Synthesis and Computational Investigations of Ruthenium(II) Complexes Containing Hydrazine Schiff Base Ligands

Authors

  • S. Kamalesu Department of Chemistry, Manonmaniam Sundaranar University,
  • K. Swarnalatha Centre for Scientific and Applied Research, School of Basic Engineering and Sciences,
  • R. Subramanian Centre for Scientific and Applied Research, School of Basic Engineering and Sciences,

DOI:

https://doi.org/10.6000/1929-5030.2017.06.01.4

Keywords:

Ruthenium complex, hydrazine Schiff base ligands, DFT calculations, Energy gap, Electrostatic potential.

Abstract

Three new heteroleptic ruthenium(II) complexes containing hydrazine schiff base as ligands were synthesized and characterized by using elemental analysis, FT-IR, 1H, 13C NMR, and mass spectroscopic techniques. FT-IR study showed that the substituted phenylhydrazine ligands behave as a monoanionic bidentate O and N donors (L) coordinate to ruthenium via the deprotonated phenolic oxygen and the azomethine nitrogen. They possess excellent thermal stabilities, evident from the thermal decomposition temperatures. Absorption, emission and electrochemical measurements were carried out and the structures of the synthesized complex were optimized using density functional theory (DFT). The molecular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energies, Mulliken atomic charges and molecular electrostatic potential (MEP) of the molecules are determined using B3LYP method and standard 6-311++G (d, p) basis set.

References

Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, Lin Z. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today 2015; 18; 155-162. https://doi.org/10.1016/j.mattod.2014.09.001 DOI: https://doi.org/10.1016/j.mattod.2014.09.001

Lior N. Energy resources and use: The present situation and possible paths to the future. Energy 2008; 33: 842-857. https://doi.org/10.1016/j.energy.2007.09.009 DOI: https://doi.org/10.1016/j.energy.2007.09.009

Qin Y, Peng Q. Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells. International Journal of Photoenergy 2012; 2012: 1-21. https://doi.org/10.1155/2012/291579 DOI: https://doi.org/10.1155/2012/291579

Gratzel M. Photoelectrochemical cells. Nature 2001; 414: 338-344. https://doi.org/10.1038/35104607 DOI: https://doi.org/10.1038/35104607

Silva MSP, Diógenes LCN, Zanoni KPS, Amaral RC, Carvalho IMM, Murakami Iha NY. Novel heteroleptic ruthenium complexes for dye sensitized solar. J Photochem Photobiol B 2016; 314: 75-80. https://doi.org/10.1016/j.jphotochem.2015.08.012 DOI: https://doi.org/10.1016/j.jphotochem.2015.08.012

Argazzi R, Murakami Iha NY, Zabri H, Odobel F, Bignozzi CA. Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors. Coord Chem Rev 2004; 248: 1299-1316. https://doi.org/10.1016/j.ccr.2004.03.026 DOI: https://doi.org/10.1016/j.ccr.2004.03.026

Karkas MD, Johnston EV, Verho O, Akermark B. Artificial Photosynthesis: From Nanosecond Electron Transfer to Catalytic Water Oxidation. Acc Chem Res 2014; 47: 100-111. https://doi.org/10.1021/ar400076j DOI: https://doi.org/10.1021/ar400076j

Brennaman MK, Patrocinio AOT, Song W, Jurss JW, Concepcion JJ, Hoertz PG, Traub MC, Murakami Iha NY, Meyer TJ. Interfacial Electron Transfer Dynamics Following Laser Flash Photolysis of

[Ru(bpy)2((4,4?-PO3H2)2bpy)]2+ in TiO2 Nanoparticle Films in Aqueous Environments. ChemSusChem 2011; 4: 216-227. https://doi.org/10.1002/cssc.201000356 DOI: https://doi.org/10.1002/cssc.201000356

Concepcion JJ, Jurss JW, Brennaman MK, Hoertz PG, Patrocinio AOT, Murakami Iha NY, Templeton JL, Meyer TJ. Making Oxygen with Ruthenium Complexes. Acc Chem Res 2009; 42: 1954-1965. https://doi.org/10.1021/ar9001526 DOI: https://doi.org/10.1021/ar9001526

Wasylenko DJ, Ganesamoorthy C, Henderson MA, Koivisto BD, Osthoff HD, Berlinguette CP. Making Oxygen with Ruthenium Complexes. J Am Chem Soc 2010; 132: 16094- 16106. https://doi.org/10.1021/ja106108y DOI: https://doi.org/10.1021/ja106108y

