Analysis of Thermodynamic Properties for Rare Earth Complexes in Ionic Liquids by Raman Spectroscopy and DFT Calculation

Authors

  • Masahiko Matsumiya Graduate School of Environment and Information Sciences,
  • Ryo Kazama Graduate School of Environment and Information Sciences,
  • Katsuhiko Tsunashima Department of Materials Science, Wakayama National College of Technology,

DOI:

https://doi.org/10.6000/1929-5030.2016.05.04.1

Keywords:

Coordination state, DFT calculation, Rare earth, Raman spectroscopy, Thermodynamic property.

Abstract

The coordination states of the divalent and trivalent rare earth complexes in ionic liquid, triethyl-pentyl-phosphonium bis(trifluoromethyl-sulfonyl) amide [P2225][TFSA] were investigated by Raman spectroscopy and DFT calculation. The concentration dependences of the deconvoluted Raman spectra were investigated for 0.23-0.45 mol kg-1 RE(III), RE=Nd and Dy, and the mixed sample of RE(II)/RE(III)=1/3 at the molar ratio in [P2225][TFSA]. According to the conventional analysis, the solvation number; n of rare earth complexes in [P2225][TFSA] were determined to be n=4.06 for Nd(II), 5.01 for Nd(III), 4.12 for Dy(II) and 5.00 for Dy(III).

Thermodynamic properties such as ΔisoG, ΔisoH and ΔisoS for the isomerism of [TFSA]- from trans- to cis-isomer in bulk and the first solvation sphere of the centered [RE3+] cation in [P2225][TFSA] were evaluated from the temperature dependence in the range of 298-398K. ΔisoG(bulk), ΔisoH(bulk) and TΔisoS(bulk) at 298 K were -1.06, 6.86, and 7.92 kJ mol-1, respectively. The trans-[TFSA]-was dominant in the enthalpy due to the positive value of ΔisoH(bulk) and TΔisoS(bulk) was slightly larger than ΔisoH(bulk), so that cis-[TFSA]- was revealed to be an entropy-controlled in [P2225][TFSA]. On the other hand, in the first solvation sphere of [RE3+] cation, ΔisoH (Nd)(-47.39 kJ mol-1) increased to the negative value remarkably and implied that the cis-[TFSA]- isomers were stabilized for enthalpy. ΔisoH(Nd) contributed to the remarkable decrease in the ΔisoG(Nd) and this result clearly indicated that the cis-[TFSA]- bound to Nd3+ cation was preferred and the coordination state of [Dy(III)(cis-TFSA)5]2- was stable in [P2225][TFSA]

The optimized geometries and the bonding energies of [RE(II)(cis-TFSA)4]2- and [RE(III)(cis-TFSA)5]2- clusters were also investigated from DFT calculation with ADF package. The bonding energy; ΔEb was calculated from ΔEb= Etot(cluster) - Etot(RE2,3+) - nEtot([TFSA]-). ΔEb([Nd(II)(cis-TFSA)4]2-), ΔEb([Nd(III)(cis-TFSA)5]2-), ΔEb([Dy(II)(cis-TFSA)4]2-) and ΔEb([Dy(III)(cis-TFSA)5]2-) were -2241.6, -4362.3, -2135.4 and -4284.2 kJmol-1, respectively. This result was revealed that [RE(III)(cis-TFSA)5]2-cluster formed stronger coordination bonds than [Dy(II)(cis-TFSA)4]2- cluster. The average atomic charges and the bond distances of these clusters were consistent with the thermodynamic properties.

