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Abstract: We report ab initio and DFT calculation of structural data, dipole moment, diagonal vibrational and electronic 
contributions to polarizability, vibrational and electronic contributions to first hyperpolarizability of some cyclic 
phosphazenes. The electronic structure of substituted cyclic phosphazenes has been investigated using Hartree-Fock 
and density functional theory. The vibrational and electronic contributions to polarizabilities and first hyperpolarizability of 
these molecules were calculated with HF method, and different DFT levels used the traditional B3LYP and PBE 
functional and the long-range corrected functional like Coulomb-attenuating method CAM-B3LYP, LC-BLYP and 
wB97XD used different basis sets. These cyclic phosphazenes adopts a planar structure. The study reveals that the 
cyclic phosphazenes derivatives have large vibrational contribution to static first hyperpolarizability values. The results 
obtained from this work will provide into the electronic properties of this important class of inorganic polymers. 

Keywords: Mean polarizability, polarizability anisotropy, vibrational and electronic polarizability, vibrational and 
electronic first hyperpolarizability. 

1. INTRODUCTION 

Cyclicphosphazene studies in this paper are 
inorganic compound with the formula (NPX2)n with n=3 
and X=H, Br, Cl and F. These molecules have a cyclic 
backbone consisting of alternating phosphorus and 
nitrogen atoms. The chemistry of the phosphazenes 
goes back to 1834 when Liebig and Wöhler isolated a 
small of an unidentified crystalline product from the 
reaction of ammonia and phosphorus pentachloride [1]. 
The first phosphazene which was synthesized and 
isolated, was (NPCl2)3 [2]. In 1895, Stokes suggested a 
cyclic structure for this compound [3]. The cyclic 
phosphazenes are of interest to both theoretical and 
experimental chemists. For example, a new class of 
thermo-sensitive cyclotriphosphazenes has been first 
synthesized recently by stepwise substitution of 
hexachlorocyclotriphosphazene (NPCl2)3 [4], with 
alkoxypoly (ethyleneglycol) and amino acid esters. 
Phosphazenes materials with interesting properties, for 
example, they exhibit fire-retardant properties, have 
high refractive indices, and might find application in 
nonlinear optics, as ferro-electric materials, as liquid 
crystals or as photoactive materials [5-11]. They also 
possess a number of characteristics such as 
biomedical properties and applications due to their 
strong antitumor activity. Magnetic properties for the 
new complexes are prepared in one step  
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functionalization; coordination used cyclic phos-
phazene N3P3Cl6 by Spodine et al. [12]. Biologically; 
important substrates such as anti-cancer agents, insect 
chemosterilants, pesticides, fertilizers, and supports for 
catalysts, dyes, and crown ether-phase transfer 
catalysts for nucleophilic substitution reactions. 
Application for cyclic and polymeric phosphazene as 
solid state template for the formation of RuO2 

nanoparticles such as the work of Spodine et al. [13], 
and in application of Boratophosphazene like synthesis 
of Borazine-phosphazene hybrid cations such as the 
work of Rheingold et al. [14]. 

For some systems and processes the electronic and 
vibrational properties are even more important than the 
corresponding electronic ones, together both 
contributions govern nonlinear optical NLO behavior. A 
large number of the vibrational calculations have 
proceeded with theoretical calculation like HF [15, 16], 
DFT [17] and MP2 [18] last years. 

The chemical structure of these cyclic 
phosphazenes studies in this work are showed in 
(Figure 1). 

2. COMPUTATIONAL DETAILS AND METHODS 

In this section we will present only brief description 
of the calculation methods used to calculate electronic 
and vibrational contributions to static polarizability and 
electronic and vibrational contributions to static first 
hyperpolarizabilities. The reader unfamiliar with the 
applied methods may refer to the vast literature on the 
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subject. Analytical calculation of electrical properties 
are not carry out in this work, Interested on the static 
properties. 

In the presence of a uniform electric field, the total 
energy of molecule can be expressed as a Taylor 
series: 

 

E(F) = E(0) μ iFi
1

2! ijFiFj

1

3! ijkFiFjFk
1

4! ijklFiFjFkFl…

         (1) 

, , and  dipole moment, polarizability, and first to nth 
order hyperpolarizability, respectively. 

