Effects of Additives upon Percolation Temperature in AOT-Based Microemulsions
DOI:
https://doi.org/10.6000/1929-5030.2014.03.02.8Keywords:
Microemulsion, Surfactants, Transport phenomena, Percolation, Aditives, Percolation Temperature.Abstract
In the present review the percolative phenomena has been analyzed. Percolation is related to transport phenomena in microemulsions, in particular the electric charge transport. The influence of different additives upon electric percolation has been commented. The effects of the additives considered upon the microemulsion properties appear to come about through their association with the surfactant interface. The effects of these agents on the ease with which interdroplet channels allowing transfer of droplet contents are formed are not only responsible for their effects on percolation temperature, but also have serious implications for the rates of fast chemical reactions performed in microemulsions.
References
Summers M and Eastoe J. Applications of polymerizable surfactants. Adv Coll Interface Sci 2003; 110: 137-52. http://dx.doi.org/10.1016/S0001-8686(02)00058-1 DOI: https://doi.org/10.1016/S0001-8686(02)00058-1
Fendler JH. Atomic and molecular clusters in membrane chemistry. Chem Rev 1987; 87: 877-99. http://dx.doi.org/10.1021/cr00081a002 Effects of Additives upon Percolation Temperature in AOT-Based Journal of Applied Solution Chemistry and Modeling, 2014, Volume 3, No. 2 125 DOI: https://doi.org/10.1021/cr00081a002
Fendler JH. Interactions and Kinetics in Membrane Mimetic. Ann Rev Phys Chem 1984; 35: 137-57. http://dx.doi.org/10.1146/annurev.pc.35.100184.001033 DOI: https://doi.org/10.1146/annurev.pc.35.100184.001033
Fendler JH. Reactiviy control in membrane mimetic system. Pure Appl Chem 1982; 54: 1809-81. http://dx.doi.org/10.1351/pac198254101809 DOI: https://doi.org/10.1351/pac198254101809
Fendler JH. Microemulsions, micelles, and vesicles as media for membrane mimetic photochemistry. J Phys. Chem. 1980; 84: 1485-91. http://dx.doi.org/10.1021/j100449a012 DOI: https://doi.org/10.1021/j100449a012
Langevin D, Meunier J and Cazabat AM. Microemulsions. La Recherche. 1985; 16: 720-28.
Moss RA, Bizzigotti GO and Ihara Y. Biomimetic chemistry of functional vesicles and micelles. Stud Org Chem 1983; 13: 189-205.
Breslow R. Biomimetic Chemistry in Oriented Systems. Israel J Chem 1979; 18: 187-91. http://dx.doi.org/10.1002/ijch.197900024 DOI: https://doi.org/10.1002/ijch.197900024
Garti N and Aserin A. Microemulsions for solubilization and delivery of nutraceuticals and drugs. Drugs and Pharm Sci 2006; 158: 345-428. DOI: https://doi.org/10.1201/9781420027990.ch12
Salager JL, Anton RE, Sabatini DA, Harwell JH, Acosta EJ and Tolosa LI. Enhancing solubilization in microemulsionsState of the art and current trends. J Surf Deterg 2005; 8: 3- 21. http://dx.doi.org/10.1007/s11743-005-0328-4 DOI: https://doi.org/10.1007/s11743-005-0328-4
Eastoe J and Bumajdad A. Mixed surfactant microemulsions. Rec Res Dev Phys Chem 2000; 4: 337-50.
García-Río L, Mejuto JC and Pérez-Lorenzo M. First evidence of simultaneous different kinetic behaviors at the interface and he continuous medium of w/o microemulsions. J Phys Chem B 2006; 110: 812-9. http://dx.doi.org/10.1021/jp055270o DOI: https://doi.org/10.1021/jp055270o
Shervani Z and Ikushima Y. The promotion of hydrolysis of acetylsalicylic acid in AOT/near-critical propane microemulsion. Chem Comm 2001; 23: 2506-7. http://dx.doi.org/10.1039/b103695p DOI: https://doi.org/10.1039/b103695p
Pokhriyal NK, Sanghvi PG, Shah DO and Devi S. Kinetics and behavior of copolymerization in emulsion and microemulsion systems. Langmuir 2000; 16: 5864-70. http://dx.doi.org/10.1021/la991139u DOI: https://doi.org/10.1021/la991139u
Holmes JD, Steytler DC, Rees GD and Robinson BH. Bioconversions in a water-in-CO2 microemilsion. Langmuir 1998; 14: 6371-6. http://dx.doi.org/10.1021/la9806956 DOI: https://doi.org/10.1021/la9806956
Kishida M, Umakoshi K, Ishiyama J, Nadata H and Wakabayashi K. Hydrogenation of carbon dioxide over metal catalysts prepared using microemulsion. Cat Today 1996; 29: 355-9. http://dx.doi.org/10.1016/0920-5861(95)00304-5 DOI: https://doi.org/10.1016/0920-5861(95)00304-5
Das ML, Bhattacharya PK and Moulik SP. Reaction kinetics in microemulsion medium. 1. Inversion of cane sugar in quaternary system of microemulsion containing water/Triton X-100/1-butanol/(cholesteryl benzoate + n-heptane). Langmuir 1990; 6: 1591-5. http://dx.doi.org/10.1021/la00100a011 DOI: https://doi.org/10.1021/la00100a011
Da Rocha Pereira R, Zanette D and Nome F. Application of the pseudophase ion-exchange model to kinetics in microemulsions of anionic detergents. J Phys Chem 1990; 94: 356-61. http://dx.doi.org/10.1021/j100364a061 DOI: https://doi.org/10.1021/j100364a061
Zilman AG and Safran SA. Thermodynamics and structure of self-assembled networks. Phys. Rev. E 2002; 66: 051107/1- 051107/28. http://dx.doi.org/10.1103/PhysRevE.66.051107 DOI: https://doi.org/10.1103/PhysRevE.66.051107
Dvolaitzky M, Guyot M, Lagües M, Le Pesant JP, Ober R, Sauterey C, Taupin C. A structural description of liquid particle dispersions: Ultracentrifugation and small angle neutron scattering studies of microemulsions. J Chem Phys 1978; 69: 3279-88. http://dx.doi.org/10.1063/1.436979
Pileni MP. Structure and reactivity in Reverse Micelles. Amsterdam: Elsevier; 1989.