References


[1] Yang J, Li X, Lang J, et al. Synthesis and optical properties of Eu-doped ZnO nano sheets by hydrothermal method. Mater Sci Semicond Process 2011; 14: 247-52. http://dx.doi.org/10.1016/j.mssp.2011.04.002
[2] Rao RP, Devine DJ. RE-activated lanthanide phosphate phosphors for PDP applications. J Lumin 2000; 87-89: 1260- 3. http://dx.doi.org/10.1016/S0022-2313(99)00551-7
[3] Thiel CW, Böttger T, Cone RL. Rare-earth-doped materials for applications in quantum information storage and signal processing. J Lumin 2011; 131: 353-61. http://dx.doi.org/10.1016/j.jlumin.2010.12.015
[4] Yuan D, Liu Y. Electrochemical preparation La–Co magnetic alloy films from dimethylsulfoxide. Mater Chem Phys 2006; 96: 79-83. http://dx.doi.org/10.1016/j.matchemphys.2005.06.052
[5] Ono N, Sagawa M, Kasada R, Matsui H, Kimura A. Production of thick high-performance sintered neodymium magnets by grain boundary diffusion treatment with dysprosium–nickel–aluminum alloy. J Magn Magn Mater 2011; 323: 297-300. http://dx.doi.org/10.1016/j.jmmm.2010.09.021
[6] Miura K, Itoh M, Machida K. Extraction and recovery characteristics of Fe element from Nd–Fe–B sintered magnet powder scrap by carbonylation. J Alloys Compd 2008; 466: 228-32. http://dx.doi.org/10.1016/j.jallcom.2007.11.013
[7] Matsuura Y. Recent development of Nd-Fe-B sintered magnets and their applications. J Magn Magn Mater 2006; 303: 344-7. http://dx.doi.org/10.1016/j.jmmm.2006.01.171
[8] Kondo H, Matsumiya M, Tsunashima K, Kodama S. Attempts to the electrodeposition of Nd from ionic liquids at elevated temperatures. Electrochim Acta 2012; 66: 313-9. http://dx.doi.org/10.1016/j.electacta.2012.01.101
[9] Kondo H, Matsumiya M, Tsunashima K, Kodama S. Investigation of oxidation state of the electrodeposited neodymium metal related with the water content of phosphonium ionic liquids. ECS Trans 2012; 50: 529-38. http://dx.doi.org/10.1149/05011.0529ecst
[10] Tsuda N, Matsumiya M, Tsunashima K, Kodama S. Electrochemical behavior and solvation analysis of rare earth complexes in ionic liquids media investigated by SECM and Raman spectroscopy. ECS Trans 2012; 50: 539-48. http://dx.doi.org/10.1149/05011.0539ecst
[11] Ishii M, Matsumiya M, Kawakami S. Development of recycling process for rare earth magnets by electrodeposition using ionic liquids media. ECS Trans 2012; 50: 549-60. http://dx.doi.org/10.1149/05011.0549ecst
[12] Matsumiya M, Ishii M, Kazama R, Kawakami S. Electrochemical analyses of diffusion behaviors and nucleation mechanisms for neodymium complexes in
[DEME]
[TFSA] ionic liquid. Electrochim Acta 2014; 146: 371-7. http://dx.doi.org/10.1016/j.electacta.2014.09.066
[13] Kurachi A, Matsumiya M, Tsunashima K, Kodama S. Electrochemical behavior and electrodeposition of dysprosium in ionic liquids based on phosphonium cations. J Appl Electrochem 2012; 42: 961-8. http://dx.doi.org/10.1007/s10800-012-0463-8
[14] Kazama R, Matsumiya M, Tsuda N, Tsunashima K. Electrochemical analysis of diffusion behavior and nucleation mechanism for Dy(II) and Dy(III) in phosphonium-based ionic liquids. Electrochim Acta 113 (2013) 269-279. http://dx.doi.org/10.1016/j.electacta.2013.09.082
[15] MacFarlane DR, Forsyth M, Howlett PC, et al. Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc Chem Res 2007; 40: 1165-73. http://dx.doi.org/10.1021/ar7000952
[16] Shamsipur M, Beigi AAM, Teymouri M, Pourmortazavi SM, Irandoust M. Physical and electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl- 3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1- methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J Mol Liq 2010; 157: 43-50. http://dx.doi.org/10.1016/j.molliq.2010.08.005
