Modeling and Molecular Spectroscopic Analyses of Cellulose

Authors

  • Abdel Aziz Mahmoud National Research Centre.
  • Osama Osman National Research Centre.
  • Walid El-hotaby National Research Centre.
  • Ahmed Fakhry National Research Centre.
  • Zainab Abdel Aziz National Research Centre.
  • Medhat Ibrahim National Research Centre.
  • Hanan Elhaes Ain Shams University

DOI:

https://doi.org/10.6000/1929-5030.2014.03.03.3

Keywords:

Cellulose, FTIR, PM3, DFT and Physical properties.

Abstract

Cellulose is the most abundant biopolymer which is a topic of extensive research work. In this study Fourier Transform Infrared Spectroscopy (FTIR) was utilized to assign the molecular structure of cellulose. B3LYP at 3-21g**, 6-31g** and LANL1DZ then MP2 at 6-31g* levels of theories were conducted to compare the calculated vibrational spectra with the FTIR spectrum. Model molecules of cellulose starting with monomer up to cellulose 18 units were studied with PM3 semiemperical method in order to follow up the effect of polymerization upon some selected physical parameters. Results indicate that final heat of formation and band gap energy have decreased with increasing cellulose units while total dipole moment has increased with increasing cellulose units. It is concluded that the reactivity of cellulose has increased with increasing the units also the unique hydrogen bonding dedicates cellulose to several applications.

Author Biographies

Abdel Aziz Mahmoud, National Research Centre.

Spectroscopy.

Osama Osman, National Research Centre.

Spectroscopy.

Walid El-hotaby, National Research Centre.

Spectroscopy.

Ahmed Fakhry, National Research Centre.

Spectroscopy.

Zainab Abdel Aziz, National Research Centre.

Spectroscopy.

Medhat Ibrahim, National Research Centre.

Spectroscopy.