Equation (1) used for calculations of electric dipole 
(hyper) polarizabilities. Within the Born Oppenheimer 
approximation and, for a non-rotating and non-
translating molecule, the hyperpolarizability can be split 
into electronic and vibrational contributions, a number 
of research groups have focused their attention 
recently on the evaluation of vibrational 
hyperpolarizabilities [19]. 

P = Pele + Pvib            (2) 

2.1. Electronic Diagonal Polarizabilities and 
Electronic Static First Hyperpolarizabilities 

For the calculation of electronic contributions to 
static firs thyperpolarizabilities, we followed the 
procedure outlined by Kurtz et al. [20, 21] and used 
equation (1) for numerical differentiation of the total 
energy of the molecular system with respect to the 
electric field. Our calculations were performed using ab 

initio and density functional theory (DFT) methods. The 
performances of traditional and novel long-range 
corrected DFT levels were explored. Long-range 
corrected DFT functionals can be competitive to 
traditional DFT functionals and ab initio methods to 

calculate linear and nonlinear response electric 
properties, owing to accuracy and minor computational 
demand. Indeed, recent studies have demonstrated 
that long-range corrected DFT methods are largely 
superior to traditional functionals, with results 
comparable to ab initio levels in predicting (hyper) 
polarizabilities [22-30]. In the case of orientationally 
invariant hyperpolarizabilities [31], 

=
1

3 ii
i=x,y,z

           (3) 

=
μ i i

μi=x,y,z

           (4) 

where 

i =
1

5 j=x,y,z ( ijj + jij + jji )          (5) 

The value of the field amplitude (equal to 0.001 a u) 
was assumed. In the case of diagonal tensor elements; 
the Romberg differentiation procedure was employed 
[32]. The Romberg procedure was also used to remove 
the higher order hyperpolarizability contaminations. 

The diagonal components were determined 
according to equation (5) from second-order derivatives 
of the energy with respect to the relevant components 
of the field, using a second-order polynomial least 
square shift over energies obtained after embedding 
the target of interest in homogenous electric fields in 
the x, y and z directions. 

2.2. Diagonal Vibrational Polarizabilities and 
Vibrational First Hyperpolarizabilities 

The mean polarizabilities value =
1

3 xx + yy + zz( )  

is usually determined from the refractive index or from 
dielectric measurements [33], while vibrational 

 

Figure 1: Chemical structure of these cyclic phosphazenes studies in this work. 
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polarizabilities v  can be obtained from infrared 

intensities [34, 35]. In this work, the vibrational 
contribution  to be evaluated under the double 
harmonic oscillator approximation with the sum-over-
modes expression [36]. 

ij
v
=

μ i

Qa 0

μ j

Qa 0

a
2

a

3N 6

         (6) 

Where a  is the circular vibrational frequency of the 

nth normal mode Qa  and 
μ i

Qa

 is the partial derivative 

of the i-component of μ  with respect to Qa  evaluated 

at the equilibrium geometry. 

A perturbation treatment of dynamic vibrational 
hyperpolarizabilities has been given by Bishop and 
Kirtman (BK) [37, 38]. This treatment is based on the 
general sum-over-states (SOS) formulas [39] for the 
total hyperpolarizability given in terms of vibronic 
energies and dipole moment matrix elements. Then the 
vibrational and electronic contributions are separated 
by applying a canonical or clamped nucleus 
approximation [40]. 

The vibrational first hyperpolarizability: 
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Where Q  denotes th normal vibrational coordinate 

of frequency , and 
μ i

Q
 and jk

Q
 are the 

derivatives of the molecular dipole moment and 
polarizability with respect to normal coordinate Q  

respectively. Indices i, j, and k denote Cartesian 
coordinates. The sum in Eq. (7) extends over all normal 
modes of vibration. 