[17] Tsunashima K, Kawabata A, Matsumiya M, et al. Low viscous and highly conductive phosphonium ionic liquids based on bis(fluorosulfonyl)amide anion as potential electrolytes. Electrochem Commun 2011; 13: 178-81. http://dx.doi.org/10.1016/j.elecom.2010.12.007
[18] Ohtaki H, Radnai T. Structure and dynamics of hydrated ions. Chem Rev 1993; 93: 1157-204. http://dx.doi.org/10.1021/cr00019a014
[19] Herstedt M, Smirnov M, Johansson P, et al. Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSA- ). J Raman Spectrosc 2005; 36: 762-70. http://dx.doi.org/10.1002/jrs.1347
[20] Umebayashi Y, Mori S, Fujii K, et al. Raman spectroscopic studies and ab initio calculations on conformational isomerism of 1-butyl-3-methylimidazolium bis- (trifluoromethanesulfonyl)amide solvated to a lithium ion in ionic liquids: effects of the second solvation sphere of the lithium Ion. J Phys Chem B 2010; 114: 6513-21. http://dx.doi.org/10.1021/jp100898h
[21] Umebayashi Y, Mitsugi T, Fukuda S, et al. Lithium ion solvation in room-temperature ionic liquids involving Bis(trifluoromethanesulfonyl) imide anion studied by Raman spectroscopy and DFT calculations. J Phys Chem B 2007; 111: 13028-32. http://dx.doi.org/10.1021/jp076869m
[22] Shirai A, Fujii K, Seki S, Umebayashi Y, Ishiguro S, Ikeda Y. Solvation of lithium ion in N,N-diethyl-N-methyl-N-(2- methoxyethyl)ammonium bis(trifluoromethanesulfonyl)-amide using Raman and multinuclear NMR spectroscopy. Anal Sci 2008; 24: 1291-6. http://dx.doi.org/10.2116/analsci.24.1291
[23] Lassegues J-C, Grondin J, Aupetit C, Johansson P. Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids. J Phys Chem A 2009; 113: 305-14. http://dx.doi.org/10.1021/jp806124w
[24] Fujii K, Nonaka T, Akimoto Y, Umebayashi Y, Ishiguro S. Solvation structures of some transition metal(II) ions in a room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide. Anal Sci 2008; 24: 1377- 84. http://dx.doi.org/10.2116/analsci.24.1377
[25] Umebayashi Y, Matsumoto K, Mune Y, Zhang Y, Ishiguro S. Conformational equilibria of solvent N,Ndimethylpropionamide in the bulk and in the coordination sphere of the manganese(II) ion. Phys Chem Chem Phys 5 (2003) 2552-2556. http://dx.doi.org/10.1039/b302143b
[26] Matsumiya M, Kamo Y, Hata K, Tsunashima K. Solvation structure of iron group metal ion in TFSA-based ionic liquids investigated by Raman spectroscopy and DFT calculations. J Mol Struct 2013; 1048: 59-63. http://dx.doi.org/10.1016/j.molstruc.2013.04.023
[27] Matsumiya M. Electrodeposition of rare earth metal in ionic liquids. Application of Ionic Liquids on Rare Earth Green Separation and Utilization (2016) 117-53.
[28] Furlani M, Ferry A, Franke A, Jacobsson P, Mellander B-E. Time resolved luminescence and vibrational spectroscopic studies on complexes of poly(ethylene oxide) oligomers and Eu(TFSI)3 salt. Solid State Ionics 1998; 113-1155: 129-139.
[29] Matsumiya M, Kazama R, Tsunashima K. Analysis of coordination states for Dy(II) and Dy(III) complexes in ionic liquids by Raman spectroscopy and DFT calculation. J Mol Liq 2016; 215: 308-15. http://dx.doi.org/10.1016/j.molliq.2015.12.049
[30] te Velde G, Bickelhaupt FM, Baerends EJ, et al. Chemistry with ADF. J Comput Chem 2001; 22: 931-67. http://dx.doi.org/10.1002/jcc.1056
[31] Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ. Towards an order-N DFT method. Theor Chem Acc 1998; 99: 391-403. http://dx.doi.org/10.1007/s002140050353
[32] Baerends EJ, Ros P. Evaluation of the LCAO Hartree— Fock—Slater method: Applications to transition-metal complexes. Int J Quantum Chem Symp 1978; 12: 169-90.
[33] Baerends EJ, Ellis DE, Ros P. Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure. Chem Phys 1973; 2: 41-51. http://dx.doi.org/10.1016/0301-0104(73)80059-X
