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Abstracts: Ion-pair formation constants (KMA
0) for MA+ = MPic+ and MCl+ in water were determined at 298 K and ionic 

strength  0 by extraction experiments of picric acid (HPic) in the presence of M(II) in the water phase into benzene (Bz) 
and by potentiometry with a commercial Cl--selective electrode, respectively. Here, M denotes Ca(II), Sr(II), Ba(II), Cu(II), 
and Cd(II). In adding Pb(II) data, a relation between KMA

0 values was KMCl
0<KMPic

0 for a given M(II).For CdPic+, the KMA
0 

value (= 136mol-1 dm3) determined by the HPic extraction was somewhat larger than that (= 108) potentiometrically-
determined before with a Cd2+-selective electrode, while for CaPic+ the former value (= 89) equaled the latter one (= 88) 
determined before with a Ca2+-selective electrode. 
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1. INTRODUCTION 

It is well known that picrates are employed for 
extraction experiments [1-4], because they have 
essentially the higher extraction-ability into various 
diluents, while chlorides are well employed for 
electrochemical experiments [5-7], because they show 
the higher conductivity in aqueous solutions. There are 
systematic studies on ion-pair formation or association 
in the aqueous solutions with sulfates [8-11]. However, 
especially for the systems with divalent metal ions 
(M2+), the studies which determine ion-pair formation 
constants for the above picrates containing metal ions 
in water have been a few [12,13] unexpectedly. It 
seems to be obvious that the determination of the 
corresponding equilibrium constants promotes precise 
equilibria-analyses of various solvent extraction 
systems with picrates, such as the extraction of picrate 
of Cd(II) [14] or Pb(II) [15] (CdPic2 or PbPic2) by neutral 
ligands, such as crown ethers.  

In the present paper, we determined the ion-pair 
formation constants (KMA

0) for MA+ in water by the 
extraction experiments [12] of picric acid (HPic) in the 
presence of M2+ in the water phase into benzene (Bz) 
at 298 K and ionic strength (I) of aqueous solution 0. 
Here, M is divalent alkaline-earth metal, Cu(II), and 
Cd(II) and A- shows Pic-. For comparisons with the Pic-

systems, the KMA
0 values at A- = Cl- were determined 

potentiometrically with a commercial Cl--selective 
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electrode (Cl--se) [16], except for M = Ba(II). The 
diluent Bz was selected from both its lower extraction-
ability to MA+ and MA2 and its lower solubility into water 
[17]. 

2. EXPERIMENTAL METHODS 

2.1. Materials 

Purities of the chlorides{guaranteed pure reagent 
(GR) for Ca(II), Wako; > 99.2% for Sr(II), Kanto; > 
99.2% for Ba(II), Kanto; > 98.0% for Cd(II), Kanto} and 
nitrates {> 98.5% for Ca(II), Kanto; > 98.0% for Sr(II), 
Kanto; 99.9% for Ba(II), Wako; 99-104% for Cu(II), 
Wako; > 98.0% for Cd(II), Kanto} of M(II) were 
determined by the precipitation titration with K2CrO4 
and the EDTA titration [18], respectively; that of 
HPic xH2O(> 99.5%, Wako) were determined by the 
acid-base titration [18] with NaOH(> 97.0%, Wako) and 
phenolphthalein. Similarly, the purity of NaCl (>99.9%, 
Kanto), of which the aqueous solutions were used for 
preparing potentiometric calibration curves, was 
determined by the precipitation titration [18]. The 
commercial Bz(GR, Kanto) was saturated with water by 
washing three-times with pure water [12] and then 
employed as an organic phase for the extraction 
experiments. Other chemicals were of GR grades 
unless otherwise described. Water employed here 
were purified by the same method as that reported 
previously [8, 14, 15]. 

2.2. Methods 

The experimental procedures for the HPic extraction 
and potentiometry with the Cl--se and a reference 
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electrode of Ag/AgCl/0.1 mol dm-3KCl/1.0 mol dm-3 
KNO3 were the same as those [12,16] reported 
previously. Also, the apparatuses, such as 
spectrophotometer, pH/Ion meter, mechanical shaker, 
and centrifuge, used for the measurements and etc. 
were the same as those [12,15] employed before.  

3. RESULTS AND DISCUSSION 

3.1. Determination of KMA
0 for MA+ in Water 

The determination methods of KMA
0 were the same 

as those [12,16] reported before. Hence, we describe 
here the essence of the both methods, namely the 
HPic extraction [12] and potentiometry with the Cl--se 
[16]. 

For the HPic extraction into Bz, the following 
component equilibria were initially considered: H+ + Pic- 

 
 HPic and HPic

 
HPicBz, where the subscript “Bz” 

refers to the Bz phase. When a strong electrolyte MX2is 
added in this system, the formation of MPic+ occurs in 
the water (w) phase [12]: 

M2+ + Pic- + 2X-
 

MPic+ + 2X-,          (1) 

where the formation of MPic2 in the w phase was 
neglected as a result of the present experiments (see 
below). Similarly, the MX+ or MX2 formation was 
neglected at X- = NO3

-. The MPic+ formation should 
cause a decrease in the distribution amount of HPic 
into Bz. Therefore, we can evaluate [MPic+] from the 
following equation [12]. 