In the present study, the vibrational contributions 
are evaluated using the double harmonic model. All 
calculations were performed with the quantum 
chemical program package Gaussian 09 [41]. The data 
analyses were performed with Gauss View 5.08 [42]. In 
order to find the optimized molecular geometry, the 
DFT/CAM-B3LYP [43] level geometry optimization 
were performed with the 6-311++G** basis set. No 
imaginary frequencies were obtained in vibrational 
frequencies calculation and thus confirm the 
equilibrium geometries that correspond to energy 

minima. Our results are checked with experimental 
results where available. Electronic and vibrational 
polarizability, electronic and vibrational contributions to 
first hyperpolarizability computations are carried out at 
a variety of DFT level [44, 45]. We investigate the 
traditional B3LYP [46, 47] and PBE [48] functional as 
well as the long-range corrected CAM-B3LYP, LC-
BLYP [49] and wB97XD [50] functional, it is now well 
recognized that the electron correlation (EC) may 
strongly influence the values of electronic and 
vibrational contributions to hyperpolarizabilities [51-55]. 

3. RESULTS AND DISCUSSION 

3.1. Structural Data 

All structural results obtained for the systems under 
study, at HF, PBE and CAM-B3LYP levels of theory 
with the same basis sets 6-31G* and 6-31++G* are 
illustrated in Table 1. 

The PN bond in (PNH2)3 is 1.608Å at CAM-
B3LYP/6-31++G*, 1.630Å at PBE/6-31++G* and 
1.595Å at HF/6-31++G*. This bond is shorter than the 
one in the NH2-PO3

-2 ion (1.77Å) which corresponds to 
a simple PN bond [56]. Sabzyan et al. have reported 
the same results of PN bonds with 1.615Å at 
DFT/B3PW91 and 1.618Å at DFT/B3LYP calculation 
with the same basis set [57]. There are differences in 
the crystal data reported in the literature; the PN bond 
lengths vary from 1.48Å to 1.58Å [58]. These variations 
may be attributed to packing effects and uncertainty in 
the X-ray diffraction measurements. 

The obtained results shown in Table 1 for (PNH2)3 
at PBE level agree with those of CAM-B3LYP with 

errors varying between 0.02Å and 0.021Å with the 

same basis sets 6-31g* and 6-31g++*. 

The PN bond length in HF level as compared to 
DFT level (1.594Å, 1.629Å) because the HF level 

which does not take into account the electronic 

correlation. With maximum size 0.001Å to 0.002Å; 

diffused basis set have negligible effects on the 

optimized structural parameters, but there is enormous 

effect of improper (not sufficiently large) basis set on 
the optimized values of structural parameters obtained 

for (PNH2)3 compounds using DFT with the functional 

PBE and CAM-B3LYP. 

In this series of cyclic phosphazenes (NPX2)3 with X 
= H, Br, Cl and F, all identical PN bonds lengths 
obtained is a sign of aromaticity in this compounds. 
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Table 1: Structural Data of Cyclic Phosphazenes (NPX2)n (n = 3; X = H, F, Cl and Br) from HF, PBE and CAM-B3LYP 
Calculations Used 6-31g* and 6-31++g* Basis Sets; Comparison with Semiempirical and Experimental Result 

HF PBE CAM-B3LYP 
Parameter 

AM1c 

6-31g* 6-31++g* 6-31g* 6-31++g* 6-31g* 6-31++g* 

Exp 

(PNH2)3  

P-N 1.497 1.59 1.595 1.629 
1.630 

1.615a 
1.606 

1.608 

1.617b 

P-H 1.288 1.390 1.389 
1.428 

1.424i 

1.427 

1.413a 
1.409 

1.407 

1.413b 

 P-N-P 134.6 123.4 123.6 119.7 
120.0 

121.5a 
122.1 

122.3 

121.5b 

 N-P-N 105.7 116.5 116.3 120.2 
119.9 
118.9a 

117.8 
117.6 
118.9b 

 H-N-H 97.8 101.2 101.7 100.3 
101.1 

101.3a 
100.8 

101.5 

101.3b 

 