Beer PD, Cadman J. Electrochemical and optical sensing of anions by transition metal based receptors. Coord Chem Rev 2000; 205: 131-155. https://doi.org/10.1016/S0010-8545(00)00237-X DOI: https://doi.org/10.1016/S0010-8545(00)00237-X

Kapilashrami M, Zhang Y, Liu YS, Hagfeldt A, Guo. Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Energy Applications. J Chem Rev 2014; 114: 9662-9707. https://doi.org/10.1021/cr5000893 DOI: https://doi.org/10.1021/cr5000893

Mathew S, Yella A, PengGao, Humphry-Baker R, Curchod FE, Astani NA, Tavernelli I, Rothlisberger U, Nazeeruddin KM, Gratzel M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 2014; 6: 242-247. https://doi.org/10.1038/nchem.1861 DOI: https://doi.org/10.1038/nchem.1861

Wei J, Zhang TT, Jia J, Wu HS. Effect of COOH group on the performance of rhenium (I) tricarbonyl complexes with tetrathiafulvalene-fused phenanthroline ligands as dyes in DSSC: DFT/TD-DFT theoretical investigations. Struct Chem 2015; 26: 421-430. https://doi.org/10.1007/s11224-014-0496-1 DOI: https://doi.org/10.1007/s11224-014-0496-1

Liu MZ, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013; 501: 395-398. https://doi.org/10.1038/nature12509 DOI: https://doi.org/10.1038/nature12509

Ozawa H, Yamamoto Y, Kawaguchi H, Shimizu R, Arakawa H. Ruthenium Sensitizers with a Hexylthiophene-Modified Terpyridine Ligand for Dye-Sensitized Solar Cells: Synthesis, Photo- and Electrochemical Properties, and Adsorption Behavior to the TiO2 Surface. ACS Appl Mater Interfaces 2015; 7: 3152-3161. https://doi.org/10.1021/am507442s DOI: https://doi.org/10.1021/am507442s

Ghosh B, Naskar S, Naskar S, Espinosa A, Hau SCK, Mak TCW, Sekiya R, Kuroda R, Chattopadhyay SK. Heteroleptic Ru(II) complexes containing aroyl hydrazone and 2,2?- bipyridyl: Synthesis, X-ray crystal structures, electrochemical and DFT studies. Polyhedron 2014; 72: 115-121. https://doi.org/10.1016/j.poly.2014.01.031 DOI: https://doi.org/10.1016/j.poly.2014.01.031

Tan L, Zhang X, Mao L. Novel zinc porphyrin sensitizers for dye-sensitized solar cells: Synthesis and spectral, electrochemical, and photovoltaic properties. J Mol Struct 2013; 1035: 400-406. https://doi.org/10.1016/j.molstruc.2012.12.003 DOI: https://doi.org/10.1016/j.molstruc.2012.12.003

a) Wu YH, Chen L, Yu J, Tong SL, Yan Y. Synthesis and spectroscopic characterization of meso-tetra (Schiff-base substituted phenyl) porphyrins and their zinc complexes. Dyes Pigments 2013; 97: 423-428. https://doi.org/10.1016/j.dyepig.2012.12.032 b) Zoubi WAL, Kandil F, Chebani MK. The synthesis of (N2O2S2)-Schiff base ligands and investigation of their ion extraction capability from aqueous media. Spectrochim Acta A 2011; 79: 1909-1914. https://doi.org/10.1016/j.saa.2011.05.087 c) Zoubi WAL, Kandil F, Chebani MK. The synthesis of N2O2-Schiff base ligand and bulk liquid membrane transport of Cu2+. Arabian J Chem 2006; 9: 626-632. https://doi.org/10.1016/j.arabjc.2011.05.006 DOI: https://doi.org/10.1016/j.arabjc.2011.05.006

Walter MG, Rudine AB, Wamser CC. Porphyrins and phthalocyanines in solar photovoltaic cells. J Porphyr Phthalocyanines 2010; 14: 759-792. https://doi.org/10.1142/S1088424610002689 DOI: https://doi.org/10.1142/S1088424610002689