Hanan Elhaes, Ain Shams University

Physics Department,

References


[1] Heinze T, Liebert T. Unconventional methods in cellulose functionalization. Prog Polym Sci 2001; 26: 1689-762. http://dx.doi.org/10.1016/S0079-6700(01)00022-3
[2] Numata Y, Kono H, Kawano S, Erata T, Takai M. Crosspolarization/magic-angle spinning 13C nuclear magnetic resonance study of cellulose I-ethylenediamine complex. Biosci J Bioeng 2003; 96: 461-6. http://dx.doi.org/10.1016/S1389-1723(03)70132-7
[3] OH SY, Yoo DI, Shin Y, et al. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd Res 2005; 340: 2376-91. http://dx.doi.org/10.1016/j.carres.2005.08.007
[4] Beatriz AP, Ass AP, Ciacco GT, Frollini E. Cellulose acetates from linters and sisal: Correlation between synthesis conditions in DMAc/LiCl and product. Bioresource Technol 2006; 97: 1696-702. http://dx.doi.org/10.1016/j.biortech.2005.10.009
[5] Song Y, Zhou J, Zhang L, Wu X. Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohyd Polym 2008; 73: 18-25. http://dx.doi.org/10.1016/j.carbpol.2007.10.018
[6] Grande CJ, Torres FG, Gomez CM, Bano MC. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomaterialia 2009; 5: 1609-15. http://dx.doi.org/10.1016/j.actbio.2009.01.022
[7] Yun S, Kim J. Mechanical, electrical, piezoelectric and electro-active behavior of aligned multi-walled carbon nanotube/cellulose composites. Sensors Actuat A-Phys 2009; 154: 73-8.
[8] Zimmermann T, Bordeanu N, Strub E. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohyd Polym 2010; 79: 1086-93. http://dx.doi.org/10.1016/j.carbpol.2009.10.045
[9] Ibrahim M, Osman O. Spectroscopic Analyses of Cellulose: Fourier Transform Infrared and Molecular Modelling Study. J Comput Theor Nanosci 2009; 6: 1054-58. http://dx.doi.org/10.1166/jctn.2009.1143
[10] Ibrahim M, Kühn O, and Scheytt T. Molecular Spectroscopic Study of Water Hyacinth Dry Matter. TOCPJ 2009; 2: 1-6. http://dx.doi.org/10.2174/1874412500902010001
[11] Ammar NS, Elhaes H, Ibrahim HS, El-hotaby W, Ibrahim MA. A Novel Structure for Removal of Pollutants from Wastewater. Spectrochim Acta A 2014; 121C: 216-23. http://dx.doi.org/10.1016/j.saa.2013.10.063
[12] Ibrahim M, Osman O, Mahmoud A-A. Spectroscopic analyses of cellulose and chitosan: FTIR and modeling approach. J Comput Theor Nanosci 2011; 8: 117-23. http://dx.doi.org/10.1166/jctn.2011.1668
[13] Ibrahim M, El-Haes H. Computational spectroscopic study of copper, cadmium, lead and zinc interactions in the environment. Int J Environ Pollut 2005; 23: 417-23. http://dx.doi.org/10.1504/IJEP.2005.007604
[14] Elhaes H, Khafagy M, Ibrahim M. Spectroscopic Analyses of PVDX (X = F, Cl and Br). J Comput Theor Nanosci 2014; 11: 2115-19. http://dx.doi.org/10.1166/jctn.2014.3614
[15] Elhaes H, Attallah M, Elbashar Y, Al-Alousi A, El-Okr M, Ibrahim M. Modeling and Optical Properties of P2O5-ZnOCaO-Na2O Glasses Doped with Copper Oxide. J Comput Theor Nanosci 2014; 11: 2079-84. http://dx.doi.org/10.1166/jctn.2014.3608
[16] Mostafa HIA, El-bialy NS, Ezat AA, Saleh NA, Ibrahim MA. QSAR analysis and Molecular docking simulation of suggested Peptidomimetic NS3 Protease Inhibitors. Curr Comput-Aided Drug Des 2014; 10(1): 28-40. http://dx.doi.org/10.2174/15734099113096660048
[17] Abdel-Gawad A-E A, Ibrahim M. Computational Studies of The Interaction of Chitosan Nanoparticles and B-Crystallin. BioNanoScience 2013; 3: 302-11. http://dx.doi.org/10.1007/s12668-013-0096-3
[18] Elhaes H, Ibrahim M. Exploring Materials: Molecular Modeling Approach. Rev Theor Sci 2013; 1: 368-76. http://dx.doi.org/10.1166/rits.2013.1012
[19] Ibrahim M, El-Nahass MM, Kamel MA, El-Barbary AA, Wagner BD El-Mansy MA. On the Spectroscopic Analyses of Thioindigo Dye. Spectrochim Acta A 2013; 113: 332-6. http://dx.doi.org/10.1016/j.saa.2013.05.014
[20] Al-Fifi Z, Eid M, Saleh NA, Ibrahim M. Molecular Modelling Analyses of the Substituted 3'-Azido-2', 3'Dideoxythymidine. J Comput Theor Nanosci 2014; 11: 409-12. http://dx.doi.org/10.1166/jctn.2014.3369
[21] El-Nahass MM, Kamel MA, El-Barbary AA, El-Mansy MAM, Ibrahim M. FT-IR spectroscopic analyses of 3-Methyl-5- Pyrazolone (MP). Spectrochim Acta A 2013; 111: 37-41. http://dx.doi.org/10.1016/j.saa.2013.03.072
[22] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Daniels AD, Farkas O, Rabuck AD, Raghavachari K,Ortiz JV, GAUSSIAN03, Revision B.05, Gaussian Inc., Wallingford CT, 2003.
[23] Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993; 98: 5648-52. http://dx.doi.org/10.1063/1.464913
[24] Keith TA, Bader RFW. Calcuaiion of magnetic response properties using atoms in molecules. Chem Phys Lett 1992; 194: 1-8. http://dx.doi.org/10.1016/0009-2614(92)85733-Q
[25] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988; 37: 785 -9.
[26] Dewar MJS, Zoebisch EG, Healy EF, Stewart JP. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 1985; 107: 3902-9. http://dx.doi.org/10.1021/ja00299a024
[27] Stewart JJP, MO-G Version 1.1A, Fujitsu Limited, Tokyo, Japan 2008.
[28] Bouchard J, Douek M. Structural and Concentration Effects on the Diffuse Reflectance FTIR Spectra of Cellulose, Lignin and Pulp. J Wood Chem Technol 1993; 13: 481-99. http://dx.doi.org/10.1080/02773819308020530
[29] Michell AJ. Second Derivative FTIR Spectra of Woods, edited by Schuerch C. Cellulose and Wood Chemistry and Technology, Wiley, New York, p. 995; 1989-08.
[30] Foresman JB, Frisch A, Exploring chemistry with electronic structure methods, Chap., 1, computational models and model chemistry, 2nd ed., Gaussian Inc. 1996.
[31] Xu X, Xie D, Xue Y, Yan G. Density functional theory study on fundamental vibrational spectra of disilyl iodide and its isotopomer. Spectrochim Acta A 2000; 56: 567-74. http://dx.doi.org/10.1016/S1386-1425(99)00155-9
[32] Ibrahim M, Mahmoud A-A. Computational notes on the reactivity of some functional groups. J Comput Theor Nanosci 2009; 6: 1523-6. http://dx.doi.org/10.1166/jctn.2009.1205

Downloads

Published

2014-09-18

How to Cite

Mahmoud, A. A., Osman, O., El-hotaby, W., Fakhry, A., Aziz, Z. A., Ibrahim, M., & Elhaes, H. (2014). Modeling and Molecular Spectroscopic Analyses of Cellulose. Journal of Applied Solution Chemistry and Modeling, 3(3), 159–163. https://doi.org/10.6000/1929-5030.2014.03.03.3

Issue

Section

General Articles