2
t

+ ,   t;h = 1,..., H
t
    (10c) 

  
(W

3t opt
+ Q

3th

+ )FE
3t

+ Z3
t

+ ,   t;h = 1,..., H
t
    (10d) 

(W
4t opt

+Q
4th

+ )FE
4t
UPH

t

+ ,   t;h = 1,...,H
t
    (10e) 

(W
5t opt

+Q
5th

+ )FE
5t
UPW

t

+ ,   t;h = 1,...,H
t
     (10f) 

  
(W

6t opt
+ Q

6th

+ )FE
6t

UPS
t

+ ,   t;h = 1,..., H
t
    (10g) 

(W
it opt

+Q
ith

+
+ Z4

th

+ ) d
th

+

i=1

I

,   t;h = 1,...,H
t
    (10h) 

  

W
it opt

+ Q
ith

+ (RC
i

+ X
ith

+

t '
=1

t

)ST
it

+ ,   i,t;h = 1,..., H
t
    (10i) 
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W

it opt
Q

ith

+
0,   i,t;h = 1,..., H

t
      (10j) 

(RC
i

+ X
ith

+

t
'
=1

t

)
i=1

I

V
t

+ ,   t;h = 1,...,H
t
    (10k) 

  

Y
ith

+
= 1, if capacity expansion is undertaken

= 0, if otherwise                                     ,   i,t;h = 1,..., H
t

    (10l) 

  
N

it
X

ith

+
M

it
Y

ith

+
,   i,t;h = 1,..., H

t
    (10m) 

  

W
it opt

INC
it

+
XC

ij
c
t

+

j
c

n
c

,   i;t      (10n) 

  

Q
ith

+ INC
it

+ YC
ij

c
th

+

j
c

n
c

,   i;t;h = 1,..., H
t
    (10o) 

  

(1
j
c

)( XC
ij

c
t

+

j
c

=1

n
c

i=1

I

+ YC
ij

c
th

+ ) EC
t

+ ,   t;h = 1,..., H
t
   (10p) 

  
Z1

t

+
Z1

t
,  t        (10q) 

  
Z2

t

+
Z2

t
,  t         (10r) 

  
Z3

t

+
Z3

t
,  t        (10s) 

  
Z4

th

+
Z4

th
,  t;h = 1,..., H

t
      (10t) 

  
Q

ith

+ Q
ith

,  i;t;h = 1,..., H
t
      (10u) 

  
Y

ith

+
Y

ith
,  i;t;h = 1,..., H

t
      (10v) 

  
X

ith

+
X

ith
,  i;t;h = 1,..., H

t
    (10w) 

  
XC

ij
c
t

+ XC
ij

c
t
,  i; j

c
;t;h = 1,..., H

t
     (10x) 

  
YC

ij
c
th

+ YC
ij

c
th

,  i; j
c
;t;h = 1,..., H

t
     (10y) 

where 
 
Q

ith

+ , 
 
X

ith

+ , 
 
XC

ij
c
t

+ , 
 
YC

ij
c
th

+  and 
 
Y

ith

+  are decision 

variables. Let Q
ith opt

+ , X
ith opt

+ , 
  
XC

ij
c
t opt

+ , 
  
YC

ij
c
th opt

+ , Y
ith opt

+  and 

f
opt

+  be solutions of sub model (10).Thus, we have 

solutions for the proposed model under the optimized 

electricity generation targets (i.e. 
  
W

it opt

±
= W

it
+ W

it
u

it opt
) 

as follows: 

  
Q

ith opt

±
= [Q

ith opt
, Q

ith opt

+
],   i,t;h = 1,..., H

t
 

  
Y

ith opt

±
= [Y

ith opt
, Y

ith opt

+
],   i,t;h = 1,..., H

t
 

  
X

ith opt

±
= [X

ith opt
, X

ith opt

+
],   i,t;h = 1,..., H

t
 

  
XC

ij
c
t opt

±
= [XC

ij
c
t opt

, XC
ij

c
t opt

+
],   i, j

c
,t  

  
YC

ij
c
th opt

±
= [YC

ij
c
th opt

, YC
ij

c
th opt

+
],   i, j

c
,t;h = 1,..., H

t
 

  
f

opt

±
= [ f

opt
, f

opt

+
]  
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