Optimising the Design of Fe0-Based Filtration Systems for Water Treatment: The Suitability of Porous Iron Composites

Authors

  • Mohammad Azizur Rahman Universität Göttingen
  • Shyamal Karmakar University of Chittagong
  • Heba Salama Alexandria University
  • Nadège Gactha-Bandjun University of Maroua
  • Brice Donald Btatkeu K. University of Ngaoundere
  • Chicgoua Noubactep Kultur und Nachhaltige Entwicklung CDD e.V.

DOI:

https://doi.org/10.6000/1929-5030.2013.02.03.2

Keywords:

Porous media, Permeability loss, Reactive filtration, Water treatment, Zero-valent iron.

Abstract

This study assessed the functionality of metallic iron (Fe0) filtration systems using porous iron composite (PIC) as an alternative to granular Fe0/aggregate mixtures. The usage of PIC for water treatment has many challenges which are related to the well-drained nature of highly porous filters and the corresponding increase in hydraulic conductivity (shorter contact time). In this article, the extent of (i) iron exhaustion and (ii) porosity loss in four filtration systems are critically discussed. The considered filtration systems are: (i) Fe0 alone, (ii) PIC alone, (iii) Fe0/sand and (iv) Fe0/pumice. In all four systems, mono-sized granular spherical particles are assumed. Sand and Fe0 are compact (f = 0 %) whereas PIC and pumice are porous (e.g. f = 40 %). Results demonstrated that under anoxic conditions (Fe3O4 as major corrosion products) Fe0 depletion is possible in all systems except Fe0 alone. Under oxic conditions (e.g. formation of Fe(OH)3), the PIC system exhibited the highest level of Fe0 depletion (58 %). The increasing order of sustainability was: Fe0 < Fe0/sand < Fe0/PM < PIC. These results suggested that manufacturing PIC with defined porosity and intrinsic reactivity is the key for more efficient usage of Fe0 for environmental remediation and water treatment.

Author Biographies

Mohammad Azizur Rahman, Universität Göttingen

Angewandte Geologie

Shyamal Karmakar, University of Chittagong

Institute of Forestry and Environmental Sciences

Heba Salama, Alexandria University

Crop Science Department, Faculty of Agriculture

Nadège Gactha-Bandjun, University of Maroua

University of Maroua

Brice Donald Btatkeu K., University of Ngaoundere

ENSAI

Chicgoua Noubactep, Kultur und Nachhaltige Entwicklung CDD e.V.