(PNF2)3  

P-N 1.510 1.563 1.565 1.600 
1.602 

1.589a 
1.577  

1.560 

1.588b 

1.57d 

1.570e 

P-F 1.544 1.532 1.533 1.579 
1.586 

1.570a 
1.554 

1.579 

1.566b 

1.52d 

1.529 e 

 P-N-P 135.5 123.4 122.9 120.0 
119.4 

121.0a 
122.1 

121.7 

120.7b 

121.1d 

120.4e 

 N-P-N 104.6 116.5 117.0 119.9 
120.5 

119.0a 
117.8 

118.2 

119.3b 

 119.5d 

119.6 e 

 F-P-F 94.5 98.6 98.4 98.2 
97.8 

98.0a 
98.5 

98.1 

98.0b 

99.9d 

99.1e 

(PNCl2)3  

P-N 1.490 1.576 1.576 1.615 
1.615 

1.602a 
1.590 

1.590 

1.598b 

1.581d 

1.65 f 

1.58g 

P-Cl 1.944 1.999 2.000 2.041 
2.041 
2.038a 

2.017 
2.017 
2.023b 

1.993d 
1.97f 

1.99g 

 P-N-P 134.6 123.7 123.7 120.1 
120.1 
121.7a 

122.4 
122.5 
121.4b 

121.4d 
121.4 g 

 N-P-N 105.5 116.2 116.2 119.8 
119.8 

118.2a 
117.5 

117.4 

118.6b 

118.4d 

118.4h 

 Cl-P-Cl 102.6 102.7 102.5 102.2 
102.0 

102.1a 
102.4 

102.2 

102.1b 

101.4d 

107.1f 

101.4g 

(PNBr2)3  

P-N 1.579 1.578 1.619 
1.619 

1.606a 
1.593 

1.593 

1.602b 

1.58h 

1.576j 

P-Br 2.173 2.175 2.207 
2.209 

2.209a 
2.184 

2.186 

2.190b 

2.162j 

 P-N-P 123.8 123.2 120.3 
119.6 
121.3a 

122.6 
122.0 
120.9b 

126.8h 

120.9j 

 N-P-N 116.1 116.7 119.6 
120.3 

118.7a 
117.3 

117.9 

119.1b 

117h 

118.5j 

 Br-P-Br 

 

103.2 103.6 102.5 
103.2 

102.6a 
102.6 

103.3 

102.7b 

102.0h 

102.1j 
a,b[57] B3PW91and B3LYP calculation. 
c[62] AM1 calculation. 
d[75] X ray data. 
e[76] Electron diffraction. 
f[71] Electron diffraction. 
g[72] X ray data. 
h[73, 74] X ray data. 
i[60] B3LYP/6-31++G* for linear phosphazene. 
j[77] X ray data.   
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Used Quantum chemical calculations in order to find 

the effect of substitution halogens atoms in PN bonds; 
Abdellatif et al. [60] have reported that the PN bond 
lengths in short linear phosphazenes decrease with 
increasing the electronegativity of (R3PNH, R3PNF and 
R3PNOH with R=H, F). Sabzyan et al. have reported 
that the PN bond lengths in the cyclic phosphazenes 
decrease with increasing the electronegativity of the 
halogen substituent on the phosphorus atom [57]. Our 
calculation led to the following results: the PN bond is 
1.608Å in (PNH2)3, 1.593Å in (PNBr2)3, 1.590Å in 
(PNCl2)3, and 1.560Å in (PNF2)3 used the CAMB3LYP/ 
6-31++G* calculation; so similar results are obtained in 
this work. 

In 1998, Sun used the COMPASS force field 
(condensed-phase optimized ab initio force field) [59] 
with ab initio RHF and density functional methods 
used, 6-31G* basis sets, showed the PN and PX bond 
lengths and X-N-X angle in cyclic phosphazenes are 
shortened with increasing the electronegativity of the 
halogen atom substituted on the phosphorus atom. 

The P-N-P angle in (PNH2)3 is 122.3° at CAM-
B3LYP/6-31++G*, 120.0° at PBE/6-31++G* and 121.7° 
at HF/6-31++G*, when the hydrogen atom is 
substituted with the halogens atoms Br, Cl and F, the  

P-N-P angle at CAM-B3LYP with the same basis set is 
122.0°, 122.5° and 121.7° respectively, so the Fluor 
atom was important effect on the P-N-P angle. 

