Highly Selective Perfluoroalkylation of Unsaturated Molecules upon Photoirradiation in BTF as an Organic/Fluorous Hybrid Solvent

Authors

  • Taichi Tamai Osaka Prefecture University
  • Motohiro Sonoda Osaka Prefecture University
  • Akiya Ogawa Osaka Prefecture University

DOI:

https://doi.org/10.6000/1929-5030.2013.02.03.3

Abstract

Benzotrifluoride (BTF), an eco-friendly solvent, can dissolve many organic and fluorous molecules because of the organic and fluorous motifs in its structure. Using BTF as solvent, we have developed a series of reactions for perfluoroalkylation of various unsaturated compounds upon photoirradiation with a Xe lamp through Pyrex. For example, alkynes, allenes, vinylcyclopropanes, isocyanides, diynes, dienes, and enynes successfully undergo regioselective perfluoroalkyliodination, perfluoroalkylselenation, and perfluoroalkyltelluration in BTF. In addition, the present photoinitiation procedure can be applied to trifluoromethylation

Author Biographies

Taichi Tamai, Osaka Prefecture University

Department of Applied Chemistry, Graduate School of Engineering

Motohiro Sonoda, Osaka Prefecture University

Department of Applied Chemistry, Graduate School of Engineering

Akiya Ogawa, Osaka Prefecture University

Department of Applied Chemistry, Graduate School of Engineering

References

Ogawa A, Curran DP. Benzotrifluoride: a Useful Alternative Solvent for Organic Reactions Currently Conducted in Dichloromethane and Related Solvents. J Org Chem 1997; 62: 450-51. http://dx.doi.org/10.1021/jo9620324 DOI: https://doi.org/10.1021/jo9620324

Maul JJ, Ostrowski PJ, Ublacker GA, Linclau B, Curran DP, Knochel P, Ed. In Modern Solvents in Organic Synthesis. Springer: Berlin 1999; 206: 79-105. DOI: https://doi.org/10.1007/3-540-48664-X_4

Curran DP, Hadida S. Tris(2-(perfluorohexyl)ethyl)tin Hydride: A New Fluorous Reagent for Use in Traditional Organic Synthesis and Liquid Phase Combinatorial Synthesis. J Am Chem Soc 1996; 118; 2531-32. http://dx.doi.org/10.1021/ja953287m DOI: https://doi.org/10.1021/ja953287m

Curran DP. Combinatorial organic synthesis and phase separation: back to the future. Chemtracts-Org Chem 1996; 9: 75-87. DOI: https://doi.org/10.1002/chin.199650256

Curran DP, Hoshino M. Stille Couplings with Fluorous Tin Reactants: Attractive Features for Preparative Organic Synthesis and Liquid-Phase Combinatorial Synthesis. J Org Chem 1996; 61: 6480-81. http://dx.doi.org/10.1021/jo961309x DOI: https://doi.org/10.1021/jo961309x

Studer A, Hadida S, Ferritto R, Kim SY, Jeger P, Wipf P, Curran DP. Fluorous synthesis: a fluorous-phase strategy for improving separation efficiency in organic synthesis. Science 1997; 275: 823-26. http://dx.doi.org/10.1126/science.275.5301.823 DOI: https://doi.org/10.1126/science.275.5301.823

Studer A, Jeger P, Wipf P, Curran DP. Fluorous Synthesis: Fluorous Protocols for the Ugi and Biginelli Multicomponent Condensations. J Org Chem 1997; 62: 2917-24. http://dx.doi.org/10.1021/jo970095w DOI: https://doi.org/10.1021/jo970095w

Horner J, Martinez FN, Newcomb M, Hadida S, Curran DP. Rate Constants for Reaction of a Fluorous Tin Hydride Reagent with Primary Alkyl Radicals. Tetrahedron Lett 1997; 2783-86. http://dx.doi.org/10.1016/S0040-4039(97)00489-9 DOI: https://doi.org/10.1016/S0040-4039(97)00489-9

Studer A, Curran DP. A Strategic Alternative to Solid Phase Synthesis: Preparation of a Small Isoxazoline Library by “Fluorous Synthesis”. Tetrahedron 1997; 53: 6681-96. http://dx.doi.org/10.1016/S0040-4020(97)00224-X DOI: https://doi.org/10.1016/S0040-4020(97)00224-X