Comité Afro-européen - Avenue Léopold II

References

[1] Gillham RW, O’Hannesin SF. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 1994; 32(6): 958-67. http://dx.doi.org/10.1111/j.1745-6584.1994.tb00935.x
[2] Matheson LJ, Tratnyek PG. Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 1994; 28(12): 2045-53. http://dx.doi.org/10.1021/es00061a012
[3] O´Hannesin SF, Gillham RW. Long-term performance of an in situ ""iron wall"" for remediation of VOCs. Ground Water 1998; 36(1): 164-70. http://dx.doi.org/10.1111/j.1745-6584.1998.tb01077.x
[4] Bigg T, Judd SJ. Zero-valent iron for water treatment. Environ Technol 2000; 21(6): 661-70. http://dx.doi.org/10.1080/09593332108618077
[5] Scherer MM, Richter S, Valentine RL, Alvarez PJJ. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit Rev Environ Sci Technol 2000; 30(3): 363-11. http://dx.doi.org/10.1080/10643380091184219
[6] Hussam A, Munir AKM. A simple and effective arsenic filter based on composite iron matrix: Development and deployment studies for groundwater of Bangladesh. J Environ Sci Health A 2007; 42(12): 1869-78. http://dx.doi.org/10.1080/10934520701567122
[7] Ngai TKK, Shrestha RR, Dangol B, Maharjan M, Murcott SE. Design for sustainable development - Household drinking water filter for arsenic and pathogen treatment in Nepal. J Environ Sci Health A 2007; 42(12): 1879-88. http://dx.doi.org/10.1080/10934520701567148
[8] Noubactep C, Schöner A, Woafo P. Metallic iron filters for universal access to safe drinking water. Clean: Soil, Air, Water 2009; 37(12): 930-37. http://dx.doi.org/10.1002/clen.200900114
[9] Phillips DH. Permeable reactive barriers: A sustainable technology for cleaning contaminated groundwater in developing countries. Desalination 2009; 248(1-3): 352-59. http://dx.doi.org/10.1016/j.desal.2008.05.075
[10] Allred BJ. Laboratory batch test evaluation of five filter materials for removal of nutrients and pesticides from drainage waters. Transactions of the ASABE 2010; 53(1): 39-54.
[11] Gillham RW. Development of the granular iron permeable reactive barrier technology(good science or good fortune). In ""Advances in environmental geotechnics : proceedings of the International Symposium on Geoenvironmental Engineering in Hangzhou, China, September 8-10, 2009""; Chen Y, Tang X, Zhan L, Eds. Springer Berlin/London 2010; pp. 5-15.
[12] Phillips DH, Van Nooten T, Bastiaens L, Russell MI, Dickson K, Plant S, et al. Ten year performance evaluation of a fieldscale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environ Sci Technol 2010; 44(10): 3861-69. http://dx.doi.org/10.1021/es902737t
[13] Comba S, Di Molfetta A, Sethi R. A Comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut 2011; 215(1-4): 595-607. http://dx.doi.org/10.1007/s11270-010-0502-1
[14] Gheju M. Hexavalent chromium reduction with zero-valent iron(ZVI) in aquatic systems. Water Air Soil Pollut 2011; 222(1-4): 103-48. http://dx.doi.org/10.1007/s11270-011-0812-y
[15] Bilardi S, Calabrò PS, Caré S, Noubactep C, Moraci N. Improving the sustainability of granular iron/pumice systems for water treatment. J Environ Manage 2013; 121: 133-41. http://dx.doi.org/10.1016/j.jenvman.2013.02.042
[16] Chiu PC. Applications of zero-valent iron(ZVI) and nanoscale ZVI to municipal and decentralized drinking water systems - A Review. In ‘Novel Solutions to Water Pollution’, Ahuja S, Hristovski K, (Eds), ACS Symposium Series, Vol. 1123; American Chemical Society: Washington, DC 2013; 237-249. http://dx.doi.org/10.1021/bk-2013-1123.ch014