Trinquier using a standard ab initio method with the 
DZP basis set [61] in order to find stability and bonding 
in cyclotriphosphazene, Castro et al. [62] in 2002 used 
the semi empirical approach AM1 [63] and PM3 [64] to 
determine these structural properties, also, employing 
quantum computational, Sabzyan et al. in 2003 [57] are 
reported molecular structure and bonding, 
thermochemical stability, vibrational and NMR spectra 
of cyclic phosphazenes (NPX2)3, theses results of 
structural investigation show that all of these 
phosphazenes have planar structures. The remarkable 
discrepancies among theoretical values and available 
experimental data do not allow to state definite 
conclusions. 

Table 2: Comparison of Diagonal Electronic and Vibrational Contributions to Static Polarizability Evaluated Atvarious 
Levels of Theory. Basis Set: 6-311++G**. The Values are Given in Atomic Units 

Vibrational Electronic  

xx
v  yy

v  
zz
v  xx

e  yy
e  

zz
e  

xx
e / xx

v  

(PNH2)3 

HF 

PBE 

B3LYP 

CAM-B3LYP 

LC-BLYP 

wB97XD 

63.75 

30.36 

30.35 

30.26 

29.11 

28.97 

63.71 

30.34 

30.33 

30.24 

29.08 

28.97 

31.56 

34.99 

43.90 

33.64 

31.90 

30.78 

68.44 

76.87 

76.77 

76.62 

75.11 

74.00 

68.43 

76.86 

76.76 

76.62 

75.11 

74.02 

51.90 

54.69 

54.58 

54.28 

53.75 

52.87 

1.07 

2.53 

2.52 

2.53 

2.58 

2.55 

(PNBr2)3 

HF 

PBE 

B3LYP 

CAM-B3LYP 

LC-BLYP 

wB97XD 

70.11 

44.72 

44.62 

44.01 

43.23 

42.87 

79.22 

58.70 

58.59 

58.46 

57.37 

56.32 

79.30 

58.70 

58.59 

58.42 

57.36 

56.32 

80.25 

191.66 

191.52 

190.64 

190.00 

189.44 

64.32 

177.47 

177.32 

175.94 

174.11 

174.08 

64.21 

177.46 

177.34 

177.01 

176.43 

175.77 

1.14 

4.28 

4.92 

4.33 

4.39 

4.41 

(PNCl2)3 

HF 

PBE 

B3LYP 

CAM-B3LYP 

LC-BLYP 

wB97XD 

55.22 

43.01 

42.89 

42.55 

41.87 

40.98 

65.32 

56.98 

56.88 

56.88 

55.56 

54.89 

67.98 

57.05 

56.89 

56.86 

55.56 

54.87 

123.70 

134.09 

134.00 

133.97 

132.65 

132.01 

115.04 

131.05 

130.88 

130.74 

130.00 

129.13 

115.04 

131.58 

131.44 

130.74 

130.01 

129.16 

2.24 

3.11 

3.12 

3.14 

3.16 

3.22 

(PNF2)3 

HF 

PBE 

B3LYP 

CAM-B3LYP 

LC-BLYP 

wB97XD 

44.01 

33.22 

33.12 

32.29 

31.78 

30.45 

43.99 

30.14 

30.01 

31.32 

30.60 

30.01 

26.47 

18.22 

18.11 

19.32 

18.45 

18.01 

59.27 

75.25 

75.12 

74.25 

73.22 

72.21 

59.26 

75.22 

75.09 

74.00 

73.33 

72.87 

43.75 

69.14 

69.01 

68.04 

67.65 

66.11 

1.34 

2.26 

2.26 

2.29 

2.30 

2.37 
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It is apparent that our calculation at DFT is agreed 
with the experimental (X-ray) data and other theoretical 
study such as Breza et al. [65] and Sabzyan et al. [57] 
for this cyclic phosphazenes, and better agreement 
between the calculated results CAM-B3LYP and the X-
ray data for the chloro-substituted cyclo-phosphazenes. 
The usual D3h symmetry planar arrangement of the 
(NPX2)3 represents a stable structure at all levels of 
theory. Schulz et al. found the same results of the 
cyclic phosphazene (NPCl2) [66]. It should be noted, 
that the computed values refer to the gas phase 
whereas the experimental data refer to the solid state, 
which always results in small deviations due to lattice 
effects [67]. 