Ryu I, Niguma T, Minakata S, Komatsu M, Hadida S, Curran DP. Hydroxymethylation of Organic Halides. Evaluation of a Catalytic System Involving a Fluorous Tin Hydride Reagent for Radical Carbonylation. Tetrahedron Lett 1997; 38: 7883- 86. http://dx.doi.org/10.1016/S0040-4039(97)10076-4 DOI: https://doi.org/10.1016/S0040-4039(97)10076-4

Curran DP. Strategy-Level Separations in Organic Synthesis: From Planning to Practice. Angew Chem Int Ed 1998; 37: 1174-96. http://dx.doi.org/10.1002/(SICI)1521- 3773(19980518)37:9<1174::AID-ANIE1174>3.0.CO;2-P DOI: https://doi.org/10.1002/(SICI)1521-3773(19980518)37:9<1174::AID-ANIE1174>3.0.CO;2-P

Curran DP, Luo Z, Degenkolb P. "Propylene spaced" allyl tin reagents: a new class of fluorous tin reagents for allylations under radical and metal-catalyzed conditions. Bioorg Med Chem Lett 1998; 8: 2403-408. http://dx.doi.org/10.1016/S0960-894X(98)00435-1 DOI: https://doi.org/10.1016/S0960-894X(98)00435-1

Curran DP, Ferritto R, Hua Y. Preparation of a Fluorous Benzyl Protecting Group and Its Use in a Fluorous Synthesis Approach to a Disaccharide. Tetrahedron Lett 1998; 39: 4937-40. http://dx.doi.org/10.1016/S0040-4039(98)00961-7 DOI: https://doi.org/10.1016/S0040-4039(98)00961-7

Ogawa A, Tsuchii K. Electronic Encyclopedia of Reagents for Organic Synthesis. Paquette L, Fuchs P, Crich D, Molander G, Eds.; John Wiley & Sons 2006; 632-635.

Banks RE, Smart BE, Tatlow JC. Organofluorine ChemistryPrinciples and Commercial Applications. Plenum Press: New York 1994. http://dx.doi.org/10.1007/978-1-4899-1202-2 DOI: https://doi.org/10.1007/978-1-4899-1202-2

Hudlicky M, Pavlath AE. Chemistry of Organic Fluorine Compounds II-A Critical Review. American Chemical Society: Washington DC 1995.

Chambers RD. Organofluorine Chemistry-Fluorinated Alkenes and Reactive Intermediates. Springer-Verlag: Berlin 1997. DOI: https://doi.org/10.1007/BFb0119263

Hiyama T. Organofluorine Compounds-Chemistry and Applications. Springer-Verlag: Berlin 2000. DOI: https://doi.org/10.1007/978-3-662-04164-2

Baasner B, Hagemann H, Tatlow JC. Houben-Weyl OrganoFluorine Compounds. Thieme: Stuttgart: New York 2000. DOI: https://doi.org/10.1055/b-003-109675

Umemoto T. Electrophilic Perfluoroalkylating Agents. Chem Rev 1996; 96: 1757-77. http://dx.doi.org/10.1021/cr941149u DOI: https://doi.org/10.1021/cr941149u

Habibi MH, Mallouk TE. Photochemical Addition of Perfluoron-Butyl Iodide to Alkynes and Olefins. J Fluorine Chem 1991; 53: 53-60. http://dx.doi.org/10.1016/S0022-1139(00)82238-1 DOI: https://doi.org/10.1016/S0022-1139(00)82238-1

Qiu Z-M, Burton DJ. Reaction of Perfluoroalkyl Iodides with Electron-Deficient Olefins under UV Irradiation. J Org Chem 1995; 60: 3465. http://dx.doi.org/10.1021/jo00116a038 DOI: https://doi.org/10.1021/jo00116a038

Tsuchii K, Imura M, Kmada N, Hirao T, Ogawa A. An Efficient Photoinduced Iodoperfluoroalkylation of Carbon-Carbon Unsaturated Compounds with Perfluoroalkyl Iodides. J Org Chem 2004; 69: 6658-65. http://dx.doi.org/10.1021/jo0495889 DOI: https://doi.org/10.1021/jo0495889

Budavari S, Ed. The Merck Index, 13th ed. Merck & Co., Inc. Whitehouse Station, New Jersey 2001; 291.