[17] Neumann A, Kaegi R, Voegelin A, Hussam A, Munir AKM, Hug SJ. Arsenic removal with composite iron matrix filters in Bangladesh: A field and laboratory study. Environ Sci Technol 2013; 47(9): 4544-54. http://dx.doi.org/10.1021/es305176x
[18] Noubactep C. Metallic iron for water treatment: A critical review. Clean - Soil, Air, Water 2013; 41(7): 702-10. http://dx.doi.org/10.1002/clen.201200502
[19] Yi Z-J, Xu J-S, Chen M-S, Li W, Yao J, Chen H-l, et al. Removal of uranium(VI) from aqueous solution using sponge iron. J Radioanal Nucl Chem 2013. http://dx.doi.org/10.1007/s10967-013-2479-x
[20] Henderson AD, Demond AH. Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environ Eng Sci 2007; 24(4): 401-23. http://dx.doi.org/10.1089/ees.2006.0071
[21] Bartzas G, Komnitsas K. Solid phase studies and geochemical modelling of low-cost permeable reactive barriers. J Hazard Mater 2010; 183(1-3): 301-308. http://dx.doi.org/10.1016/j.jhazmat.2010.07.024
[22] Li L, Benson CH. Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers. J Hazard Mater 2010; 181(1-3): 170-80. http://dx.doi.org/10.1016/j.jhazmat.2010.04.113
[23] Noubactep C, Schöner A. Metallic iron: dawn of a new era of drinking water treatment research? Fresen Environ Bull 2010; 19(8a): 1661-68.
[24] Allred BJ. Laboratory evaluation of porous iron composite for agricultural drainage water filter treatment. Transactions of the ASABE 2012; 55(5): 1683-97.
[25] Allred BJ. Laboratory evaluation of zero valent iron and sulfur-modified iron for agricultural drainage water treatment. Ground Water Monit Remed 2012; 32(2): 81-95. http://dx.doi.org/10.1111/j.1745-6592.2011.01379.x
[26] Ingram DT, Callahan MT, Ferguson S, Hoover DG, Shelton DR, Millner PD, et al. Use of zero-valent iron biosand filters to reduce E. coli O157:H12 in irrigation water applied to spinach plants in a field setting. J Appl Microbiol 2012; 112(3): 551-60. http://dx.doi.org/10.1111/j.1365-2672.2011.05217.x
[27] Rahman MA, Wiegand BA, Badruzzaman ABM, Ptak T. Hydrogeological analysis of the upper Dupi Tila Aquifer, towards the implementation of a managed aquifer-recharge project in Dhaka City, Bangladesh. Hydrogeol J 2013; 21(8): 1071-89. http://dx.doi.org/10.1007/s10040-013-0978-z
[28] Richardson JP, Nicklow JW. In situ permeable reactive barriers for groundwater. Contam Soil Sediment Contam 2002; 11(2): 241-68. http://dx.doi.org/10.1080/20025891106736
[29] You Y, Han J, Chiu PC, Jin Y. Removal and inactivation of waterborne viruses using zerovalent iron. Environ Sci Technol 2005; 39(23): 9263-69. http://dx.doi.org/10.1021/es050829j
[30] Miyajima K. Optimizing the design of metallic iron filters for water treatment. Freiberg Online Geosci 2012; 32: 60. (www.geo.tu-freiberg.de/fog)
[31] Shi C, Wei J, Jin Y, Kniel KE, Chiu PC. Removal of viruses and bacteriophages from drinking water using zero-valent iron. Sep Purif Technol 2012; 84(9): 72-78. http://dx.doi.org/10.1016/j.seppur.2011.06.036
[32] Bilardi S, Calabrò PS, Caré S, Moraci N, Noubactep C. Effect of pumice and sand on the sustainability of granular iron beds for the removal of CuII, NiII, and ZnII. Clean - Soil, Air, Water 2013. http://dx.doi.org/10.1002/clen.201100472
[33] Miyajima K, Noubactep C. Impact of Fe0 amendment on methylene blue discoloration by sand columns. Chem Eng J 2013; 217: 310-19. http://dx.doi.org/10.1016/j.cej.2012.11.128