[MPic+] (M[HPic]Bz/
M[H+]){ DPic

-1  (M[H+]  [H+])/KD,HPic} 
              (2) 

with DPic
-1 = (M[H+]/MDPic)  ([H+]/DPic). Here, the 

symbols, M[HPic]Bz, 
M[H+], and M

DPic, denote quantities 
in the presence of M(II) in the w phase and others do 
those in the absence of M(II). The symbols, KD,HPic and 
DPic, refer to the distribution constant of HPic and a 
distribution ratio for the extracted Pic(-I), respectively, 
into Bz under the condition that M(II) is absent in the 
system. Basically, all the values in the right hand side 
(rhs) of Eq. (2) were experimentally determined [12]. 
So we obtained the KMPic (= [MPic+]/[M2+]M[Pic-]) values 
at M

I values from [MPic+], [M2+] (= [M]t  [MPic+]), and 
M[Pic-] {= ([Pic]t

M[HPic]Bz  [MPic+])/(1 + KHPic
M[H+])}, 

whereM
I is expressed as M[Pic-] + 2[M]t + [M2+] [12]. 

Also, we can determine the KMPic
0 value with a plot 

of log KMPic versus
M

I [12] based on the extended 
Debye-Hückel (DH) equation: 

logKMPic  log KMPic
0  4A(M

I)1/2/{1 + Bå(M
I)1/2}        (3) 

with the assumption that the activity coefficient of MPic+ 
equals that of Pic-. Here, [M]t, [Pic]t, and KHPic

-1, and M
I 

denote a total concentration of MX2, that of HPic in the 
initial w phase, the acid dissociation constant of HPic in 
water, and the ionic strength for the w phase with M(II) 
at equilibrium, respectively. The other symbols A, B, 
and å have the meanings which are usually employed 
for the extended DH equation at 298 K. Figure 1 shows 
an example for the plot of the BaPic2 system. The 
dotted line was based on a non-linear regression 
analysis of the plot using Eq. (3) with å= 5 Å [19] for 
Ba2+. The correlation coefficient (R) values of the other 
systems were 0.195 at MA+ = CaPic+, 0.536 at SrPic+, 
0.337 at CuPic+, and 0.272 at CdPic+. Strictly speaking, 
the KMPic

0 values determined by the extraction 
experiments are those at M

I  0 for MPic+ in water 
saturated with Bz [12], as readers know.  

 

Figure 1: Plot of log KBaPic vs. (M
I)1/2 for the BaPic2 system by 

the extraction method. The broken line was a regression one 
at R = 0.637 based on Eq. (3). 

Next, potentiometric measurements with the Cl--se 
[16] were performed for the aqueous CaCl2, SrCl2, 
BaCl2, and CdCl2 solutions. Unfortunately, we were not 
able to obtain an adequate result for the KBaCl

0 
determination. For the KMCl

0 determination by the Cl- 
analysis, the following equations were used: [M2+] =  
[Cl-]/(2 + KMCl[Cl-]) and [MCl+] = 2KMCl[M

2+]2/(1 
KMCl[M

2+]) [16]. Using the analyzed [Cl-] values, the 
initial KMCl values were evaluated by a successive 
approximation. Then, the thermodynamic KMCl

0 and K2
0 

(= [MCl2]/aMClaCl) values were determined by another 
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successive approximation, using the following equation 
[16]: 

( ak)/aM = 1 + KMCl
0

aCl + KMCl
0
K2

0 (aCl)
2,         (4) 

where aj means an activity of the species j {= M(II), 
MCl(+I), &Cl(-I)}. Figure 2 shows the plot of ( ak)/aSr 

versus aCl for the SrCl2 system with k = Sr2+, SrCl+, and 
SrCl2; namely, ak= aSr + aSrCl + [SrCl2], where aSrCl2 = 
[SrCl2] was assumed. The intercepts and the R values 
of the other regression lines were 1.071±0.007 and 
0.961 for the CaCl+ system and 1.090 ± 0.005 and 

0.998 for CdCl+, respectively. The K2
0 value obtained 

for the CdCl2 system in Table 1 coincided with those  
(= 8.7 & 13 mol-1 dm3 [16]) reported before within 
experimental errors. Except for the CdCl2 system, since 
a non-linear regression analysis with Eq. (4) [16] did 
not give the meaningful 2nd term in the rhs of Eq. (4), 
accordingly we employed the linear equation of 
( ak)/aM  1 + KMCl

0
aCl for the regression analysis. 

Results for the KMPic
0 and KMCl

0 values determined are 
summarized in Table 1. 