a) Winsor PA. Hydrotropy, solubilization, and related emulsification processes. Part I. Trans Faraday Soc 2 1948; 44: 376-82. b) Formariz TP, Urban MCC, Silva Jr AA, Gremião MPD, Oliveira G. Microemulsões e fases líquidas cristalinas como sistemas de liberação de fármacos. Braz J Pharm Sci 2005; 41: 301-13.
Bauer A, Woelki S and Kohler HH. Rod formation of ionic surfactants: Electrostatic and conformational energies. J Phys Chem B 2004; 108: 2028-37. http://dx.doi.org/10.1021/jp036088v DOI: https://doi.org/10.1021/jp036088v
Dickson JL, Psathas PA, Salinas B, et al. Formation and growth of water-in-CO2 miniemulsions. Langmuir 2003; 19: 4895-04. http://dx.doi.org/10.1021/la0268810 DOI: https://doi.org/10.1021/la0268810
Hait SK and Moulik SP. Interfacial Composition and Thermodynamics of Formation of Water/Isopropyl Myristate Water-in-Oil Microemulsions Stabilized by Butan-1-ol and Surfactants Like Cetyl Pyridinium Chloride, Cetyl Trimethyl Ammonium Bromide, and Sodium Dodecyl Sulfate. Langmuir 2002; 18: 6736-44. http://dx.doi.org/10.1021/la011504t DOI: https://doi.org/10.1021/la011504t
Vollmer J, Vollmer D and Strey R. Oscillating phase separation in microemulsions II: Description by bending free energy. J Chem Phys 1997; 107: 3627-33. http://dx.doi.org/10.1063/1.474720 DOI: https://doi.org/10.1063/1.474720
Paul S and Moulik SP. Physicochemical studies on microemulsions. IV-A comprehensive estimation of the energetics. Indian J Chem 1995; 34: 931-7.
Nagaranjan R and Ruckenstien E. Theory of surfactant selfassembly: a predictive molecular thermodynamic approach. Langmuir 1991; 7: 2934-69. http://dx.doi.org/10.1021/la00060a012 DOI: https://doi.org/10.1021/la00060a012
Rosano HL and Lyons GB. Free energy, enthalpy, and entropy changes during the formation of a nhexadecane/potassium stearate/water/1-pentanol microemulsion system. J Phys Chem 1985; 89: 363-5. http://dx.doi.org/10.1021/j100248a036 DOI: https://doi.org/10.1021/j100248a036
Stecker MM and Benedek GB. Theory of multicomponent micelles and microemulsions. J Phys Chem 1984; 88: 6519- 44. http://dx.doi.org/10.1021/j150670a014 DOI: https://doi.org/10.1021/j150670a014
Kertes AS and Lai WC. Thermodynamics of microemulsion systems. II. Enthalpies of solution in aqueous sodium chloride + 2-propanol systems. J Coll Int Sci 1980; 76: 48-54. http://dx.doi.org/10.1016/0021-9797(80)90269-6 DOI: https://doi.org/10.1016/0021-9797(80)90269-6
Ruckenstein E. On the thermodynamic stability of microemulsions. J Coll Int Sci 1978; 66: 369-71. http://dx.doi.org/10.1016/0021-9797(78)90320-X DOI: https://doi.org/10.1016/0021-9797(78)90320-X
Ruckenstein E and Chi JC. Stability of microemulsions. J Chem Soc Faraday Trans 2 1975; 71: 1690-707. http://dx.doi.org/10.1039/f29757101690 DOI: https://doi.org/10.1039/f29757101690
Tanford C. Micelle shape and size. J Phys Chem 1972; 76: 3020-4. http://dx.doi.org/10.1021/j100665a018 DOI: https://doi.org/10.1021/j100665a018
Mitchell DJ and Ninham BW. Micelles, vesicles and microemulsions. J Chem Soc Faraday Trans 2 1981; 7: 601- 29. http://dx.doi.org/10.1039/f29817700601 DOI: https://doi.org/10.1039/f29817700601
Israelachvili JN, Mitchell DJ and Ninhan BW. Theory of selfassembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2 1976; 72: 1525-68. http://dx.doi.org/10.1039/f29767201525 126 Journal of Applied Solution Chemistry and Modeling, 2014, Volume 3, No. 2 Cid et al. DOI: https://doi.org/10.1039/f29767201525
Sager WFC and Blokhuis EM. Curvature energy for droplet dimerization and aggregation in microemulsions. Prog Coll Pol Sci 1998; 110: 258-62. http://dx.doi.org/10.1007/BFb0118088 DOI: https://doi.org/10.1007/BFb0118088
Ruckenstein E and Krishnan R. The equilibrium radius and the domain of existence of microemulsions. Coll Int Sci 1980; 76: 188-200. http://dx.doi.org/10.1016/0021-9797(80)90285-4 DOI: https://doi.org/10.1016/0021-9797(80)90285-4
Ruckenstein E and Krishnan R. The equilibrium radius of microemulsions formed with ionic surfactants. J Coll Int Sci 1980; 75: 476-92. http://dx.doi.org/10.1016/0021-9797(80)90472-5 DOI: https://doi.org/10.1016/0021-9797(80)90472-5
Doerfler HD. Structure formation in amphiphilic multicomponent systems. Tens Surf Det 1994; 31: 29-35.