[34] Noubactep C. Metallic iron for safe drinking water worldwide. Chem Eng J 2010; 165(2): 740-49. http://dx.doi.org/10.1016/j.cej.2010.09.065
[35] Noubactep C. The suitability of metallic iron for environmental remediation. Environ Progr Sust En 2010; 29(3): 286-91. http://dx.doi.org/10.1002/ep.10406
[36] Noubactep C. Metallic iron for safe drinking water production. Freiberg Online Geosci 2011; 27: 38. (www.geo.tufreiberg.de/fog)
[37] Noubactep C, Caré S, Crane RA. Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut 2012; 223(3): 1363-82. http://dx.doi.org/10.1007/s11270-011-0951-1
[38] Noubactep C, Temgoua E, Rahman MA. Designing ironamended biosand filters for decentralized safe drinking water provision. CLEAN - Soil, Air, Water 2012; 40(8): 798-807. http://dx.doi.org/10.1002/clen.201100620
[39] Noubactep C. On the suitability of admixing sand to metallic iron for water treatment. Int J Environ Pollut Solutions 2013; 1(1): 22-36.
[40] Johnson TL, Scherer MM, Tratnyek PG. Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol 1996; 30(8): 2634-40. http://dx.doi.org/10.1021/es9600901
[41] Lee G, Rho S, Jahng D. Design considerations for groundwater remediation using reduced metals. Korean J Chem Eng 2004; 21(3): 621-28. http://dx.doi.org/10.1007/BF02705496
[42] McGeough KL, Kalin RM, Myles P. Carbon disulfide removal by zero valent iron. Environ Sci Technol 2007; 41(13): 4607- 12. http://dx.doi.org/10.1021/es062936z
[43] Bi E, Devlin JF, Huang B. Effects of mixing granular iron with sand on the kinetics of trichloroethylene reduction. Ground Water Monit Remed 2009; 29(2): 56-62. http://dx.doi.org/10.1111/j.1745-6592.2009.01234.x
[44] Ulsamer S. A model to characterize the kinetics of dechlorination of tetrachloroethylene and trichloroethylene by a zero valent iron permeable reactive barrier. Master thesis, Worcester Polytechnic Institute 2011; p. 73.
[45] Noubactep C, Caré S, Togue-Kamga F, Schöner A, Woafo P. Extending service life of household water filters by mixing metallic iron with sand. Clean - Soil, Air, Water 2010; 38(10): 951-59. http://dx.doi.org/10.1002/clen.201000177
[46] Noubactep C, Caré S. Enhancing sustainability of household water filters by mixing metallic iron with porous materials. Chem Eng J 2010; 162(2): 635-42. http://dx.doi.org/10.1016/j.cej.2010.06.012
[47] Noubactep C, Caré S. Dimensioning metallic iron beds for efficient contaminant removal. Chem Eng J 2010; 163(1): 454-60. http://dx.doi.org/10.1016/j.cej.2010.07.051
[48] Noubactep C, Caré S. Designing laboratory metallic iron columns for better result comparability. J Hazard Mater 2011; 189(3): 809-13. http://dx.doi.org/10.1016/j.jhazmat.2011.03.016
[49] Noubactep C, Caré S, Btatkeu BD, Nanseu-Njiki CP. Enhancing the sustainability of household Fe0 /sand filters by using bimetallics and MnO2. Clean - Soil, Air, Water 2012; 40(1): 100-109. http://dx.doi.org/10.1002/clen.201100014
[50] Togue-Kamga F, Noubactep C, Woafo P. Modeling and simulation of iron/sand filters. Revue des Sciences de l’Eau 2012; 25(2): 95-101. http://dx.doi.org/10.7202/1011601ar
[51] Caré S, Crane R, Calabrò PS, Ghauch A, Temgoua E, Noubactep C. Modeling the permeability loss of metallic iron water filtration systems. CLEAN - Soil, Air, Water 2013; 41(3): 275-82. http://dx.doi.org/10.1002/clen.201200167