Beckwith ALJ, Bowry VW. Kinetics and regioselectivity of ring opening of substituted cyclopropylmethyl radicals. J Org Chem 1989; 54: 2681-88. http://dx.doi.org/10.1021/jo00272a043 DOI: https://doi.org/10.1021/jo00272a043

Newcomb M, Manek MB. Picosecond radical kinetics. Benzeneselenol as a fast radical trapping agent and rate constants for ring opening of the trans-(2- phenylcyclopropyl)carbinyl radical. J Am Chem Soc 1990; 112: 9662-63. http://dx.doi.org/10.1021/ja00182a048 DOI: https://doi.org/10.1021/ja00182a048

Bowry VW, Lusztyk J, Ingold KU. Calibration of a new horologery of fast radical clocks. Ring-opening rates for ringand .alpha.-alkyl-substituted cyclopropylcarbinyl radicals and for the bicycle [2.1.0]pent-2-yl radical. J Am Chem Soc 1991; 113: 5687-98. http://dx.doi.org/10.1021/ja00015a024 DOI: https://doi.org/10.1021/ja00015a024

Bowry VW, Ingold KU. A radical clock investigation of microsomal cytochrome P-450 hydroxylation of hydrocarbons. Rate of oxygen rebound. J Am Chem Soc 1991; 113: 5699-707. http://dx.doi.org/10.1021/ja00015a025 DOI: https://doi.org/10.1021/ja00015a025

Newcomb M. Competition Methods and Scales for Alkyl Radical Reaction Kinetics. Tetrahedron 1993; 49: 1151-76. http://dx.doi.org/10.1016/S0040-4020(01)85808-7 DOI: https://doi.org/10.1016/S0040-4020(01)85808-7

Beckwith ALJ, Bowry VW. Kinetics of Reactions of Cyclopropylcarbinyl Radicals and Alkoxycarbonyl Radicals Containing Stabilizing Substituents: Implications for Their Use as Radical Clocks. J Am Chem Soc 1994; 116: 2710-16. http://dx.doi.org/10.1021/ja00086a003 DOI: https://doi.org/10.1021/ja00086a003

Ogawa A, Imura M, Kamada N, Hirao T. Highly regioselective iodoperfluoroalkylation of allenes with perfluoroalkyl iodides upon irradiation with near-UV light. Tetrahedron Lett 2001; 42: 2489-92. http://dx.doi.org/10.1016/S0040-4039(01)00207-6 DOI: https://doi.org/10.1016/S0040-4039(01)00207-6

For gas-phase reaction of CF3I with unsubstituted allene, see: Meunier HG, Abell PI. Kinetics of the photoaddition of free radicals to allene. J Phys Chem 1967; 71: 1430. http://dx.doi.org/10.1021/j100864a038 DOI: https://doi.org/10.1021/j100864a038

Reichardt C. Solvents and Solvent Effects in Organic Chemistry. VCH: Weinheim 1988; Chapter 7 and Appendix; 339-410.

Reichardt C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem Rev 1994; 94: 2319-58. http://dx.doi.org/10.1021/cr00032a005 DOI: https://doi.org/10.1021/cr00032a005

Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Wiley-VCH: Weinheim 2003; Chapter 7 and Appendix; 389-475. DOI: https://doi.org/10.1002/3527601791

Beckwith ALJ, Ingold KU. de Mayo P, Ed. In Rearrangements in Ground and Excited States. Academic Press, New York 1980; Vol. 1: Chapter 2.

Griller D, Ingold KU. Free-radical clocks. Acc Chem Res 1980; 13: 317-23. http://dx.doi.org/10.1021/ar50153a004 DOI: https://doi.org/10.1021/ar50153a004

Chatgilialoglu C, Ingold KU, Scaiano JC. Rate constants and Arrhenius parameters for the reactions of primary, secondary, and tertiary alkyl radicals with tri-n-butyltin hydride. J Am Chem Soc 1981; 103: 7739-42. http://dx.doi.org/10.1021/ja00416a008 DOI: https://doi.org/10.1021/ja00416a008

Fossey J, Lefort D, Sorba J. Free Radicals in Organic Chemistry. Wiley, New York 1995.