Zhang X, Zhu Y, Wu X, He H, Wang G, Li Q. Meso-Schiffbase substituted porphyrin dimer dyes for dye-sensitized solar cells: synthesis, electrochemical, and photovoltaic properties. Res Chem Intermed 2015; 41: 4227-4241. https://doi.org/10.1007/s11164-013-1525-1 DOI: https://doi.org/10.1007/s11164-013-1525-1

Jeevadason AW, Murugavel KK, Neelakantan MA. Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renew Sustainable Energy Rev 2014; 36: 220-227. https://doi.org/10.1016/j.rser.2014.04.060 DOI: https://doi.org/10.1016/j.rser.2014.04.060

a) Tunc T, Tezcan H, Sahin E, Dilek N. Synthesis, Crystal Structure, and Spectroscopic Studies of N-(4- Bromobenzylidene)-N?-(2-Pyridyl) Hydrazine Schiff Base Molecule. Mol Cryst Liq Cryst 2012; 552: 194-208. https://doi.org/10.1080/15421406.2011.591702 b) Zoubi WA, Al-Hamdani AAS, Kaseem M. Synthesis and antioxidant activities of Schiff bases and their complexes: a review. Appl Organomet Chem 2016; 30: 810-817. https://doi.org/10.1002/aoc.3506 c) Zoubi WA, Ko YU. Organometallic complexes of Schiff bases: Recent progress in oxidation catalysis. J Organomet Chem 2016; 822: 173-188. https://doi.org/10.1016/j.jorganchem.2016.08.023 DOI: https://doi.org/10.1016/j.jorganchem.2016.08.023

a) Despaigne AAR, Da Silva JG, Carmo ACM, Piro OE, Castellano EE, Beraldo H. Copper(II) and zinc(II) complexes with 2-benzoylpyridine-methyl hydrazone J Mol Struc 2009; 920: 97. https://doi.org/10.1016/j.molstruc.2008.10.025 b) Zoubi WAL, Kandil F, Chebani MK. Solvent extraction of chromium and copper using Schiff base derived from terephthaldialdehyde and 5-amino-2-methoxy-phenol Arabian J Chem 2016; 9: 526-632. https://doi.org/10.1016/j.arabjc.2011.06.023 c) Zoubi WAL, Kandil F, Chebani MK. Synthesis of New N,N?- bis(2-aminothiophenol)-?,??-bis(5-bromocarboxylidene phenoxy)xylene and their Liquid Membrane Transport of Copper Cations. Sep Sci Technol 2013; 48: 501-507. https://doi.org/10.1080/01496395.2012.703750 DOI: https://doi.org/10.1080/01496395.2012.703750

a) Zoubi WAL, Kandil F, Chebani MK. The Synthesis and Characterization of New Schiff Bases and Investigating them in Solvent Extraction of Chromium and Copper. Sep Sci Technol 2012; 47: 1754-1761. https://doi.org/10.1080/01496395.2012.660554 b) Sridhar R, Perumal PT. Synthesis of Novel 1-H-Pyrazole- 4-carboxylic Acid Esters by Conventional and Microwave Assisted Vilsmeier Cyclization of Hydrazones. Synth Commun 2003; 33: 1483-1488. https://doi.org/10.1081/SCC-120018766 DOI: https://doi.org/10.1081/SCC-120018766

Vogel AI, Text Book of Practical Organic Chemistry. fifth edn London; Longman 1989.

Mermion ME, Takeuchi, KJ. Ruthenium(1V)-Oxo Complexes The Novel Utilization of Tertiary Pnictogen Ligands. J Am Chem Soc 1998; 110: 1472-1480. https://doi.org/10.1021/ja00213a019 DOI: https://doi.org/10.1021/ja00213a019

Frisch MJ, Trucks GW, Schlegeletal, HB. Gaussian 09, Revision A.01 Gaussian, Wallingford Conn USA 2009.

Becke AD. Densityfunctional thermochemistry III. The role of exact exchange. J Chem Phys 1993; 98: 5648-5652. https://doi.org/10.1063/1.464913 DOI: https://doi.org/10.1063/1.464913

Cohen AJ, Sanchez PM, Yang W. Challenges for Density Functional Theory. Chem Rev 2012; 112: 289-320. https://doi.org/10.1021/cr200107z DOI: https://doi.org/10.1021/cr200107z

Khera B, Sharma AK, Kaushik NK. Bis(indenyl)titanium(IV) and zirconium(IV) complexes of monofunctional bidentate salicylidimines. Polyhedron 1983; 2: 1177-1180. https://doi.org/10.1016/S0277-5387(00)84353-3 DOI: https://doi.org/10.1016/S0277-5387(00)84353-3