[52] Moraci N, Calabrò PS. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers. J Environ Manage 2010; 91(11): 2336-41. http://dx.doi.org/10.1016/j.jenvman.2010.06.019
[53] Calabrò PS, Moraci N, Suraci P. Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater. J Hazard Mater 2012; 207- 208: 111-16. http://dx.doi.org/10.1016/j.jhazmat.2011.06.094
[54] Moraci N, Calabro PS, Suraci P. Long-term efficiency of zero-valent iron - pumice granular mixtures for the removal of copper or nickel from groundwater. Soils Rocks 2011; 34: 129-37.
[55] Hussam A. Contending with a Development Disaster: SONO Filters Remove Arsenic from Well Water in Bangladesh. Innovations 2009; 4(3): 89-102. http://dx.doi.org/10.1162/itgg.2009.4.3.89
[56] Hussam A. Iron composition based water filtration system for the removal of chemical species containing arsenic and other metal cations and anions. Patent US 2010/0034729 A1., 2012.
[57] Hussam A. Potable water: Nature and purification. Monitoring Water Quality 2013; 261-283.
[58] Schlicker O. Der Einfluß von Grundwasserinhaltsstoffen auf die Reaktivitaet und Langzeitstabilitaet von Fe0 - Reaktionswaenden. Dissertation Thesis, Christian-AlbrechtsUniversitaet, Kiel, Germany 1999; p. 89.
[59] Li J, Li J, Li Y. Cadmium removal from wastewater by sponge iron sphere prepared by charcoal direct reduction. J Environ Sci 2009; 21(S1): S60-S64. http://dx.doi.org/10.1016/S1001-0742(09)60038-3
[60] Li J, Wei L, Li Y, Bi N, Song F. Cadmium removal from wastewater by sponge iron sphere prepared by hydrogen reduction. J Environ Sci 2011; 23(S): S114-S118.
[61] Lai B, Zhou Y, Yang P. Passivation of sponge iron and GAC in Fe0 /GAC mixed-potential corrosion reactor. Ind Eng Chem Res 2012; 51(22): 7777-85. http://dx.doi.org/10.1021/ie203019t
[62] Li JG, Shi Y, Bi N, Feng YP. Influence of pH on cadmium removal from wastewater by SSI. Appl Mechanics Mater 2012; 232: 935-38. http://dx.doi.org/10.4028/www.scientific.net/AMM.232.935
[63] Li JG, Shi Y, Bi N. Influence of reduction agent of SSI on its cadmium removal from wastewater. Appl Mechanics Mater 2012; 251: 406-10. http://dx.doi.org/10.4028/www.scientific.net/AMM.251.406
[64] Zafarani HR, Bahrololoom ME, Javidi M, Shariat MH, Tashkhourian J. Reduction of chromate by sponge iron. Desalin Water Treat, DOI: 10.1080/19443994.19442013. 19822335.
[65] Oldright GL, Keyes HE, Miller V, Sloan WA. Precipitation of lead and copper from solution on sponge iron. Washington D.C. UNT Digital Library, 1928; http://digital.library.unt.edu/ ark:/67531/metadc12459/. (accessed May 27, 2013).
[66] Addy S, Fletcher AJ. The deposition of cobalt on iron powder by means of the cementation reaction. Hydrometallurgy 1987; 17(3): 269-80. http://dx.doi.org/10.1016/0304-386X(87)90058-2
[67] Conard BR. The role of hydrometallurgy in achieving sustainable development. Hydrometallurgy 1992; 30(1-3): 1- 28. http://dx.doi.org/10.1016/0304-386X(92)90074-A
[68] Mackenzie PD, Horney DP, Sivavec TM. Mineral precipitation and porosity losses in granular iron columns. J Hazard Mater 1999; 68(1-2): 1-17. http://dx.doi.org/10.1016/S0304-3894(99)00029-1
[69] Westerhoff P, James J. Nitrate removal in zero-valent iron packed columns. Water Res 2003; 37(8): 1818-30. http://dx.doi.org/10.1016/S0043-1354(02)00539-0
[70] Henderson AD, Demond, AH. Impact of solids formation and gas production on the permeability of ZVI PRBs. J Environ Eng 2011; 137(8): 689-96. http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000383