The KMPic
0 order was M = Cu(II) < Ca(II) <Pb(II) < 

Cd(II) Ba(II) <Sr(II), while the KMCl
0 one was Cu(II)  

Mg(II) <Pb(II) <Sr(II) < Ca(II) < Cd(II). Only the order of 
Cu(II) <Pb(II) < Cd(II) is in common for these orders. 
Against these two orders, the ionic radii (rc) [20] of M(II) 
were in the order Mg(II) <Cu(II) < Cd(II) < Ca(II) <Sr(II) 

Pb(II) <Ba(II) (see Table 1). Also, ion size parameters 
(å) were in the order Pb(II) (4.5 Å) <Sr(II) = Cd(II) = 
Ba(II) (5) < Ca(II) = Cu(II) (6) < Mg(II) (8) [19]. There 
was no correlation between KMA

0 and rc or å.  

3.2. On the Reproducibility of the KMA
0 Values by 

the Determination Methods 

The KCdPic
0 value (= 108 mol-1 dm3 [13,16]) 

potentiometrically-determined previously with a Cd2+-
selective electrode was somewhat smaller than that  
(= 136) determined by the present HPic extraction. On 
the other hand, the KCaPic

0 value obtained from the HPic 
extraction equaled that [13,16] determined previously 
with a Ca2+-selective electrode (Table 1). These results 
may be dependent on types (or materials) of the 
electrodes employed; according to their catalogs [21], 

 

Figure 2: Plot of ( ak)/aSr vs. aCl for the SrCl2 system with k = 
Sr2+, SrCl+, and SrCl2 by the potentiometry with the Cl--se. 
The broken lone was (1.050 ± 0.008) + (29.1± 2.9)aCl of a 
regression one at R = 0.909 based on a modified form of Eq. 
(4).  

Table 1: Ion-Pair or Complex Formation Constants for MA+ in Water at 298K 

 KMA
0/mol-1 dm3 

M(II) rc
a/Å MA+ = MPic+ b MCl+ c 

Mg 0.720 ---d 4.55e [11], 0.77f [23] 

Ca 1.00 89±10, 88g 41 ± 2, 40g, 0.68f [23] 

Sr 1.18 152 ±13 29± 3, 0.54f [23] 

Ba 1.35 120 ± 6 ---d, 0.34f [23] 

Cu 0.73 72 ±10 2.49h, 4.0[25] 

Cd 0.95 136 ±15, 108g, 107g 91 ± 4, 86g, 89g 

(13 ± 5)i 

Pb 1.19 93 [14], 100 [14] 10j, 9.5 [26], 37k[27] 

aIonic radii of the coordination number of six. See [20]. bValues determined with the HPic extraction experiments. cValues determined potentiometrically with the Cl--
se. dNot be determined. eValue at I  0 calculated from the experimental I range of about 0.00032-0.15mol dm-3. See [11]. fValue at I  1 mol dm-3 (NaNO3). See [23]. 
gValues determined potentiometrically with commercial M2+-selective electrodes at M = Ca(II) & Cd(II). See [8,13,16]. hValuein the [Cl-] range of about 9.8 10-5-
4.9 10-3mol dm-3. See [25]. i

K2
0 (= [CdCl2]/aCdClaCl) value obtained here. jValuein the [Cl-] range of0.0148-3.97mol dm-3.See [26]. kValue averaged in the I range of 

0.02-0.12 mol dm-3. See [27]. 
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the former electrode was of a solid-state membrane, 
while the latter one was of a liquid membrane. Now, we 
cannot clearly explain the above results. Also, the 
KCdCl

0 and KCaCl
0 values determined with the Cl--se 

were in good agreement with those [16,8] determined 
previously with M2+-selective electrodes (Table 1). The 
above results indicate that essentially the both methods 
give good reproducible values. 

For the potentiometric measurements with Cl--se, 
the KMCl

0 values were dependent on the dissociation of 
NaCl in water, because the calibration curves had been 
made from the aqueous NaCl solutions. That is, it 
means that the equilibrium constants are determined 
comparatively by using the dissociation of NaCl in 
water as a standard. The results for KMCl

0can be kept at 
constant by the use of NaNO3 and NaClO4, according 
to the fact [22] that the KLiL values at L = 19-crown-6 
ether have been constant in conductometric titrations 
with LiCl, LiNO3, and LiClO4in water. 

The KMCl values at I = 1 mol dm-3 were estimated 
from Eq. (3). Their values were 1.24 mol-1 dm3 for M = 
Mg, 8 for Ca, and 5 for Sr. The KMgCl value estimated 
from that at I  0reported by Fischer and Fox [11] is 
close to that [23] reported by Majer and tulík, while 
the KMCl values determined here at Ca and Sr are about 
10-times larger than those [23] by them (see Table 1).  

4. CONCLUSION 

The KMPic
0 values were determined at 298 K by the 

HPic extraction into Bz at M = Ca(II), Sr(II), Ba(II), 
Cu(II), and Cd(II).The KCaPic

0 value determined by the 
extraction method well agreed with that done by the 
Ca2+-se. Also, the KMCl

0 values determined by the Cl--
se were essentially in agreement with those by the 
Ca2+- and Cd2+-ses, although there may be positive 
errors in the values. 
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