Tsuchii K, Ueta Y, Kamada N, Einaga Y, Nomoto A, Ogawa A. A facile photoinduced iodoperfluoroalkylation of dienes, diynes, and enynes with perfluoroalkyl iodides via selective radical cyclization. Tetrahedron Lett 2005; 46: 7275-78. http://dx.doi.org/10.1016/j.tetlet.2005.07.088 DOI: https://doi.org/10.1016/j.tetlet.2005.07.088

Ryu I, Sonoda N. Free-Radical Carbonylations: Then and Now. Angew Chem Int Ed Engl 1996; 35: 1050-66. http://dx.doi.org/10.1002/anie.199610501 DOI: https://doi.org/10.1002/anie.199610501

Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chemistry of Acyl Radicals. Chem Rev 1999; 99: 1991-70. http://dx.doi.org/10.1021/cr9601425 DOI: https://doi.org/10.1021/cr9601425

Saegusa T, Kobayashi S, Ito Y, Yasuda N. Radical reaction of isocyanide with organotin hydride. J Am Chem Soc 1968; 90: 4182. http://dx.doi.org/10.1021/ja01017a061 DOI: https://doi.org/10.1021/ja01017a061

Saegusa T, Kobayashi S, Ito Y. Radical reaction of isocyanide with thiol. J Org Chem 1970; 35: 2118-21. http://dx.doi.org/10.1021/jo00832a003 DOI: https://doi.org/10.1021/jo00832a003

Barton DHR, Ozbalik N, Vacher B. The invention of radical reactions part XVIII. A convenient solution to the 1-carbon problem (R-CO2H R-13CO2H). Tetrahedron 1988; 44: 3501-12. http://dx.doi.org/10.1016/S0040-4020(01)85980-9 DOI: https://doi.org/10.1016/S0040-4020(01)85980-9

Chatgilialoglu C, Giese B, Kopping B. Alkyl isocyanides as precursors for the formation of carbon-carbon bonds. Tetrahedron Lett 1990; 31: 6013-16. http://dx.doi.org/10.1016/S0040-4039(00)98016-X DOI: https://doi.org/10.1016/S0040-4039(00)98016-X

Curran DP, Liu H. 4 + 1 Radical annulations with isonitriles: a simple route to cyclopenta-fused quinolines. J Am Chem Soc 1991; 113: 2127-32. http://dx.doi.org/10.1021/ja00006a033 DOI: https://doi.org/10.1021/ja00006a033

Curran DP, Liu H. New 4 + 1 radical annulations. A formal total synthesis of (.+-.)-camptothecin. J Am Chem Soc 1992; 114: 5863-64. http://dx.doi.org/10.1021/ja00040a060 DOI: https://doi.org/10.1021/ja00040a060

Fukuyama T, Chen X, Peng G. A Novel Tin-Mediated Indole Synthesis. J Am Chem Soc 1994; 116: 3127-28. DOI: https://doi.org/10.1021/ja00086a054

Bachi MD, Balanov A, Bar-Ner N. Thiol Mediated Free Radical Cyclization of Alkenyl and Alkynyl Isocyanides. J Org Chem 1994; 59: 7752. http://dx.doi.org/10.1021/jo00104a035 DOI: https://doi.org/10.1021/jo00104a035

Nanni D, Pareschi P, Rizzoli C, Sgarabotto P, Tundo A. Radical annulations and cyclisations with isonitriles: the fate of the intermediate imidoyl and cyclohexadienyl radicals. Tetrahedron 1995; 51: 9045-62. http://dx.doi.org/10.1016/0040-4020(95)00348-C DOI: https://doi.org/10.1016/0040-4020(95)00348-C