[71] Jeen S-W, Amos RT, Blowes DW. Modeling gas formation and mineral precipitation in a granular iron column. Environ Sci Technol 2012; 46(12): 6742-49. http://dx.doi.org/10.1021/es300299r
[72] Pilling NB, Bedworth RE. The oxidation of metals at high temperatures. J Inst Metals 1923; 29: 529-91.
[73] Caré S, Nguyen QT, L'Hostis V, Berthaud Y. Mechanical properties of the rust layer induced by impressed current method in reinforced mortar. Cement Concrete Res 2008; 38(8-9): 1079-91. http://dx.doi.org/10.1016/j.cemconres.2008.03.016
[74] Zhao Y, Ren H, Dai H, Jin W. Composition and expansion coefficient of rust based on X-ray diffraction and thermal analysis. Corros Sci 2011; 53(5): 1646-58. http://dx.doi.org/10.1016/j.corsci.2011.01.007
[75] Noubactep C. Characterizing the reactivity of metallic iron in Fe0 /UVI/H2O systems by long-term column experiments. Chem Eng J 2011; 171(2): 393-99. http://dx.doi.org/10.1016/j.cej.2011.03.093
[76] Noubactep C. Characterizing the reactivity of metallic iron in Fe0 /As-rock/H2O systems by long-term column experiments. Water SA 2012; 38(4): 511-17. http://dx.doi.org/10.4314/wsa.v38i4.5
[77] Btatkeu BD, Miyajima K, Noubactep C, Caré S. Testing the suitability of metallic iron for environmental remediation: Discoloration of methylene blue in column studies. Chem Eng J 2013; 215-216: 959-68. http://dx.doi.org/10.1016/j.cej.2012.11.072
[78] Nur A, Mavko G, Dvorkin J, Galmudi D. Critical porosity; a key to relating physical properties to porosity in rocks. The Leading Edge 1998; 17(3): 357-62. http://dx.doi.org/10.1190/1.1437977
[79] Ghauch A, Abou Assi H, Baydoun H, Tuqan AM, Bejjani A. Fe0 -based trimetallic systems for the removal of aqueous diclofenac: Mechanism and kinetics. Chem Eng J 2011; 172(2-3): 1033-44. http://dx.doi.org/10.1016/j.cej.2011.07.020
[80] Crane RA, Scott TB. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J Hazard Mater 2012; 211-212: 112-25. http://dx.doi.org/10.1016/j.jhazmat.2011.11.073
[81] Bojic A, Purenovic M, Kocic B, Perovic J, Ursic-Jankovic J, Bojic D. The inactivation of escherichia coli by microalloyed aluminium based composite. FACTA UNIVERSITATIS. Phys Chem Technol 2001; 2(3): 115-24.
[82] Bojic A, Purenovic M, Bojic D. Removal of chromium(VI) from water by micro-alloyed aluminium based composite in flow conditions. Water SA 2004; 30(3): 353-59. http://dx.doi.org/10.4314/wsa.v30i3.5084
[83] Bojic ALJ, Purenovic M, Bojic D, Andjelkovic T. Dehalogenation of trihalomethanes by a micro-alloyed aluminium composite under flow conditions. Water SA 2007; 33(2): 297-304.
[84] Bojic ALJ, Bojic D, Andjelkovic T. Removal of Cu2+ and Zn2+ from model wastewaters by spontaneous reductioncoagulation process in flow conditions. J Hazard Mater 2009; 168(2-3): 813-19. http://dx.doi.org/10.1016/j.jhazmat.2009.02.096
[85] Reardon JE. Anaerobic corrosion of granular iron: Measurement and interpretation of hydrogen evolution rates. Environ Sci Technol 1995; 29(12): 2936-45. http://dx.doi.org/10.1021/es00012a008
[86] Landis RL, Gillham RW, Reardon EJ, Fagan R, Focht RM, Vogan JL. An examination of zero-valent iron sources used in permeable reactive barriers. In ‘3rd International Containment Technology Conference (10-13 June 2001)’, Florida State University, Tallahassee. Orlando, FL 2001; p. 5.