Nagarajan R. Theory of micelle formation: quantitative approach to preceding micellar properties from surfactant molecular structure. Surf Sci Ser 1997; 70: 1-81.
Cazabat AM, Chatenay D, Langevin D and Meunier J. Percolation and critical points in microemulsions. J Chem Soc Faraday Discuss 1982; 76: 291-3. http://dx.doi.org/10.1039/dc9837600291 DOI: https://doi.org/10.1039/dc9837600291
Kaler EW, Davis HT and Scriven LE. Toward understanding microemulsion microstructure. II. J Chem Phys 1983; 79: 5685-92. http://dx.doi.org/10.1063/1.445689 DOI: https://doi.org/10.1063/1.445689
Steinchen A, Sanfeld A and Devillez C. Structure and phase inversion of microemulsions in correlation with low interfacial tension. Role of alcohol-role of salinity. J. Chim Phys. et Phys-Chim. Biol. 1980; 77: 229-33. DOI: https://doi.org/10.1051/jcp/1980770229
Ramachandran C, Vijayan S and Shah DO. Effect of salt structure of middle phase microemulsions using the spinlabel technique. J Phys Chem 1980; 84: 1561-7. http://dx.doi.org/10.1021/j100449a025 DOI: https://doi.org/10.1021/j100449a025
Bansal VK, Shah DO and O'Connell JP. Influence of alkyl chain length compatibility on microemulsion structure and solubilization. J Coll Int Sci 1980; 75: 462-75. http://dx.doi.org/10.1016/0021-9797(80)90471-3 DOI: https://doi.org/10.1016/0021-9797(80)90471-3
Kumar C and Balasubramanian D. Structural features of water-in-oil microemulsions. J Phys Chem 1980; 84: 1895-9. http://dx.doi.org/10.1021/j100452a006 DOI: https://doi.org/10.1021/j100452a006
Oakenfull D. Constraints of molecular packing on the size and stability of microemulsion droplets. J Chem Soc Faraday Trans 1: Phys Chem in Cond Phases 1980; 76: 1875-86. http://dx.doi.org/10.1039/f19807601875 DOI: https://doi.org/10.1039/f19807601875
Chen SJ, Evans DF and Ninham BW. Properties and structure of tree-component ionic microemulsions. J Phys Chem 1984; 88: 1631-4. http://dx.doi.org/10.1021/j150652a038 DOI: https://doi.org/10.1021/j150652a038
Beaglehole D, Clarkson MT, Upton A. Structure of the microemulsion/oil/water interfaces. J Coll and Int Sci 1984; 101: 330-5. http://dx.doi.org/10.1016/0021-9797(84)90042-0 DOI: https://doi.org/10.1016/0021-9797(84)90042-0
Sjöblom E, Waernheim T, Henriksson U and Stenius P. The importance of the cosurfactant and the oil for the properties of microemulsions. Tens Deterg 1984; 21: 303-6. DOI: https://doi.org/10.1515/tsd-1984-210609
Fletcher PDI, Galal MF, Robinson BH. Structural study of aerosol-OT-stabilized microemulsions of glycerol dispersed in n-heptane. J Chem Soc Faraday Trans 1: Phys Chem in Cond Phases 1984; 80: 3307-14. http://dx.doi.org/10.1039/f19848003307 DOI: https://doi.org/10.1039/f19848003307
Roux D, Bellocq AM and Bothorel P. Effect of the molecular structure of components on micellar interactions in microemulsions. Prog Coll Polym Sci 1984; 69: 1-11. DOI: https://doi.org/10.1007/BFb0114959
Blum FD, Pickup S, Ninham B, Chen SJ and Evans DF. Struture and dynamics in three-component microemulsions. J Phys Chem 1985; 89: 711-3. http://dx.doi.org/10.1021/j100250a030 DOI: https://doi.org/10.1021/j100250a030
Velázquez MM and González-Blanco C. Polymer effects on the structure and properties of w/o microemulsions. Rec Dev Coll Int Res 2003; 1: 347-359.
Donescu D, Fusulan L, Vasilescu M, Donescu A, Chiraleu F and Petcu C. The influence of monomers upon microemulsions with short chain cosurfactant. J Disp Sci Technol 2001; 22: 231-44. http://dx.doi.org/10.1081/DIS-100105210 DOI: https://doi.org/10.1081/DIS-100105210
Ozawa K, Olsson U and Kunieda H. Oil-induced structural change in nonionic microemulsions. J Dispersion Sci Technol 2001; 22: 119-24. http://dx.doi.org/10.1081/DIS-100102687 DOI: https://doi.org/10.1081/DIS-100102687
Rouviere J, Couret JM, Lindheimer M, Dejardin JL and Marony R. Structure of the AOT reverse aggregates. I. Shape and size of AOT micelles. J Chim Phys-Chim Biol 1979; 76: 289-296. DOI: https://doi.org/10.1051/jcp/1979760289
Rouviere J, Couret JM, Lindheimer A, Lindheimer M and Brun B. Structure of AOT reverse aggregates. II. Salt effects upon AOT reverse micelles. J Chim Phys-Chim Biol 1979; 76: 297-301. DOI: https://doi.org/10.1051/jcp/1979760297
Schulman JH, Stoeckenius W and Prince L. Mechanism of formation and structure of micro emulsions by electron microscopy. J Phys Chem 1959; 63: 1677-80. http://dx.doi.org/10.1021/j150580a027 DOI: https://doi.org/10.1021/j150580a027