Yamago S, Miyazoe H, Goto R, Yoshida J. Radical-mediated imidoylation of telluroglycosides. Insertion of isonitriles into the glycosidic carbon-tellurium bond Tetrahedron Lett 1999; 40: 2347-50. http://dx.doi.org/10.1016/S0040-4039(99)00183-5 DOI: https://doi.org/10.1016/S0040-4039(99)00183-5

Leardini R, Nanni D, Zanardi G. Radical Addition to Isonitriles: A Route to Polyfunctionalized Alkenes through a Novel Three-Component Radical Cascade Reaction. J Org Chem 2000; 65: 2763-72. http://dx.doi.org/10.1021/jo991871y DOI: https://doi.org/10.1021/jo991871y

Daniele N. Radicals in Organic Synthesis. Wiley-VCH: Weinhein 2001; Vol. 2: 44-61.

Ogawa A, Doi M, Tsuchii K, Hirao T. Selective sequential addition of diphenyl diselenide to ethyl propiolate and isocyanides upon irradiation with near-UV light. Tetrahedron Lett 2001; 42: 2317-19. http://dx.doi.org/10.1016/S0040-4039(01)00123-X DOI: https://doi.org/10.1016/S0040-4039(01)00123-X

Yamago S, Miyazoe H, Goto R, Hashidume M, Sawazaki T, Yoshida J. Synthetic and Theoretical Studies on GroupTransfer Imidoylation of Organotellurium Compounds. Remarkable Reactivity of Isonitriles in Comparison with Carbon Monoxide in Radical-Mediated Reactions. J Am Chem Soc 2001; 123: 3697-705. http://dx.doi.org/10.1021/ja003879r DOI: https://doi.org/10.1021/ja003879r

Tordeux M, Wakselman C. Synthesis and chemical transformations of perfluoroalkylimidoyl iodides. Tetrahedron 1981; 37: 315-18. http://dx.doi.org/10.1016/S0040-4020(01)92016-2 DOI: https://doi.org/10.1016/S0040-4020(01)92016-2

Ogawa A, Obayashi R, Ine H, Tsuboi Y, Sonoda N, Hirao T. Highly Regioselective Thioselenation of Acetylenes by Using a (PhS)2-(PhSe)2 Binary System. J Org Chem 1998; 63: 881- 84. http://dx.doi.org/10.1021/jo971652h DOI: https://doi.org/10.1021/jo971652h

Ogawa A, Tanaka H, Yokoyama H, Obayashi R, Yokoyama K, Sonoda N. Highly Selective Thioselenation of Olefins Using Disulfide-Diselenide Mixed System. J Org Chem 1992; 57: 111-15. http://dx.doi.org/10.1021/jo00027a021 DOI: https://doi.org/10.1021/jo00027a021

Ogawa A, Obayashi R, Sonoda N, Hirao T. Diphenyl Diselenide-Assisted Dithiolation of 1,3-Dienes with Diphenyl Disulfide upon Irradiation with Near-UV Light. Tetrahedron Lett 1998; 39: 1577-78. http://dx.doi.org/10.1016/S0040-4039(97)10846-2 DOI: https://doi.org/10.1016/S0040-4039(97)10846-2

Ogawa A, Obayashi R, Doi M, Sonoda N, Hirao T. A Novel Photoinduced Thioselenation of Allenes by Use of a Disulfide-Diselenide Binary System. J Org Chem 1998; 63: 4277-81. http://dx.doi.org/10.1021/jo972253p DOI: https://doi.org/10.1021/jo972253p

Ogawa A, Ogawa I, Obayashi R, Umezu K, Doi M, Hirao T. Highly Selective Thioselenation of Vinylcyclopropanes with a (PhS)2-(PhSe)2 Binary System and Its Application to Thiotelluration. J Org Chem 1999; 64: 86-92. http://dx.doi.org/10.1021/jo981053q DOI: https://doi.org/10.1021/jo981053q

Ogawa A, Doi M, Ogawa I, Hirao T. Highly Selective ThreeComponent Coupling of Ethyl Propiolate, Alkenes, and Diphenyl Diselenide under Visible-Light Irradiation. Angew Chem Int Ed 1999; 38: 2027-29. http://dx.doi.org/10.1002/(SICI)1521- 3773(19990712)38:13/143.0.CO;2-M DOI: https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<2027::AID-ANIE2027>3.3.CO;2-D