[87] Miehr R, Tratnyek GP, Bandstra ZJ, Scherer MM, Alowitz JM, Bylaska JE. Diversity of contaminant reduction reactions by zerovalent iron: Role of the reductate. Environ Sci Technol 2004; 38(1): 139-47. http://dx.doi.org/10.1021/es034237h
[88] Noubactep C, Meinrath G, Dietrich P, Sauter M, Merkel B. Testing the suitability of zerovalent iron materials for reactive Walls. Environ Chem 2005; 2(1): 71-76. http://dx.doi.org/10.1071/EN04014
[89] Reardon JE. Zerovalent irons: Styles of corrosion and inorganic control on hydrogen pressure buildup. Environ Sci Tchnol 2005; 39(18): 7311-17. http://dx.doi.org/10.1021/es050507f
[90] Manandhar UK, Vigneswaran S. Effect of media size gradation and varying influent concentration in deep-bed filtration: Mathematical models and experiments. Separat Technol 1991; 1(4): 178-83. http://dx.doi.org/10.1016/0956-9618(91)80012-O
[91] Wohanka W, Lendtke H, Luebke M. Optimization of slow filtration as a means for disinfecting nutrient solutions. Acta Hortic 1999; 2(481): 539-43.
[92] Kelm U, Sanhueza V, Guzman C. Filtration and retention of mineral processing slurries with pumice and common clay: low-cost materials for environmental applications in the small-scale mining industry. Appl Clay Sci 2003; 24(1-2): 35- 42. http://dx.doi.org/10.1016/j.clay.2003.07.004
[93] Alvarez AC, Hime G, Marchesin D, Bedrikovetsky PG. The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media. Transp Porous Med 2007; 70: 43-62. http://dx.doi.org/10.1007/s11242-006-9082-3
[94] Bedrikovetsky P. Upscaling of stochastic micro model for suspension transport in porous media. Transp Porous Med 2008; 75(3): 335-69. http://dx.doi.org/10.1007/s11242-008-9228-6
[95] Wall K, Pang L, Sinton L, Close M. Transport and attenuation of microbial tracers and effluent microorganisms in saturated pumice sand aquifer material. Water Air Soil Pollut 2008; 188(1-4): 213-24. http://dx.doi.org/10.1007/s11270-007-9537-3
[96] Soyer E, Akgiray Ö, Eldem NÖ, Saatci AM. Crushed recycled glass as a filter medium and comparison with silica sand. Clean - Soil Air Water 2010; 38(10): 927-35. http://dx.doi.org/10.1002/clen.201000217
[97] Bedrikovetsky P, Siqueira FD, Furtado CA, Souza ALS. Modified particle detachment model for colloidal transport in porous media. Transp Porous Med 2011; 86(2): 353-83. http://dx.doi.org/10.1007/s11242-010-9626-4
[98] Ghebremichael K, Wasala LD, Kennedy M, Graham NJD. Comparative treatment performance and hydraulic characteristics of pumice and sand biofilters for point-of-use water treatment. J Water Supply Res Technol AQUA 2012; 61(4): 201-209. http://dx.doi.org/10.2166/aqua.2012.100
[99] Roseen RM, Ballestero TP, Houle JJ, Briggs JF, Houle KM. Water quality and hydrologic performance of a porous asphalt pavement as a storm-water treatment strategy in a cold climate. J Environ Eng 2012; 138(1): 81-89. http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000459
[100] Yadav S, Srivastava V, Banerjee S, Gode F, Sharma YC. Studies on the removal of nickel from aqueous solutions using modified riverbed sand. Environ Sci Pollut Res Int 2013; 20(1): 558-67. http://dx.doi.org/10.1007/s11356-012-0892-2
[101] Li T, Chen Y, Wan P, Fan M, Yang XJ. Chemical degradation of drinking water disinfection byproducts by millimeter-sized particles of iron-silicon and magnesium-aluminum alloys. J Am Chem Soc 2010; 132: 2500-501. http://dx.doi.org/10.1021/ja908821d