Talmon Y and Prager S. Statistical thermodynamics of phase equilibriums in microemulsions. J Phys Chem 1978; 69: 2984-91. http://dx.doi.org/10.1063/1.437016 DOI: https://doi.org/10.1063/1.437016
Taupin C. New ideas for microemulsions structure: the Talmon-Prager and Gennes models. Struct Dyn Mol Syst 1986; 2: 195-208. http://dx.doi.org/10.1007/978-94-009-4662-0_10 DOI: https://doi.org/10.1007/978-94-009-4662-0_10
Dvolaitzkay M, Guyot M, Langues M, Le Pesant JP, Ober R and Taupin C. A structural description of liquid particle dispersions: Ultracentrifugation and small angle neutron scattering studies of microemulsions. J Chem Phys 1978; 69: 3279-88. http://dx.doi.org/10.1063/1.436979 DOI: https://doi.org/10.1063/1.436979
Drifford M, Tabony J and De Geyer A. Structure of a microemulsion in the critical region: neutron small-angle scattering results. Chem Phys Lett 1983; 96: 119-25. http://dx.doi.org/10.1016/0009-2614(83)80129-8 DOI: https://doi.org/10.1016/0009-2614(83)80129-8
Shukla A and Neubert RHH. Investigation of W/O microemulsion droplets by contrast variation light scattering. Pramana 2005; 65: 1097-108. http://dx.doi.org/10.1007/BF02705284 DOI: https://doi.org/10.1007/BF02705284
Capuzzi G, Pini F, Gambi CMC, Monduzzi M, Baglioni P and Teixeira J. Small-Angle Neutron Scattering of Ca(AOT)2/D2O/Decane Microemulsions. Langmuir 1997; 13: 6927-30. http://dx.doi.org/10.1021/la970561c DOI: https://doi.org/10.1021/la970561c
Caboi F, Capuzzi G, Baglioni P and Monduzzi M. Microstructure of AOT/Water/Decane w/o Microemulsions. J Phys Chem 1997; 101: 10205-12. http://dx.doi.org/10.1021/jp971274k DOI: https://doi.org/10.1021/jp971274k
Eriksson JC and Ljunggren S. General conditions governing the formation of cylindrical W/O microemulsion aggregates. J Coll Interf Sci 1991; 145 224-34. http://dx.doi.org/10.1016/0021-9797(91)90114-N DOI: https://doi.org/10.1016/0021-9797(91)90114-N
Leung R and Shah DO. Solubilization and phase equilibria of water-in-oil microemulsions. I. Effects of spontaneous curvature and elasticity of interfacial films. J Coll Interf Sci 1986; 120: 320-9. http://dx.doi.org/10.1016/0021-9797(87)90360-2 DOI: https://doi.org/10.1016/0021-9797(87)90360-2
Kaler EW, Bennet KE, Davis HT and Scriven LE, Toward understanding microemulsion microstucture: a small-angle xray scattering study. J Chem Phys 1983; 79: 5673-84. http://dx.doi.org/10.1063/1.445688 Effects of Additives upon Percolation Temperature in AOT-Based Journal of Applied Solution Chemistry and Modeling, 2014, Volume 3, No. 2 127 DOI: https://doi.org/10.1063/1.445688
Eicke HF and Rehak J. On the formation of water/oil microemulsions. Helv Chim Acta 1976; 59: 2883-91. http://dx.doi.org/10.1002/hlca.19760590825 DOI: https://doi.org/10.1002/hlca.19760590825
Degiorgio V. Physics of amphiphiles: micelles, vesicles and microemulsions. North Holland Phys Pub; 1985. DOI: https://doi.org/10.1051/epn/19851606009
Pouchelon A, Chatenay D, Meunier J and Langevin D. Origin of low interfacial tensions in systems involving microemulsion phase. J Coll Int Sci 1981; 82: 418-22. http://dx.doi.org/10.1016/0021-9797(81)90383-0 DOI: https://doi.org/10.1016/0021-9797(81)90383-0
Atik SS, and Thomas JK. Transport of photoproduced ions in water in oil microemulsions: Movement of ions from one water pool to another. J Amer Chem Soc 1981; 103: 3543- 50. http://dx.doi.org/10.1021/ja00402a048 DOI: https://doi.org/10.1021/ja00402a048
Fletcher PDI, Howe AM and Robinson BH. The kinetics of solubilisate exchange between water droplets of a water-inoil microemulsion. J Chem Soc Faraday Trans 1 1987; 83: 985-1006. http://dx.doi.org/10.1039/f19878300985 DOI: https://doi.org/10.1039/f19878300985
Lang J, Jada A and Malliaris A. Structure and dynamics of water-in-oil droplets stabilized by sodium bis(2- ethylhexyl)sulfosuccinate. J Phys Chem 1988; 92: 1946-53. http://dx.doi.org/10.1021/j100318a047 DOI: https://doi.org/10.1021/j100318a047
Cabos C, Delord P. Study, by neutron small angle scattering, of addition of an electrolyte to reversed micellar solution. J Phys Lett 1980; 41: 455-8. http://dx.doi.org/10.1051/jphyslet:019800041018045500 DOI: https://doi.org/10.1051/jphyslet:019800041018045500
Kirkpatrick S. Classical transport in disordered media: Scaling and effective-medium theories. Phys Rev Lett 1971; 27: 1722-5. http://dx.doi.org/10.1103/PhysRevLett.27.1722 DOI: https://doi.org/10.1103/PhysRevLett.27.1722