3.2. Electronic and Vibrational Polarizability, Mean 
Polarizability and Polarizability Anisotropy 

The systems that are the subject of the present 
investigation are given in (Figure 1). The results 
presented in Table 2 are the essential basis for the 
further discussion on the effect of electronic and 
vibrational contributions to nonlinear optical properties. 

The results shown in Table 2, Figures 2 and 3 
presents electronic and vibrational contributions to 
static polarizability for all investigated compounds, the 
values of the polarizabilities ( ) of Gaussian 09 output 
are reported in atomic units (au). 

Used the traditional B3LYP and PBE functionals 
and the long-range corrected functional like Coulomb-

attenuating method CAM-B3LYP, LC-BLYP and 
wB97XD introduces a part of electron correlation 
through the use of an exchange correlation term in the 
energy expression, with small additional cost in the 
computational procedure and compared to HF 
observed for standard methods. The calculations show 
that the substitution effect of electronic correlation on  
value is observed solely for the electronic counterpart; 
the change in the vibrational contributions to 
polarizability upon inclusion of electronic correlation is 
significant. The obtained DFT results are virtually 
unaffected by the change of the traditional functional 
PBE and B3LYP and with small error with the long-
range corrected functional CAM-B3LYP, LC-BLYP and 
wB97XD. 

The ratio between the vibrational and electronic 

contributions xx
v / xx

e  might depend crucially on the 

applied level of theory; these results are confirmed by 
Sucarrat et al. [68] and other studies for conjugated 
organic molecules [69]. 

The mean polarizability was calculated from the 
polarizability components as [70]: 

=
1

3 xx + yy + zz( )           (8) 

And the polarizability anisotropy as: 

=
1

2
( xx yy )

2
+ ( xx zz )

2
+ ( yy zz )

2( )    (9) 

 

Figure 2: Vibrational contributions to static polarizability xx
v  evaluated at various levels of theory used 6-311++G** basis set. 

The values are given in atomic units. 
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In Table 3 and Figure 4, the polarizability 
components, mean polarizability and the polarizability 
anisotropy have been presented. 

To avoid possible systematic errors in the 
computation of the linear optical properties, we used 
two basis set families of different construction as 
implemented in GAUSSIAN 09. The first family 
comprises the correlation consistent cc-pVDZ, aug-cc-
pVDZ, and cc-pVTZ basis sets, and the second one is 
built upon the 6-31G and 6-311G substrates, by 
systematically adding standard diffuse and polarization 
Gaussian type functions. All geometries were optimized 
before calculation of vibrational contributions to 

polarizability response xx , yy  and zz  mean 

polarizability  and the polarizability anisotropy | |. 

We examined the basis set effects at PBE levels that 
are the least computationally demanding among the 
DFT levels we used. 

Depending on the basis set choice, the mean 
polarizability varies from 69.1 (6-31G basis set) to 
37.49 au (6-311++G*) at the same PBE level. These 
sorts of variations reveal a rather small and larger basis 
set effect on this property. No dramatic changes on the 
computed values of mean polarizability and the 
polarizability anisotropy | | are noted if we used the 

 

Figure 3: Electronic contributions to static polarizability xx
e  evaluated at various levels of theory used 6-311++G** basis set. 

The values are given in atomic units. 