Ogawa A, Ogawa I, Sonoda N. A Novel Three-Component Coupling of Alkynes, Vinylcyclopropanes, and Diphenyl Diselenide under Visible-Light Irradiation. J Org Chem 2000; 65: 7682-85. http://dx.doi.org/10.1021/jo000669o DOI: https://doi.org/10.1021/jo000669o

Tsuchii K, Doi M, Hirao T, Ogawa A. Highly Selective Sequential Addition and Cyclization Reactions Involving Diphenyl Diselenide, an Alkyne, and Alkenes under VisibleLight Irradiation. Angew Chem Int Ed 2003; 42: 3490-93. http://dx.doi.org/10.1002/anie.200250790 DOI: https://doi.org/10.1002/anie.200250790

Russell GA, Tashtoush HI. Free-radical chain-substitution reactions of alkylmercury halides. J Am Chem Soc 1983; 105: 1398-99. http://dx.doi.org/10.1021/ja00343a069 DOI: https://doi.org/10.1021/ja00343a069

Perkins MJ, Turner ES. SH2 reactions of diphenyl diselenide; preparation and reactions of bridgehead selenides. J Chem Soc Chem Commun 1981; 139-140. http://dx.doi.org/10.1039/c39810000139 DOI: https://doi.org/10.1039/c39810000139

Tsuchii K, Ogawa A. A highly selective photoinduced selenoperfluoroalkylation of terminal acetylenes by using a novel binary system of perfluoroalkyl iodide and diphenyl diselenide. Tetrahedron Lett 2003; 44: 8777-80. http://dx.doi.org/10.1016/j.tetlet.2003.09.182 DOI: https://doi.org/10.1016/j.tetlet.2003.09.182

Fessenden RW, Schuler RH. Electron Spin Resonance Studies of Transient Alkyl Radicals. J Chem Phys 1963; 39: 2147-95. http://dx.doi.org/10.1063/1.1701415 DOI: https://doi.org/10.1063/1.1701415

Singer LA, Chen J. Solvent stereoselectivities in hydrogen atom transfer to the -phenyl--methylvinyl radical. Tetrahedron Lett 1969; 10: 4849-54. http://dx.doi.org/10.1016/S0040-4039(01)88829-8 DOI: https://doi.org/10.1016/S0040-4039(01)88829-8

Tamai T, Nomoto A, Tsuchii K, Minamida Y, Mitamura T, Sonoda M, Ogawa A. Highly selective perfluoroalkylchalcogenation of alkynes by the combination of iodoperfluoroalkanes and organic dichalcogenides upon photoirradiation. Tetrahedron 2012; 68: 10516-22. http://dx.doi.org/10.1016/j.tet.2012.09.026 DOI: https://doi.org/10.1016/j.tet.2012.09.026

Uneyama K. Recent advances in trifluoromethylation. J Synth Org Chem Jpn 1991; 49: 612-23. http://dx.doi.org/10.5059/yukigoseikyokaishi.49.612 DOI: https://doi.org/10.5059/yukigoseikyokaishi.49.612

Umemoto T, Ishihara S. Power-variable electrophilic trifluoromethylating agents. S-, Se-, and Te- (trifluoromethyl)dibenzothio-, -seleno-, and -tellurophenium salt system. J Am Chem Soc 1993; 115: 2156-64. http://dx.doi.org/10.1021/ja00059a009 DOI: https://doi.org/10.1021/ja00059a009

Studer A. A “Renaissance” in Radical Trifluoromethylation. Angew Chem Int Ed 2012; 51: 8950-58. http://dx.doi.org/10.1002/anie.201202624 DOI: https://doi.org/10.1002/anie.201202624

Downloads

Published

2013-08-31

How to Cite

Tamai, T., Sonoda, M., & Ogawa, A. (2013). Highly Selective Perfluoroalkylation of Unsaturated Molecules upon Photoirradiation in BTF as an Organic/Fluorous Hybrid Solvent. Journal of Applied Solution Chemistry and Modeling, 2(3), 178–190. https://doi.org/10.6000/1929-5030.2013.02.03.3

Issue

Section

General Articles