Kirkpatrick S. Percolation and Conduction. Rev Mod Phys 1973; 54: 574-88. http://dx.doi.org/10.1103/RevModPhys.45.574 DOI: https://doi.org/10.1103/RevModPhys.45.574
Webman J, Jortner J and Cohen MH. Numerical simulation of electrical conductivity in microscopically inhomogenous materials. Phys Rev B 1975; 11: 2885-92. http://dx.doi.org/10.1103/PhysRevB.11.2885 DOI: https://doi.org/10.1103/PhysRevB.11.2885
Granqvist CG and Hunderi O. Conductivity of homogeneous materials: Effective-medium theory with dipole-dipole interaction. Phys Rev B 1978; 18: 1554-61. http://dx.doi.org/10.1103/PhysRevB.18.1554 DOI: https://doi.org/10.1103/PhysRevB.18.1554
Bernasconi J and Weisman HJ. Effective-medium theories for site-disordered resistance networks. Phys Rev B 1976; 13: 1131-9. http://dx.doi.org/10.1103/PhysRevB.13.1131 DOI: https://doi.org/10.1103/PhysRevB.13.1131
Paul S, Bisal S and Moulik SP. Physicochemical studies on microemulsions: test of the theories of percolation. J Phys Chem 1992; 96: 896-901. http://dx.doi.org/10.1021/j100181a067 DOI: https://doi.org/10.1021/j100181a067
Eicke HF, Borkovec M and Das-Gupta B. Conductivity of water-in-oil microemulsions: a quantitative charge fluctuation model. J Phys Chem 1989; 93: 314-7. http://dx.doi.org/10.1021/j100338a062 DOI: https://doi.org/10.1021/j100338a062
Kallay N and Chittofrati A. Conductivity of microemulsions: refinement of charge fluctuation model. J Phys Chem 1990; 94: 4755-6. http://dx.doi.org/10.1021/j100374a070 DOI: https://doi.org/10.1021/j100374a070
Bhattacharya S, Stokes JP, Kim MW and Huang JS. Percolation in an oil-continuous microemulsion. Phys Rev Lett 1985; 55: 1884-7. http://dx.doi.org/10.1103/PhysRevLett.55.1884 DOI: https://doi.org/10.1103/PhysRevLett.55.1884
Kim MW and Huang JS. Percolationlike phenomena in oilcontinuous microemulsions. Phys Rev A 1986; 34: 719-22. http://dx.doi.org/10.1103/PhysRevA.34.719 DOI: https://doi.org/10.1103/PhysRevA.34.719
Álvarez E, García-Río L, Mejuto JC and Navaza JM. Effects of temperature on the conductivity of sodium bis(2- ethylhexyl)sulfosuccinate + 2,2,4-trimethylpentane + water microemulsions. Influence of amides and ethylene glycol. J Chem Eng Data 1999; 44: 484-7. http://dx.doi.org/10.1021/je980129c DOI: https://doi.org/10.1021/je980129c
Álvarez E, García-Río L, Mejuto JC, Navaza JM and PérezJuste J. Effects of temperature on the conductivity of microemulsions: Influence of sodium hydroxide and hydrochloric acid. J Chem Eng Data 1999; 44: 846-9. http://dx.doi.org/10.1021/je990026+ DOI: https://doi.org/10.1021/je990026+
Dasilva-Carvalhal J, García-Río L, Gómez-Díaz D, Mejuto JC and Navaza JM. Effect of temperature upon electrical conductivity of sodium bis(2-ethylhexyl) sulfosuccinate + 2,2,4-trimethylpentane + water + phase transfer catalyst. J Chem Eng Data 2006; 51: 1749-54. http://dx.doi.org/10.1021/je060162w DOI: https://doi.org/10.1021/je060162w
Moha-Ouchane M, Peyrelasse J and Boned C. Percolation transition in microemulsions: Effect of water-surfactant ratio, temperature, and salinity. Phys Rev A 1987; 35: 3027-32. http://dx.doi.org/10.1103/PhysRevA.35.3027 DOI: https://doi.org/10.1103/PhysRevA.35.3027
Mathew C, Patanjali PK, Nabi A and Maitra A. On the concept of percolative conduction in Water-in-Oil microemulsions. Coll Surf 1988; 30: 253-63. http://dx.doi.org/10.1016/0166-6622(88)80210-5 DOI: https://doi.org/10.1016/0166-6622(88)80128-8
Jada A, Lang J and Zana R. Relation between electrical percolation and rate constant for exchange of material between droplets in water in oil microemulsions. J Phys Chem 1989; 93: 10-12. http://dx.doi.org/10.1021/j100338a004 DOI: https://doi.org/10.1021/j100338a004
Jada A, Lang J, Zana R, Makhloufi R, Hirsch E and Candau SJ. Ternary water in oil microemulsions made of cationic surfactants, water, and aromatic solvents. 2. Droplet sizes and interactions and exchange of material between droplets. J Phys Chem 1990; 94: 387-95. http://dx.doi.org/10.1021/j100364a066 DOI: https://doi.org/10.1021/j100364a066
García-Río L, Gómez-Díaz D, Mejuto JC, Navaza JM, Rodríguez-Álvarez A and Pérez-Lorenzo M. Percolative phenomena of AOT-based microemulsions in presence of organic acids. Rec Dev Coll Int Res 2004; 2: 35-45.
García-Río L, Gómez-Díaz D, Mejuto JC, Pérez-Juste J and Rodríguez-Dafonte P. Internal dynamics and properties of water/AOT/isooctane microemulsions: effect of additives. Rec Res Dev Phys Chem 2002; 6: 213-40.