Jayabalakrishnan C, Natarajan K. Ruthenium(II) carbonyl complexes with tridentate Schiff bases and their antibacterial activity. Trans Met Chem 2002; 27: 75-79. https://doi.org/10.1023/A:1013437203247 DOI: https://doi.org/10.1023/A:1013437203247

Jayabalakrishnan C, Karvembu R, Natarajan K. Catalytic and antimicrobial activities of new ruthenium(II) unsymmetrical Schiff base complexes. Trans Met Chem 2002; 27: 790-794. https://doi.org/10.1023/A:1020341703855 DOI: https://doi.org/10.1023/A:1020341703855

Khaled S, Ahmed MZ, Khan FG, Ahmed SK. Synthesis, Characterization, and Photophysical Studies of Some Novel Ruthenium(II) Polypyridine Complexes Derived from Benzothiazolyl hydrazones. International Journal of Inorganic Chemistry 2013; 2013: 1-7. https://doi.org/10.1155/2013/212435 DOI: https://doi.org/10.1155/2013/212435

Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition, New York: John Wiley & Sons 1986.

Yaul SR, Yaul AR, Pethe V. Synthesize and characterization of Transition Metal complexes with N, O-Chelating Hydrazone Schiff Base Ligand. Am-Euras J Sci Res 2009; 4: 229-234.

Manikandan R, Viswanathamurthi P, Muthukumar M. Ruthenium(II) hydrazone Schiff base complexes Synthesis, spectral study and catalytic applications. Spectrochim Acta A 2011; 83: 297-303. https://doi.org/10.1016/j.saa.2011.08.033 DOI: https://doi.org/10.1016/j.saa.2011.08.033

Yin DD, Jiang YL, Shan. L, Synthesis, characterization of diorganotin (IV) schiff base complexes and their in vitro antitumor activity. Chin J Chem 2001; 19: 1136-1140. https://doi.org/10.1002/cjoc.20010191122 DOI: https://doi.org/10.1002/cjoc.20010191122

Prabhu RN, Ramesh R. Synthesis, structural characterization, electrochemistry and catalytic transfer hydrogenation of ruthenium(II) carbonyl complexes containing tridentate benzoylhydrazone ligands. J Organomet Chem 2012; 18: 43-51. https://doi.org/10.1016/j.jorganchem.2012.08.002 DOI: https://doi.org/10.1016/j.jorganchem.2012.08.002

Kumar KN, Ramesh R. Synthesis, characterization, redox property and biological activity of Ru(II) carbonyl complexes containing O,N-donor ligands and heterocyclic bases. Spectrochim Acta A 2004; 60: 2913-2918. https://doi.org/10.1016/j.saa.2004.02.011 DOI: https://doi.org/10.1016/j.saa.2004.02.011

Thilagavathi N, Manimaran A, Priya NP, Sathya N, Jayabalakrishnan C. Synthesis, characterization, electrochemical, catalytic and antimicrobial activity studies of hydrazone Schiff base ruthenium(II) complexes. Appl Organomet Chem 2010; 24: 301-307. DOI: https://doi.org/10.1002/aoc.1601

Sivagamasundari M, Ramesh R. Luminescent property and catalytic activity of Ru(II) carbonyl complexes containing N, O donor of 2-hydroxy-1-naphthylideneimines. Spectrochim Acta Mol Biomol Spectrosc 2007; 66: 427-433. https://doi.org/10.1016/j.saa.2006.03.017 DOI: https://doi.org/10.1016/j.saa.2006.03.017

Chen CY, Wu SJ, Wu CG, Chen JG, Ho KC. A Ruthenium Complex with Superhigh Light-Harvesting Capacity for DyeSensitized Solar Cells. Angew Chem Int Ed 2006; 45: 5822- 5825. https://doi.org/10.1002/anie.200601463 DOI: https://doi.org/10.1002/anie.200601463

Kar NK Singh MK, Lal RA. Synthesis and spectral studies on monometallic ruthenium (III) complexes of N-(2- hydroxysalicyliden-1-yl)methylenebenzoylhydrazide. Arab J Chem 2017; 10(Suppl 1): S76-S80. https://doi.org/10.1016/j.arabjc.2012.05.007 DOI: https://doi.org/10.1016/j.arabjc.2012.05.007