[34] ADF2014.01, SCM, Theoretical Chemistry, VrijeUniversiteit, Amsterdam, The Netherlands.
[35] Tsunashima K, Sugiya M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem Commun 2007; 9: 2353-8. http://dx.doi.org/10.1016/j.elecom.2007.07.003
[36] Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian, Inc., Wallingford CT, 2010.
[37] Harihara PC, Pople JA. Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory. Mol Phys 1974; 27: 209-14. http://dx.doi.org/10.1080/00268977400100171
[38] Ditchfie R, Hehre WJ, Pople JA. Self-consistent molecularorbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 1971; 54: 724-8. http://dx.doi.org/10.1063/1.1674902
[39] Francl MM, Pietro WJ, Hehre WJ, et al. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 1982; 77: 3654-65. http://dx.doi.org/10.1063/1.444267
[40] Harihara PC, Pople JA. The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 1973; 28: 213-22. http://dx.doi.org/10.1007/BF00533485
[41] Hehre WJ, Ditchfie R, Pople JA. Self—consistent molecular orbital methods. XII. Further extensions of gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 1972; 56: 2257-61. http://dx.doi.org/10.1063/1.1677527
[42] Becke AD. Density?functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993; 98: 5648-52. http://dx.doi.org/10.1063/1.464913
[43] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988; 37: 785-9. http://dx.doi.org/10.1103/PhysRevB.37.785
[44] Vosko SH, Wilk L, Nusair MC. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 1980; 58: 1200- 11. http://dx.doi.org/10.1139/p80-159
[45] Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 1986; 33: 8822-4. http://dx.doi.org/10.1103/PhysRevB.33.8822
[46] Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 1988; 38: 3098-100. http://dx.doi.org/10.1103/PhysRevA.38.3098
[47] Slater JC, Johnson KH. Self-Consistent-Field X? Cluster method for polyatomic molecules and solids. Phys Rev B 1972; 5: 844-53. http://dx.doi.org/10.1103/PhysRevB.5.844
[48] van Lenthe E, Baerends EJ, Snijders JG. Relativistic regular two?component Hamiltonians. J Chem Phys 1993; 99: 4597-610. http://dx.doi.org/10.1063/1.466059
[49] Wang SG, Pan DK, Schwarz WHE. Density functional calculations of lanthanide oxides. J Chem Phys 1995; 102: 9296-308. http://dx.doi.org/10.1063/1.468796
[50] Wang SG, Schwarz WHE. Lanthanide diatomics and lanthanide contractions. J Phys Chem 1995; 99: 11687-95. http://dx.doi.org/10.1021/j100030a011
[51] Rey I, Johansson P, Lindgren J, Lassegues JC, Grondin J, Servant L. Spectroscopic and theoretical study of (CF3SO2)2N-(TFSI-) and (CF3SO2)2NH(HTFSI). J Phys Chem A 1998; 102: 3249-58. http://dx.doi.org/10.1021/jp980375v
[52] Castriota M, Caruso T, Agostino RG, Cazzanelli E, Henderson WA, Passerini S. Raman investigation of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide and its mixture with LiN(SO2CF3)2. J Phys Chem A 2005; 109: 92-6. http://dx.doi.org/10.1021/jp046030w
[53] Yaita T, Narita H, Suzuki Sh, Tachimori Sh, Motohashi H, Shiwaku H. Structural study of lanthanides(III) in aqueous nitrate and chloride solutions by EXAFS. J Radioanal Nucl Chem 1999; 239: 371-5. http://dx.doi.org/10.1007/BF02349514

Downloads

Published

2016-12-09

How to Cite

Matsumiya, M., Kazama, R., & Tsunashima, K. (2016). Analysis of Thermodynamic Properties for Rare Earth Complexes in Ionic Liquids by Raman Spectroscopy and DFT Calculation. Journal of Applied Solution Chemistry and Modeling, 5(4), 157–167. https://doi.org/10.6000/1929-5030.2016.05.04.1

Issue

Section

Special Issue: Conversion of Biomass into Biofuels with Supercritical Fluids