Dasilva-Carvalhal J, García-Río L, Gómez-Díaz D, Mejuto JC and Rodríguez-Dafonte P. Influence of crown ethers on the electric percolation of AOT/Isooctane/Water (w/o) microemulsions. Langmuir 2003; 19: 5975-83. http://dx.doi.org/10.1021/la026857m DOI: https://doi.org/10.1021/la026857m
García-Río L, Hervés P, Leis JR and Mejuto JC. Influence of crown ethers and macrocyclic cryptands upon the percolation phenomena in AOT/isooctane/H2O microemulsions. Langmuir 1997; 13: 6083-8. http://dx.doi.org/10.1021/la970297n DOI: https://doi.org/10.1021/la970297n
Hait SK, Sanyal A and Moulik SP. Physicochemical studies on microemulsions. 8. The effects of aromatic methoxy hydrotropes on droplet clustering and understanding of the dynamics of conductance percolation in Water/Oil microemulsion systems. J Phys Chem B 2002; 106: 12642- 50. http://dx.doi.org/10.1021/jp026702n DOI: https://doi.org/10.1021/jp026702n
Roy BK and Moulik SP. Functions of hydrotropes (sodium salicylate, proline, pyrogallol, resorcinol and urea) in solution with special reference to amphiphile behaviors. Coll Surf A 2002; 203: 155-66. http://dx.doi.org/10.1016/S0927-7757(01)01099-8 DOI: https://doi.org/10.1016/S0927-7757(01)01099-8
Hait SK, Moulik SP, Rodgers MP, Burke SE and Palepu R. Physicochemical studies on microemulsions. 7. Dynamics of percolation and energetics of clustering in Water/AOT/Isooctane and Water/AOT/Decane w/o microemulsions in presence of hydrotopes (sodium salicylate, -naphthol, -naphthol, resorcinol, catechol, 128 Journal of Applied Solution Chemistry and Modeling, 2014, Volume 3, No. 2 Cid et al. hydroquinone, pyrogallol and urea) and bile salt (sodium cholate). J Phys Chem B 2001; 105: 7145-54. http://dx.doi.org/10.1021/jp0105084 DOI: https://doi.org/10.1021/jp0105084
Moulik SP, De GC, Bhowmik BB and Panda AK. Physicochemical studies on microemulsions. 6. Phase behavior, dynamics of percolation, and energetics of droplet clustering in Water/AOT/n-Heptane system influenced by additives (sodium cholate and sodium salicylate). J Phys Chem B 1999; 103: 7122-9. http://dx.doi.org/10.1021/jp990360c DOI: https://doi.org/10.1021/jp990360c
Ray S, Paul S and Moulik SP. Physicochemical studies on microemulsions V. Additive effects on the performance of scaling equations and activation energy for percolation of conductance of Water/AOT/Heptane microemulsion. J Coll Int Sci 1996; 183: 6-12. http://dx.doi.org/10.1006/jcis.1996.0512 DOI: https://doi.org/10.1006/jcis.1996.0512
Ray S, Paul S and Moulik SP. Structure and dynamics of microemulsions. Part 1. Effect of additives on percolation of conductance and energetics of clustering in water–AOT– heptane microemulsions. J Chem Soc Faraday Trans 1993; 89: 3277-82. http://dx.doi.org/10.1039/ft9938903277 DOI: https://doi.org/10.1039/FT9938903277
García-Río L, Leis JR, Mejuto JC, Peña ME. and Iglesias E. Effects of additives on the internal dynamics and properties of Water/AOT/Isooctane microemulsions. Langmuir 1994; 10: 1676-83. http://dx.doi.org/10.1021/la00018a013 DOI: https://doi.org/10.1021/la00018a013
Finer EG, Franks F and Tait MJ. Nuclear magnetic resonance studies of aqueous urea solutions. J Am Chem Soc 1972; 94: 4424-9. http://dx.doi.org/10.1021/ja00768a004 DOI: https://doi.org/10.1021/ja00768a004
Evans DF, Mitchell DJ and Ninham BW. Oil, water, and surfactant: properties and conjectured structure of simple microemulsions. J Phys Chem 1986; 90: 2817-25. http://dx.doi.org/10.1021/j100404a009 DOI: https://doi.org/10.1021/j100404a009
Mejuto JC. Organic Reactivity in Microheterogeneous media. Doctoral Thesis. University of Santiago de Compostela; 1996.
Chakraborty I and Moulik SP. Physicochemical studies on microemulsions 9. Conductance percolation of AOT-derived W/O microemulsion with aliphatic and aromatic hydrocarbon oils. J Coll Int Sci 2005; 289: 530-41. http://dx.doi.org/10.1016/j.jcis.2005.03.080 DOI: https://doi.org/10.1016/j.jcis.2005.03.080
Mitra D, Chakraborty I, Bhattacharya SC, Moulik SP, Roy S, Das D and Das PK. Physicochemical studies on cetylammonium bromide and its modified (mono-, di-, and trihydroxyethylated) head group analogues. Their micellization characteristics in water and thermodynamic and structural aspects of water-in-oil microemulsions formed with them along with n-hexanol and isooctane. J Phys Chem B 2006; 110: 11314-26. http://dx.doi.org/10.1021/jp055720c DOI: https://doi.org/10.1021/jp055720c
Álvarez E, García-Río L, Mejuto JC and Navaza JM. Effects of temperature on the conductivity of sodium bis(2- ethylhexyl) sulfosuccinate + 2,2,4-trimethylpentane + water microemulsions. Influence of sodium salts. J Chem Eng Data 1998; 43:519-22. http://dx.doi.org/10.1021/je970238b DOI: https://doi.org/10.1021/je970238b
Álvarez E, García-Río L, Mejuto JC, Navaza JM and PérezJuste J. Effects of temperature on the conductivity of AOT/isooctane/water microemulsions. Influence of salts. J Chem Eng Data 1999; 44: 850-3. http://dx.doi.org/10.1021/je9900575 DOI: https://doi.org/10.1021/je9900575
Bravo C, Hervés P, Leis JR and Peña ME. Micellar effects in the acid denitrosation of N-nitroso-N-methyl-ptoluenesulfonamide. J Phys Chem 1990; 94: 8816-20. http://dx.doi.org/10.1021/j100388a014 DOI: https://doi.org/10.1021/j100388a014
He Z, O’Connor PJ, Romsted LS and Zanette DJ. Specific counterion effects on indicator equilibria in micellar solutions of decyl phosphate and lauryl sulfate surfactants. J Phys Chem 1989; 93: 4219-26. http://dx.doi.org/10.1021/j100347a064 DOI: https://doi.org/10.1021/j100347a064
Lemaire B, Bothorel P and Roux D. Micellar interactions in water-in-oil microemulsions. 1. Calculated interaction potential. J Phys Chem 1983; 87: 1023-8. http://dx.doi.org/10.1021/j100229a021 DOI: https://doi.org/10.1021/j100229a021
Brunetti S, Roux D, Mellocq AM, Fourche G and Bothorel P. Micellar interactions in water-in-oil microemulsions. 2. Light scattering determination of the second virial coefficient. J Phys Chem 1983; 87: 1028-34. http://dx.doi.org/10.1021/j100229a022 DOI: https://doi.org/10.1021/j100229a022
Hou M, Shah DO. Effects of the molecular structure of the interface and continuous phase on solubilization of water in water/oil microemulsions, Langmuir 1987; 3 1086-96. http://dx.doi.org/10.1021/la00078a036 DOI: https://doi.org/10.1021/la00078a036
Robson-Wright M. The Nature of Electrolyte Solutions. MacMillan Education; 1988. DOI: https://doi.org/10.1007/978-1-349-09618-3
García-Rio L. Studies on the reactivity of nitrosocompounds in water, organics solvents and microheterogeneous media. Doctoral Thesis. University of Santiago de Compostela; 1993.