Xiao L, Liu Y, Xiu Q, Zhang L, Guo L, Zhang H, Zhong C. Novel polymeric metal complexes as dye sensitizers for Dyesensitized solar cells based on poly thiophene containing complexes of 8-hydroxyquinoline with Zn(II),Cu(II) and Eu(III) in the side chain. Tetrahedron 2010; 66: 2835-2842. https://doi.org/10.1016/j.tet.2010.02.039 DOI: https://doi.org/10.1016/j.tet.2010.02.039

Kurt M, Sas EB, Can M, Okur S, Icli S, Demic S, Karabacak M, Jayavarthanan T, Sundaraganesan N. Synthesis and spectroscopic characterization on 4-(2,5-di-2-thienyl-1Hpyrrol-1-yl) benzoic acid: A DFT approach. Spectrochim Acta Mol Biomol Spectrosc 2016; 152: 8-17. https://doi.org/10.1016/j.saa.2015.07.058 DOI: https://doi.org/10.1016/j.saa.2015.07.058

Migalska-Zalas A, Luc J, Sahraoui B, Kityk IV. Kinetics of third-order nonlinear optical susceptibilities in alkynyl ruthenium complexes. Opt Mater 2006; 28: 1147-1151. https://doi.org/10.1016/j.optmat.2005.06.018 DOI: https://doi.org/10.1016/j.optmat.2005.06.018

Ravikumar C, Hubert Joe I, Jayakumar VS. Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: A vibrational approach. Chem Phys Lett 2008; 460: 552-558. https://doi.org/10.1016/j.cplett.2008.06.047 DOI: https://doi.org/10.1016/j.cplett.2008.06.047

Govindarajan M, Karabacak M. Spectroscopic properties, NLO, HOMO-LUMO and NBO analysis of 2,5-Lutidine. Spectrochim Acta Mol Biomol 2012; 96: 421-435. https://doi.org/10.1016/j.saa.2012.05.067 DOI: https://doi.org/10.1016/j.saa.2012.05.067

Ebrahimi H, Had JS, Al-Ansari HS. Spectroscopic properties, NLO, HOMO-LUMO and NBO analysis of 2,5-Lutidine. J Mol Struct 2013; 1039: 37-45. https://doi.org/10.1016/j.molstruc.2013.01.063 DOI: https://doi.org/10.1016/j.molstruc.2013.01.063

Yesilkaynak T, Binzet G, Emen FM, Florke U, Kulcu N, Arslan H. Theoretical and experimental studies on N-(6- methylpyridin-2-yl-carbamothioyl)biphenyl-4-carboxamide. Eur J Chem 2010; 1: 1-5. https://doi.org/10.5155/eurjchem.1.1.1-5.3 DOI: https://doi.org/10.5155/eurjchem.1.1.1-5.3

Mishra S, Chaturvedi D, Kumar N, Tandon P, Siesler HW. An ab initio and DFT study of structure and vibrational spectra of ? form of Oleic acid: Comparison to experimental data. Chem Phys Lipids 2010; 163: 20. https://doi.org/10.1016/j.chemphyslip.2009.11.006 DOI: https://doi.org/10.1016/j.chemphyslip.2009.11.006

Karmakar S, Mardanya S, Maity D, Baitalik S. Polypyridylimidazole based Os(II) complex as optical chemosensor for anions and cations and multi-readout molecular logic gates and memory device: Experimental and DFT/TDDFT study. Sensors Actuators B Chem 2016; 226: 388-402. https://doi.org/10.1016/j.snb.2015.11.104 DOI: https://doi.org/10.1016/j.snb.2015.11.104

Shkir M, Muhammad S, AlFaify S, Irfan A, Patil PS, Arora M, Algarni H, Zhang JP. An investigation on the key features of a D-?-A type novel chalcone derivative for opto-electronic applications. Rsc Adv 2015; 5: 87320-87332. https://doi.org/10.1039/C5RA13494C DOI: https://doi.org/10.1039/C5RA13494C

Published

2022-02-04

How to Cite

Kamalesu, S., Swarnalatha, K., & Subramanian, R. (2022). Synthesis and Computational Investigations of Ruthenium(II) Complexes Containing Hydrazine Schiff Base Ligands. Journal of Applied Solution Chemistry and Modeling, 6(1), 37–50. https://doi.org/10.6000/1929-5030.2017.06.01.4

Issue

Section

General Articles