[102] Noubactep C. Processes of contaminant removal in “Fe0 - H2O” systems revisited. The importance of co-precipitation. Open Environ J 2007; 1(1): 9-13. http://dx.doi.org/10.2174/1874233500701010009
[103] Noubactep C. A critical review on the mechanism of contaminant removal in Fe0 -H2O systems. Environ Technol 2008; 29(8): 909-20. http://dx.doi.org/10.1080/09593330802131602
[104] Noubactep C. Relevant reducing agents in remediation Fe0 /H2O systems. Clean: Soil, Air, Water 2013; 41(5): 493- 502. http://dx.doi.org/10.1002/clen.201200406
[105] Noubactep C. Metallic iron for environmental remediation: the long walk to evidence. Corros Rev 2013. http://dx.doi.org/10.1515/corrrev-2013-0018
[106] Gatcha-Bandjun N, Noubactep C. Metallic iron for environmental remediation: Missing the 'valley of death'. Fresenius Environ Bull 2013; (F-2012-732 - Accepted 20.12.2012). http://dx.doi.org/10.3291/F-2012-732pj2013
[107] Kobbe-Dama N, Noubactep C, Tchatchueng JB. Metallic iron for water treatment: Prevailing paradigm hinders progress. Fresenius Environ Bull 2013; (F-2013-165 - Accepted 23.07.2013). http://dx.doi.org/10.3291/F-2013-165pj2013
[108] Sikora E, Macdonald DD. The passivity of iron in the presence of ethylenediaminetetraacetic acid I. General electrochemical behavior. J Electrochem Soc 2000; 147(11): 4087-92. http://dx.doi.org/10.1149/1.1394024
[109] Sato N. Surface oxides affecting metallic corrosion. Corros Rev 2001; 19(3-4): 253-72. http://dx.doi.org/10.1515/CORRREV.2001.19.3-4.253
[110] Sarin P, Snoeyink VL, Bebee J, Kriven WM, Clement JA. Physico-chemical characteristics of corrosion scales in old iron pipes. Water Res 2001; 35(12): 2961-69. http://dx.doi.org/10.1016/S0043-1354(00)00591-1
[111] Sarin P, Snoeyink VL, Lytle DA, Kriven WM. Iron corrosion scales: Model for scale growth, iron release, and colored water formation. J Envir Engrg 2004; 130(4): 364-73. http://dx.doi.org/10.1061/(ASCE)0733-9372(2004)130:4(364)
[112] Nesic S. Key issues related to modelling of internal corrosion of oil and gas pipelines - A review. Corros Sci 2007; 49(12): 4308-38. http://dx.doi.org/10.1016/j.corsci.2007.06.006
[113] Khan AH, Rasul SB, Munir AKM, Habibuddowla M, Alauddin M, Newaz SS, et al. Appraisal of a simple arsenic removal method for groundwater of bangladesh. J Environ Sci Health A 2000; 35(7): 1021-41. http://dx.doi.org/10.1080/10934520009377018
[114] Pokhrel D, Bhandari BS, Viraraghavan T. Arsenic contamination of groundwater in the Terai region of Nepal: An overview of health concerns and treatment options. Environ Int 2009; 35(1): 157-61. http://dx.doi.org/10.1016/j.envint.2008.06.003
[115] Litter MI, Morgada ME, Bundschuh J. Possible treatments for arsenic removal in Latin American waters for human consumption. Environ Pollut 2010; 158(5): 1105-18. http://dx.doi.org/10.1016/j.envpol.2010.01.028
[116] Giles DE, Mohapatra M, Issa TB, Anand S, Singh P. Iron and aluminium based adsorption strategies for removing arsenic from water. J Environ Manage 2011; 92(12): 3011-22. http://dx.doi.org/10.1016/j.jenvman.2011.07.018

Downloads

Published

2013-08-31

How to Cite

Rahman, M. A., Karmakar, S., Salama, H., Gactha-Bandjun, N., K., B. D. B., & Noubactep, C. (2013). Optimising the Design of Fe0-Based Filtration Systems for Water Treatment: The Suitability of Porous Iron Composites. Journal of Applied Solution Chemistry and Modeling, 2(3), 165–177. https://doi.org/10.6000/1929-5030.2013.02.03.2

Issue

Section

General Articles