Álvarez E, García-Río L, Leis JR, Mejuto JC and Navaza JM. Effect of the temperature on the conductivity of sodium bis(2- ethylhexyl)sulfosuccinate + 2,2,4-trimethylpentane + water microemulsions in the presence of ureas and thioureas. J Chem Eng Data 1998; 43: 123-7. http://dx.doi.org/10.1021/je970104y DOI: https://doi.org/10.1021/je970104y
Fang J and Venable RL. Conductivity study of the microemulsion system sodium dodecyl sulfate-hexylamineheptane-water. J Coll Int Sci 1987; 116: 269-77. http://dx.doi.org/10.1016/0021-9797(87)90120-2 DOI: https://doi.org/10.1016/0021-9797(87)90120-2
Swenson CA. Effects of protein denaturants of the ureaguanidinium class on bulk water structure: An infrared study. Arch Biochem Biophys 1966; 117: 494-8. http://dx.doi.org/10.1016/0003-9861(66)90088-9 DOI: https://doi.org/10.1016/0003-9861(66)90088-9
Sasaki K and Arakawa K. The ultrasonic study of aqueous solutions of alkyl-substituted urea. Bull Chem Soc Jpn 1969; 42: 2485-9. http://dx.doi.org/10.1246/bcsj.42.2485 DOI: https://doi.org/10.1246/bcsj.42.2485
Kuharski RA and Rossky P. Molecular dynamics study of solvation in urea water solution. J Am Chem Soc 1984; 106 5786-93. http://dx.doi.org/10.1021/ja00332a005 DOI: https://doi.org/10.1021/ja00332a005
Cristinziano P, Lelj F, Amoedo P, Barone G and Barone V. Stability and structure of formamide and urea dimers in aqueous solution. A theoretical study. J Chem Soc Faraday Trans 1 1989; 85: 621-32. http://dx.doi.org/10.1039/f19898500621 DOI: https://doi.org/10.1039/f19898500621
Subramanian D, Sarma TS, Balasubramanian D and Ahluwalia JC. Effects of the urea-guanidinium class of protein denaturation on water structure: heats of solution and proton chemical shift studies. J Phys Chem 1971; 75: 815-20. http://dx.doi.org/10.1021/j100676a016 DOI: https://doi.org/10.1021/j100676a016
Costa-Amaral CL, Brino O, Chaimovich H and Politi JM. Formation and properties of reversed micelles of Aerosol OT containing urea in the aqueous pool. Langmuir 1992; 8: 2417-21. http://dx.doi.org/10.1021/la00046a013 DOI: https://doi.org/10.1021/la00046a013
Kang YS, McManus HJD and Kevan L. An electron magnetic resonance study on the photoionization of Nalkylphenothiazines in dioctadecyldimethylammonium chloride frozen vesicles: the effect of urea, 1,3-dimethylurea, 1,3-diethylurea, and 1,1',3,3'-tetramethylurea. Phys Chem 1992; 96: 10055-60. http://dx.doi.org/10.1021/j100203a085 DOI: https://doi.org/10.1021/j100203a085
Moulik SP, Digout LG, Aylward WM and Palepu R. Studies on the interfacial composition and thermodynamic properties of W/O microemulsions. Langmuir 2000; 16: 3101-6. http://dx.doi.org/10.1021/la991028v Effects of Additives upon Percolation Temperature in AOT-Based Journal of Applied Solution Chemistry and Modeling, 2014, Volume 3, No. 2 129 DOI: https://doi.org/10.1021/la991028v
Álvarez E, García-Río L, Leis JR, Mejuto JC and Navaza JM. Effect of temperature on the conductivity of sodium bis(2- ethylhexyl) sulfosuccinate + 2,2,4-trimethylpentane + water microemulsions. Influence of Amines. J Chem Eng Data 1998; 43: 433-5. http://dx.doi.org/10.1021/je970232m DOI: https://doi.org/10.1021/je970232m
Giammona G, Goffredi F, Liveri F, Turco V and Vassallo G. Water structure in water/AOT/n-heptane microemulsions by FTIR spectroscopy. J Coll Int Sci 1992; 154: 411-5. http://dx.doi.org/10.1016/0021-9797(92)90156-G DOI: https://doi.org/10.1016/0021-9797(92)90156-G
García-Río L, Hervés P, Mejuto JC, Pérez-Juste J and Rodríguez-Dafonte P. Effects of alkylamines on the percolation phenomena in water/AOT/isooctane microemulsions. J Coll Int Sci 2000; 225: 259-64. http://dx.doi.org/10.1006/jcis.2000.6771 DOI: https://doi.org/10.1006/jcis.2000.6771
Álvarez E, García-Río L, Leis JR “et al.”. Effect of temperature on the electrical conductivity of sodium bis(2- ethylhexyl)sulfosuccinate + 2,2,4-trimethylpentane + water microemulsions. Influence of alkylamines. J Chem Eng Data 1999; 44: 1286-90. http://dx.doi.org/10.1021/je990108y DOI: https://doi.org/10.1021/je990108y