 

Table 3: Basis Set Effects on PBE Vibrational Polarizability Responses, the Mean Polarizability and The polarizability 
Anisotropy of (PNF2)3. The ( ) Values are given in Atomic Units (1 a.u =1.6488 10 41C2m2J 1=0.14818Å3) 

Basis set 
xx
v  yy

v  
zz
v    

6-31G 83.64 83.04 40.62 69.1 42.72 

6-31G* 39.79 39.79 22.93 34.17 16.85 

6-31+G 72.71 72.52 42.65 62.62 29.96 

6-31+G* 41.59 41.59 24.30 35.82 17.29 

6-311G 62.12 61.97 35.30 53.13 26.74 

6-311G* 43.60 43.57 25.97 37.71 17.61 

6-311+G* 43.42 43.39 25.66 37.49 17.73 

cc-pVDZ 44.01 44.62 26.27 38.04 18.25 

cc-pVTZ 44.26 44.92 26.87 38.45 19.00 

Aug-cc-pVDZ 45.11 45.17 27.05 38.87 19.22 
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correlation consistent cc-pVDZ, aug-cc-pVDZ, and cc-
pVTZ basis sets. 

The results shows that for all properties; there is a 
good correlation between the largest extension basis 
sets like 6-311G*, 6-311+G*, cc-pVDZ, cc-pVTZ and 
Aug-cc-pVDZ. The addition of p-polarization functions 
tends to increase in the  mean polarizability, and 
the same statement for the polarizability anisotropy. 
Going from double-  to a triple-  leads to smaller 
increase in all properties. 

3.3. Dipole Moment, Electronic and Vibrational 
Contributions to First Hyperpolarizability 

Table 4 summarizes dipole moment, electronic and 

vibrational contributions to first-order hyperpolarizability 

calculated at HF, PBE, B3LYP, CAM-B3LYP, LC-

BLYP, and wB97XD levels for the geometry optimized 

at the CAM-B3LYP/6-311++G (d, p) level of theory. 

The results shows that when passing from traditional 
functional PBE and B3LYP to long-range corrected 

functional CAM-B3LYP, LC-BLYP and wB97XD 

calculation of electronic and vibrational contribution to 

first hyperpolarizabilities, only marginal effects are 

observed. In fact, the high symmetry of all structures 

(PNH2)3, (PNBr2)3, (PNCl2)3 and (PNF2)3, which present 
a planar cyclic arrangement, with rather small 

deviations from perfect planarity. This property is 

clearly revealed by the zero or nearly null dipole 

moment and null first hyperpolarizabilities calculated at 

ab initio (HF) and DFT levels for all the molecules. 

4. CONCLUSIONS 

In this study, we investigate structural data, ab initio, 
and DFT calculation of electronic and vibrational 
contribution to polarizabilities, the mean polarizability, 
the polarizability anisotropy, electronic and vibrational 
contributions to first hyperpolarizabilities of cyclic 
phosphazenes (PNX2)3 with n=3 and X= H, Br, Cl and 
F. We showed that, these numerical simulations 
obtaining reliable information on the geometrical 
structure and the substitution effect on the electronic 
and vibrational nonlinear optical NLO properties. In this 
series of cyclic phosphazenes (NPX2)3 with X= H, Br, 
Cl and F, all identical PN bonds lengths obtained is a 
sign of aromaticity in this compounds. The obtained 
structural data results in this paper agree with other 
theoretical calculation, and experimental data. 

This study for this cyclic phosphazenes compounds 
(NPX2)3 on the basis set effect and the inclusion of 
electron correlation, by going from the Hartree-Fock to 
the DFT (PBE, B3LYP, CAM-B3LYP, LC-BLYP, and 
wB97XD levels), leads to largest variations of 
vibrational and electronic contributions to polarizability. 
Only marginal effects are observed when passing from 
the traditional functional PBE and B3LYP to long-range 
corrected functional CAM-B3LYP, LC-BLYP and 
wB97XD for calculation of linear and nonlinear optical 
properties of this cyclic phosphazenes. 

We present an accurate investigation of the NLO 
properties of a series of phosphazene, focusing on the 
relationships between dipole moment, first 

 

Figure 4: Basis set effects on PBE vibrational polarizability responses, the mean polarizability and the polarizability anisotropy 
of (PNF2)3 phosphazenes. The ( ) values are given in atomic units. 
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hyperpolarizabilities and the symmetry of the 
molecules. In this case, symmetric planar structures 
obtained for the whole cyclic phosphazenes, they all 
have null dipole moments and null first 
hyperpolarizabilities calculated at ab initio (HF) and 
DFT levels. 
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