García-Río L, Hervés P, Mejuto JC, Pérez-Juste J and Rodríguez-Dafonte P. Pseudophase approach to reactivity in microemulsions: Quantitative explanation of the kinetics of the nitroso group transfer reactions between N-methyl-Nnitroso-p- toluenesulfonamide and secondary alkylamines in Water/AOT/Isooctane microemulsions. Ind Eng Chem Res 2003; 44: 5450-6. http://dx.doi.org/10.1021/ie0208523
García-Río L, Mejuto JC, Pérez-Lorenzo M, RodríguezÁlvarez A and Rodríguez-Dafonte P. Influence of anionic surfactants on the electric percolation of AOT/isooctane/water microemulsions. Langmuir. 2005; 21: 6259-64. http://dx.doi.org/10.1021/la0501987 DOI: https://doi.org/10.1021/la0501987
Eicke HF and Meier W. Nonmonotonic pattern of the critical percolation temperature due to variations of additive chain length in water-in-oil microemulsions. Coll Polym Sci 2001; 279: 301-4. http://dx.doi.org/10.1007/s003960000462 DOI: https://doi.org/10.1007/s003960000462
Eicke HF. Nonmonotonic electric conductivity by alkyl-chain variation of an ionic additive in percolated nonionic W/Omicroemulsions. J Phys Chem B. 2001; 105: 2753-6. http://dx.doi.org/10.1021/jp0041003 DOI: https://doi.org/10.1021/jp0041003
Cid-Samamed A, García-Río L, Fernández-Gándara D, Mejuto JC, Morales J and Pérez-Lorenzo M. Influence of nalkyl acids on the percolative phenomena in AOT-based microemulsions. J Coll Int Sci 2008; 318: 525-9. http://dx.doi.org/10.1016/j.jcis.2007.11.001 DOI: https://doi.org/10.1016/j.jcis.2007.11.001
Nazário LMM, Crespo JPSG, Holzwarth JF and Hatton TA. Dynamics of AOT and AOT/nonionic cosurfactant microemulsions. An Iodine-Laser temperature jump study. Langmuir 2000; 16: 5892-9. http://dx.doi.org/10.1021/la991674u DOI: https://doi.org/10.1021/la991674u
Menger FM. Structure of micelles. Acc Chem Res 1979; 12: 111-7. http://dx.doi.org/10.1021/ar50136a001 DOI: https://doi.org/10.1021/ar50136a001
Bravo C, García-Río L, Leis JR, Peña ME and Iglesias EJ. A 1 H NMR study of the location of nitroso compounds and penetration of water in micellar aggregates. Coll Int Sci 1994; 166: 316-20. http://dx.doi.org/10.1006/jcis.1994.1301 DOI: https://doi.org/10.1006/jcis.1994.1301
Ruasse M-F, Blagoeva IB, Ciri R, et al. Organic reactions in micro-organized media: Why and how? Pure Appl Chem 1997; 69: 1923-32. http://dx.doi.org/10.1351/pac199769091923 DOI: https://doi.org/10.1351/pac199769091923
García-Río L, Herves P, Mejuto JC, Perez-Juste J and Rodríguez-Dafonte P. Pseudophase approach to reactivity in microemulsions: Quantitative explanation of the kinetics of the nitroso group transfer reactions between N-methyl-Nnitroso-p- toluenesulfonamide and secondary alkylamines in Water/AOT/Isooctane microemulsions. Ind Eng Chem Res 2003; 42: 5450-6. http://dx.doi.org/10.1021/ie0208523 DOI: https://doi.org/10.1021/ie0208523
García-Río L, Hervés P, Mejuto JC and Rodríguez-Dafonte P. Nitrosation reactions in Water/AOT/Xylene microemulsions. Ind Eng Chem Res 2006; 45: 600-6. http://dx.doi.org/10.1021/ie050925t DOI: https://doi.org/10.1021/ie050925t
García-Río L, Leis JR, Mejuto JC and Pérez-Lorenzo M. Microemulsions as microreactors in physical organic chemistry. Pure Appl Chem 2007; 79: 1111-23. http://dx.doi.org/10.1351/pac200779061111 DOI: https://doi.org/10.1351/pac200779061111
Astray G, Cid A, García-Río L, Hervella P, Mejuto JC and Pérez-Lorenzo M. Organic reactivity in AOT-stabilized microemulsions. Prog React Kinet Mech 2008; 33: 81-97. http://dx.doi.org/10.3184/146867807X273173 DOI: https://doi.org/10.3184/146867807X273173
Stamatis H, Xenakis A, Menge U and Kolisis FN. Kinetic study of lipase catalyzed esterification reactions in water-iniol microemulsions. Biotechnol Bioeng 1993; 42: 931-7. http://dx.doi.org/10.1002/bit.260420803 DOI: https://doi.org/10.1002/bit.260420803
Stamatis H, Xenakis A, Dimitriadis E and Kolisis FN. Catalytic behavior of Pseudomonas cepacia lipase in w/o microemulsions. Biotechnol Bioeng 1995; 45: 33-41. http://dx.doi.org/10.1002/bit.260450106 DOI: https://doi.org/10.1002/bit.260450106
Kolisis FN, Valis TP and Xenakis A. Lipase-catalyzed esterification of fatty acids in nonionic microemulsions. Ann New York Acad Sci 1990; 613: 674-80. http://dx.doi.org/10.1111/j.1749-6632.1990.tb18244.x DOI: https://doi.org/10.1111/j.1749-6632.1990.tb18244.x
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .